Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1168-1172  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Bacteriological Study of Municipal Water  
Discharged in Al-Kufa River, Najaf, Iraq  
Ahmed O.M.AL-Dahmoshi and Hazim Aziz Naji Alhadrawi*  
Department of Ecology, Faculty of Science, University of Kufa, Najaf, Iraq  
Received: 09/05/2020  
Accepted: 17/07/2020  
Published: 20/09/2020  
Abstract  
Aim: The present study was aimed to investigate the bacteriological aspects for monitoring of water quality of Al-Kufa River, Al-  
Najaf, Iraq. Method: Water samples were collected from three sites in frequency of four time a month (For each site the samples were  
collected from about 100 meter before and after the site of municipal water discharge in the month of November, 2018 and April, 2019.  
The bacteriological assessment of samples involves, total bacterial count. Results and discussion: Highest number of bacteria was  
recorded in Site no 3, during month of April while the lowest number was recorded in Site no 1, during month of November. Study  
also included isolation and identification of bacteria by using the selective culture media. An isolated bacteria includes E.coli,  
K.pneumoniae, P.aeruginosa, V. cholera, S.typhi, S.aureus, E faecalis and investigation of antibiotics on bacterial isolates was  
investigated. Investigation shows resistance for E. coli and K. pneumonia with antibiotic ceftazidime while P. aeruginosa showed high  
resistance for Cefotaxime and Gentamycin. V. cholera and S.typhi shows significantly high resistance for Beta-lactam antibiotic i.e.  
Amoxicillin/Clavulanic acid and Cefotaxime and Ceftazidime, while S. aureus and E. faecalis shows high resistance for  
Clarethromycin and for tetracycline respectively. According to the results of present study we conclude that important difference  
observed among the sites in terms of physical ,chemical and bacteriological determinants according to site and the period of sample  
collection ,The study isolates showed different high antibiotic resistance patterns and the findings reflect the importance of water as  
a reservoir for the dissemination of antibiotic resistance genes in the natural aquatic environment.so the identification of this kind of  
contamination is necessary for appropriate management practices to improve sustainable water resources.  
Keywords: Municipal Water Discharged, Al-Kufa River, Resistance  
1
1
Introduction  
2 Study area  
Near the Al-Kiffil Bridge in the north of Kufa city, Iraq,  
Water quality is determined by assessing three classes of  
attributes: biological, chemical, and physical [1]. There are  
standards of water quality set for each of these three classes of  
attributes. Some attributes are considered of primary  
importance to the quality of drinking water while others are of  
secondary importance [2]. Biological attributes of a waterway  
can be important indicators of water quality and refer to the  
number and types of organisms that inhabit a waterway. When  
assessing water quality, it is also important to look at the  
quality of organisms that live in a waterway [2]. The water  
quality monitoring has become an important topic in stream  
and river system that’s affected by careless disposal of  
pollutants, where domestic and industrial effluent discharges  
consider the major sources of aquatic pollution [3]. It is crucial  
to improve our understanding of Al-Kufa habitat due to its  
importance for community livelihoods, so the current status of  
pollution in Al-Kufa River is an important factor to  
considered, especially due to increased human and industrial  
activities in Al-Kufa region [4].  
the Euphrates subdivided into two parts: Al-Abassia and Al-  
Kufa River, the last one extends from Al- Kiffil city via Al-  
Najaf province to Al- qadisia province, the total length of Kufa  
River is about 38 km, and its capacity reach to 552 m3. The  
water level in this river undergoes large fluctuations, the  
highest level occurs during the high discharge seasons (end of  
March month and of early April), the lowest water level in the  
summer. A lot of villages and farms (animal, crop, and  
vegetation farms) are found along the River; there are  
domestic, municipal wastewater and agriculture drainage  
discharged to the River; in addition to the industrial wastes that  
which come from: the industrial region in Al-Najaf city, the  
leather industry, and the cement factory. All of above have  
affecting the water quality, distribution and diversity of  
microorganisms. To investigation this study, 3 Sites were  
chosen as clear in Table (1).  
*Correspondence author: Hazim Aziz Naji Alhadrawi, Assistant Professor, Department of Ecology, Faculty of Science, University  
of Kufa, Najaf, Iraq. Email: hazim.alhadrawi@uokufa.edu.iq  
1
168  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1168-1172  
Figure 1: Google earth Image of sampling sites of Al-Kufa River  
Table 1: The sampling sites and their location by GPS*  
4 Results and Discussion  
4.1 Total Plate Count  
Site  
N
E
The results of total plate count reveal high microbial content of  
water sample in all sites as explained in Table 2. From the results as  
indicated in Table 2, the highest colony forming unit was seen  
in the month of April as compared to month of November.  
Increased in high colony forming unit may be attributed by  
increase in temperature.  
Site 1  
Site 2  
Site 3  
32°02'53.7" N  
32°02'08.8" N  
32°01'42.6" N  
44°23'30.6" E  
44°24'45.8" E  
44°24'53.6" E  
*GPS: Global Positioning System  
The first site is located near the College of Veterinary  
Medicine University of Kufa This site its carry all the sewage  
of the northern neighborhoods of Najaf. The second site is  
located adjacent to the Conference Palace, at the end of Al-  
Ma'mal Street in Kufa city which carry the sewage of the old  
Kufa neighborhoods. The third site located about 2 km from  
the south of second site (Figure 1).  
4.2 Types of bacterial isolates  
According to culturing the samples on the chromogenic  
agar and some selective media there are different types of  
bacterial isolates which founded in all samples included the  
following types of bacteria:  
E. coli: Gram negative bacteria appear green metallic  
shine on EMB agar pink colonies on MacConkey agar  
and UTI chromogenic agar.  
3
Materials and Methods  
K.pneumonia: Gram negative bacteria appear mucoid,  
deep purple colonies on EMB agar. mucoid pink colonies  
on MacConkey agar and dark blue colonies on UTI  
chromogenic agar.  
3
.1 Sample collection  
A total of (72) samples from water was collected by using  
0 ml sterile containers of polyethylene that were transferred  
2
to the laboratory within half an hour. All samples were diluted  
with normal saline solution. From each samples 0.1 ml has  
been taken for culture on some selected culture media.  
P.aeruginosa: Gram negative bacteria appear as blue to  
purple colonies on selective Pseudomonas chromogenic  
agar.  
Vibrio cholera: Gram negative bacteria appear as pink-  
rose colonies on selective vibrio chromogenic agar.  
S. typhi: gram negative bacteria appear pale yellow  
colonies on MacConkey agar and pink with black center  
3
.2 Antimicrobial susceptibility test by Agar Disk method  
The in vitro antibiotic susceptibility were determined via  
disk diffusion method according to Clinical and Laboratory  
Standards Institute instructions [5]. Activation of isolates were  
performed using nutrient broth for 18 h at 37 °C and the growth  
2
because of (H S) on Salmonella-Shigella agar.  
S. aureus: gram positive bacteria appear gold yellow  
colonies on mannitol salt agar and gave white creamy  
colonies on UTI chromogenic agar.  
E. facials: gram positive bacteria gave light blue to green  
colonies on UTI chromogenic agar.  
8
was adjusted to 0.5 McFarland’s standard (1.5 ×10 CFU/mL)  
and then spread on Muller Hinton agar (MHA) with a sterile  
cotton swab. Antibiotic disks were placed onto MHA, gently  
pressed down to ensure complete contact with the agar  
inoculated with bacteria and then incubated for 24 h at 37 °C  
and then inhibition zone diameter in millimeters (mm) was  
recorded. Interpretation of results as a sensitive or resist were  
achieved according to CLSI, 2019.  
Most of the isolated bacteria have clinical importance and  
push a risk for human health. The result is in agreement with  
6-7] who reported high coliform counts. The high coliform  
counts recorded from the river samples indicated the  
[
1
169  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1168-1172  
occurrence of faecal contamination [7]. The bacteriological  
examination of water samples revealed the presence of  
bacterial indicator and other pathogenic bacteria during study  
period.  
transposons, and class 1 Integrons [14-15]. The high  
concentrations of different types of antibiotics that reach water by  
different way may be leads to emergence of antibiotics resistance  
among water bacteria. Classes of antibiotic residues that have  
frequently been detected in municipal effluents include β-lactam,  
macrolides, lincosamide, tetracyclines, sulphonamides, and  
fluoroquinolones [16]. Emergence and dissemination of AR is on  
the increase trend among enteric bacteria [17]. The transfer of  
resistance among microorganisms is a serious threat, contributing  
to the development and emergence of ARB, thereby reducing the  
therapeutic potential against pathogens [18].  
4
.3 Antibiotic Susceptibility for Gram-negative Bacteria  
The results revealed high resistance of Gram-negative  
bacterial isolates to different classes of antibiotic used in this  
study (table 3). Our records were in accordance with those  
gathered by many studies on antibiotics resistance among water  
Gram-negative pathogens [7-9] racking the spread of antibiotic-  
resistant bacteria in water samples, such as sewage, tap and well  
water, is a useful source of information that can be used by policy  
makers in order to create risk management strategies for water  
environments.  
4.4 Antibiotic Susceptibility for Gram-positive Bacteria  
Resistance among Gram-positive isolates were lower than  
those of Gram-negative (table 4). Our results agreed with [19-20]  
and whom report the presence of resistance genes for tetracycline  
and trimethoprim-sulfamethoxazole in drinking water treatment  
plants (DWTPs) and finished water and report 39 antibiotics  
resistance genes (ARGs) for tetracycline, chloramphenicol and β–  
lactam in drinking water sources. The presence of outer  
membrane and negative charge of LPS in Gram negative bacteria  
and resistance or tolerance to high salt concentration in Gram  
positive bacteria may play explain the survive the water pathogen  
in highly polluted water especially with different types heavy  
metals and antibiotics [21].  
Developing of resistance to β-lactams and cephalosporins and  
aztreonam can be clarified as a results to carrying genes encodes  
for extended spectrum β-lactamases (ESBLs) like TEM-1, OXA-  
1
, CTX-M and SHV. ESBLs genes located on bacterial  
chromosomes or may be exchanged among species and genus via  
transposable elements like plasmids. Production of extended-  
spectrum β-lactamases (ESBLs) is a significant resistance-  
mechanism that impedes the antimicrobial treatment of infections  
caused by Enterobacteriaceae and is a serious threat to the  
currently available antibiotic armory [11-13]. The resistance to  
Trimethoprim-sulfamethoxazole may be due to acquisition of  
dihydrofolate reductase (DHFR) and dihydropteroate synthase  
(DHPS) genes through mobile genetic elements such as plasmids,  
Table 2: Total plate count among all sites  
Site 1  
Site 2 Site 3  
Mean x10 CFU\ ml±SD  
1.88±0.11  
No.  
6
B
I
A
B
I
A
B
I
A
B
I
A
B
I
A
B
I
A
B
I
A
B
I
1.25 ±0.5  
4.22 ±0.1  
3.08 ±0.09  
1.32 ±0.12  
5.85 ±1.1  
4.72 ±0.8  
1.45 ±0.6  
4.45 ±1  
1.98±0.86  
4.21±0.12  
2.28±0.45  
1.66±0.09  
5.22±1.46  
3.96±1.82  
2.44±1.02  
4.88±1.42  
3.02±1.24  
2.68±0.76  
5.44±1.88  
3.78±1.45  
4.98±1.68  
6.48±2.56  
4.88±1.02  
5.44±1.86  
7.22±2.88  
5.88±1.88  
4.86±2.40  
8.24±3.54  
5.96±2.42  
5.89±2.12  
8.98±3.44  
6.26±2.46  
1
2
3
4
1
2
3
4
5.12±0.5  
2.33±0.1  
1.9±0.06  
4.82±0.2  
3.26±0.08  
2.1±0.05  
5.66±0.5  
3.3±0.4  
1.96±0.1  
4.56±0.5  
2.5±0.05  
4.88±1.31  
6.44±2.10  
5.04±1.21  
4.46±1.01  
6.98±2.11  
5.22±1.12  
5.32±1.42  
7.42±2.44  
5.48±2.01  
5.98±1.11  
7.88±2.46  
6.02±2.34  
November  
3.65 ±0.4  
2.00 ±0.5  
4.45 ±1  
2.25 ±1  
3.24 ±1.2  
6.35 ±2.04  
4.28 ±1.44  
4.66 ±3.34  
6.28 ±2.88  
4.29 ±1.66  
4.68 ±1.86  
6.85 ±2.64  
4.98 ±1.88  
5.1 ±2.44  
7.24 ±3.0  
5.88±2.22  
April  
A
1
170  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1168-1172  
Table 3: Antibiotic Resistance percentage among Gram-negative bacterial isolates  
Antibiotics resistant (N)%  
Isolates  
N) %  
(
AMC  
CTX  
CAZ  
ATM  
IPM  
AK  
CN  
CIP  
STX  
B(33)  
I(56)  
(20)60.6  
(18)54.5  
(30)90.9  
(23)69.6  
(11)33.3  
(25)75.7  
(29)87.8  
(19)57.5  
(20)60.6  
E.coli  
(50)89.1  
(43)76.7  
(40)71.4  
(42)75  
(22)39.2  
(39)69.6  
(43)76.7  
(35)62.5  
(31)55.3  
A(40)  
B(20)  
I(30(  
(36)90  
(33)82.5  
(18)90  
(38)95  
(31)77.5  
(13)65  
(12)03  
(9)45  
(32)80  
(36)90  
(18)90  
(27)90  
(19)79.1  
(25)62.5  
(12)60  
(23)57.5  
(10)50  
(15)75  
(19)95  
(11)55  
K.  
Pneu  
monia  
(25)83.3  
(20)83.3  
(26)86.6  
(22)91.6  
(25)83.3  
(20)83.3  
(23)76.6  
(10)41.6  
(11)36.6  
(13)54.1  
(23)76.6  
(20)83.3  
(25)83.3  
(16)66.6  
(19)63.3  
(18)75  
A(24)  
B(38)  
(28)73.6  
(30)78.9  
(33)86.8  
(29)76.3  
(15)39.4  
(30)78.9  
(32)84.2  
(19)50  
(41)82  
(20)52.6  
(38)76  
P.  
Aerug  
inosa  
I( 50(  
A(44)  
(40)80  
(48)96  
(45)90  
(43)86  
(30)60  
(37)74  
(48)96  
(36)81.8  
(40)90.9  
(39)88.6  
(42)95.4  
(23)52.2  
(35)79.5  
(39) 88.6 (39) 88.6 (43)97.7  
B(5)  
I(12)  
A(7)  
(4)80  
(4)80  
(3)60  
(3)60  
(1)20  
(1)20  
(4)80  
(2)40  
(2)40  
S.typh  
i
(12)100  
(5)71.4  
(9)75  
(5)71.4  
(10)83.3  
(6)85.7  
(11)91.6  
(7)100  
(5)41.6  
(3)42.8  
(9)75  
(4)57.1  
(8)66.6  
(4)57.1  
(9)75  
(3)42.8  
(8)66.6  
(3)42.8  
B(0)  
I(2)  
A(0)  
(0)0  
(2)100  
(0) 0%  
(0)0  
(2)100  
(0) 0  
(0)0  
(2)100  
(0)  
(0) 0  
(2)100  
(0) 0  
(0)0  
(1)50  
(0) 0  
(0)0  
(1)50  
(0) 0  
(0)0  
(1)50  
(0) 0  
(0)0  
(1)50  
(0) 0  
(0) 0  
(1)50  
(0) 0  
V.cho  
lera  
AMC= Amoxicillin/Clavulanic acid, CTX= Cefotaxime, CAZ= Ceftazidime, ATM= Aztreonam, IPM= Imipenem, AK=Amikacin, CN=Gentamicin, CIP=  
Ciprofloxacin, SXT= Trimethoprim-sulfamethoxazole.  
Table 4: Antibiotic Resistance percentage among Gram-positive bacterial isolates  
Isolates  
N) %  
Antibiotics resistant (N)%  
(
VAN  
AK  
CN  
CLR  
TE  
CIP  
NOR  
F
SXT  
B(20)  
(16)80  
(15)75  
(8)40  
(27)84.3  
(20)100  
(26)81.2  
(17)85  
(30)93.7  
(12)60  
(21)65.6  
(16)80  
(28)87.5  
(14)70  
(32)100  
(20)100  
(26)81.3  
S.  
au  
re  
us  
I(32)  
(25)78.1 (30)93.7  
A(24)  
B(36)  
(16)66.6 (20)83.3  
(26)72.2 NA  
(20)83.3  
NA  
(22)91.6  
NA  
(21)87.5  
(28)77.7  
(38)95  
(15)62.5  
(12)33.3  
(34)85  
(20)83.3  
(10)27.7  
(35)87.5  
(31)96.8  
(20)83.3  
(16)44.4  
(32)80  
(15)62.5  
NA  
E.  
fa  
ec I(( 40  
(32)80  
NA  
NA  
NA  
NA  
ali  
s
A(32)  
(30)93.7 NA  
NA  
NA  
(32)100  
(30)93.7  
(28)87.5  
NA  
VAN=Vancomycicn, AK=Amikacin, CN=Gentamicin, CLR=Clarethromycin, TE=Tetracyclin, CIP=Ciprofloxacin, NOR=Norfloxacin, F=Nitrofurantion,  
SXT= Trimethoprim-Sulfamethoxazole, C=Chloramphenicol  
It is very important to mention that many earlier studies  
5
Conclusion  
According to the results of present study we conclude that,  
observed that resistant bacteria to many antibiotics and other toxic  
chemicals by virtue of carrying plasmids and or transposons  
encoding genetically linked metal and antibiotic resistance.  
Besides that, several studies presented evidence that in waters  
habitats there is a high potential for horizontal gene transfer,  
mediated by plasmids and facilitated by integrons [22-23].  
Plasmids carrying resistance genes have been identified in  
pathogenic bacteria of the genus Escherichia, Salmonella,  
Klebsiella, and Pseudomonas. These plasmids carry determinants  
for resistance to drugs of different groups [Tetracyclines,  
quinolones, aminoglycosides, sulfonamides, β-lactams and  
chemotherapeutics. [24-26]. Therefore, human activities,  
especially discharge of wastewater can aggravate antibiotic  
resistance leading to the wide dissemination of resistance genes in  
the aquatic environment.  
important difference observed among the sites in terms of  
physical, chemical and bacteriological determinants according to  
site and the period of sample collection. The study isolates showed  
different high antibiotic resistance patterns and the findings reflect  
the importance of water as a reservoir for the dissemination of  
antibiotic resistance genes in the natural aquatic environment.so  
the identification of this kind of contamination is necessary for  
appropriate management practices to improve sustainable water  
resources.  
Competing interests  
The authors declare that there is no any conflict of interest that  
would prejudice the impartiality of this scientific work.  
1
171  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1168-1172  
1
5. Singh R, Schroeder CM, Meng J, White DG, McDermott PF, et  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing.  
al. Identification of Antimicrobial  
Resistance and class 1  
Integrons in Shiga-toxin-producing Escherichia coli recovered  
from humans and food animals. Journal of Antimicrobial  
Chemotherapy. 2005; 56(1): 216-219.  
1
1
6. Rahube TO, Viana LS, Koraimann G and Yost CK.  
Ethical issue  
Characterization and Comparative Analysis of Antibiotic  
Resistance Plasmids Isolated from a Wastewater Treatment  
Plant. Front. Microbiol. 2014; 5: 558.  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
7. Von Wintersdorff, CJH, Penders J, van Niekerk JM, Mills ND,  
Majumder S, van Alphen LB, and Wolffs PFG. Dissemination  
of Antimicrobial Resistance in Microbial Ecosystems through  
Horizontal Gene Transfer. Frontiers in Microbiol. 2016; 7: 173.  
8. Hawkey PM, & Jones AM. The Changing Epidemiology of  
Resistance. Journal of Antimicrobial Chemotherapy. 2009;  
(avoidance of guest authorship), dual submission, manipulation of  
figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is origin.  
1
1
6
4(1): i3-i10.  
References  
9. Guo X, Li J, Yang F, Yang J and Yin D. Prevalence of  
Sulfonamide and Tetracycline Resistance genes in Drinking  
Water Treatment Plants in the Yangtze river Delta, China,  
Science of the Total Environment. 2014; 493: 626631.  
0. Moges F, Endris M, Belyhun Y and Worku W. Isolation and  
Characterization of Multiple Drug Resistance Bacterial  
Pathogens from Wastewater in The Hospital and Non-Hospital  
Environments. Northwest Ethiopia. 2014: 7.  
1. Kafilzadeh F, Moghtaderi Y and Jahromi AR. Isolation and  
Identification of Cadmium-Resistant Bacteria in Soltan Abad  
River Sediments and Determination of Tolerance of Bacteria  
through MIC and MBC. European Journal of Experimental  
Biology. 2013; 3: 268-273.  
2. Devika L, Rajaram R and Mathivanan K. Multiple Heavy Metal  
and Antibiotic Tolerance Bacteria Isolated from Equatorial  
Indian Ocean. International Journal of Microbiological  
Research. 2013; 4: 212-218.  
3. Novo A, André S, Viana P, Nunes OC and Manaia CM.  
Antibiotic Resistance, Antimicrobial Residues and Bacterial  
Community Composition in Urban Wastewater. Water  
Research. 2013; 47: 1875-1887.  
1
.
Gorde S, Jadhav, M. Assessment of Water Quality Parameters.  
A Review Journal of Engineering Research and Applications.  
2
013;3(6): 2029-2035  
2
.
Akoteyon IS, Omotayo AO, Soladoye O and Olaoye, HO.  
Determination of Water Quality Index and Suitability of Urban  
River for Municipal Water Supply in Lagos-Nigeria. Europ J  
Scientific Res. 2011; 54(2): 263-271.  
2
2
3
4
.
.
Campbell LM. Mercury in Lake Victoria (East Africa). (2001).  
Another emerging issue for a Beleaguered Lake. PhD, Thesis.  
Waterloo, Ontario, Canada.  
Mulamattathil G, Bezuidenhout C and Ateba CN. Isolation of  
Environmental Bacteria from Surface and Drinking Water in  
Mafikeng, South Africa, and Characterization Using Their  
Antibiotic Resistance Profiles. Journal of Pathogens. 2011.  
Volume 2014, Article ID 371208, p.11  
2
5
.
Clinical and Laboratory Standards Institute Performance  
Standards for Antimicrobial Susceptibility Testing. (2019).  
Twenty-Fifth Informational Supplement. CLSI Document  
M100-S25. Clinical and Laboratory Standards Institute, Wayne,  
2
PA. from  
https://clsi.org/standards/products/microbiology/documents/m1  
0/.  
Accessed  
2
2
4. Ceylan O. and Uğur A. Bio-Monitoring of Heavy Metal  
Resistance in Pseudomonas and Pseudomonas Related Genus.  
Journal of Biological Environmental Science. 2012; 6: 233-242.  
5. Shamim S. and Rehman, A. Cadmium Resistance and  
Accumulation Potential of Klebsiella pneumoniae Strain CBL-1  
Isolated from Industrial Wastewater. Pakistan Journal Zoology.  
0
6
7
8
.
.
.
Shittu OB, Olaitan JO, Amusa TS. Physio-chemical and  
Bacteriological Analysis of Water used for Drinking and  
Swimming Purpose. Afr. J. Biol. Res. 2008; 11:285290.  
Sanders E, Yuan Y, Pitchford A. Fecal coliform and E. coli  
concentrations in effluent-dominated streams of the upper Santa  
Cruz Watershed. Water. 2013; 5: 243261.  
Blaak H, Lynch G, Italiaander R, Hamidjaja RA, Schets FM and  
de Roda Husman AM. Multidrug-Resistant and Extended  
Spectrum Beta-Lactamase-Producing Escherichia coli in Dutch  
Surface Water and Wastewater. Plos One. 2015;10(6):  
e0127752.  
2
012; 44: 203-208.  
2
6. Jafari JME, Shakibaie MR and Poormasoomi L. Isolation of a Novel  
Plasmid from Hospital Isolate of Pseudomonas aeruginosa. Journal  
Clinical and Experimental Pathology. 2013; 3: 1-5.  
9
.
Cornejova T, Venglovsky J, Gregova G, Kmetova M and Kmet  
V. Extended-Spectrum Beta-lactamases in Escherichia coli from  
Municipal Wastewater. Ann Agric Environ Med. 2015, 22(3), p.  
4
47-450.  
1
1
1
0. Baquero F, Martinez JL and Canton R. Antibiotics and  
Antibiotic Resistance in water environments. Curr Opin in  
Biotechnol. 2008; 19(3): 260265.  
1. Rupinder B, Geeta W and Shikha J. Prevalence of Extended  
Spectrum β-lactamases in Multi-drug resistant Strains of Gram-  
negative Bacilli. J Acad Indus Res. 2005; 1(9): 558-560.  
2. Majda Q, Najma A. and Summyia B. Evaluation of extended  
Spectrum beta-lactamase Mediated Resistance in Escherichia  
coli and Klebsiella in Urinary Tract Infection at a Tertiary Care  
Hospital. Biomedica. 2013; 29: 78-81.  
1
1
3. Kritu P, Prakash, Shiba KR, Reena KM, Ram NS and Ganesh R.  
Antibiogram typing of gram-negative isolates in different  
clinical samples of a tertiary hospital. Asian J Pharm Clin Res.  
2
013; 6(1):153-156.  
4. White PA, McIver, CJ and Rawlinson WD. Integrons and Gene  
Cassettes in the Enterobacteriaceae. Antimicrobial Agents and  
Chemotherapy. 2001; 45(9): 2658-2661.  
1
172