Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1029-1035  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Drilling Fluids: Presence of Hazardous BTEXs and  
Crystalline Silica  
1
2*  
3
Lakmun Chan , Nithiya Arumugam , Sathiabama T. Thirugnana and Shreeshivadasan  
Chelliapan2  
1
Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia  
2
Department of Engineering, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur,  
Malaysia  
Ocean Thermal Energy Conversion (OTEC), Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra,  
3
5
4100 Kuala Lumpur, Malaysia  
Received: 25/03/2020  
Accepted: 26/06/2020  
Published: 20/09/2020  
Abstract  
In the oil and gas industry occupational health risks due to drilling fluids is severe. Mixing room, shale shaker room and drill floor are  
sites where workers are highly exposed to air pollutants, hazardous dust and even substances generated via drilling fluids associated activities.  
Barite, calcium carbonate and linear paraffin or olefin-based oil are three types of chemical that are greatly used in huge quantities to prepare  
drilling fluids. These drilling fluids contain hazardous substances and pose health risks. Due to the occupational health risk, Occupational  
3
Safety and Health Administration OSHA Europe and USA have issued guidelines for the permissible exposure limit (PEL) to be at 5 mg/m  
3
3
3
for barium sulphate, 10 mg/m for calcium carbonate, 0.05 mg/m for crystalline silica and 0.05 mg/m for oil mists. Therefore, this study  
identified the presence of benzene, toluene, ethylbenzene and xylene (BTEX) ionic mists and crystalline silica in the drilling fluids. The grain  
size distribution of additives used in the drilling fluids was also determined. The results showed the presence of BTEX and crystalline silica  
based on random sampling. Therefore, the existing control measures are necessary to reduce the occupational health risks. As a control  
measure, Artificial Intelligence (AI) and Internet of Things (IoT) are necessary to be introduced for the automation of drilling fluids associated  
activities.  
Keywords: Drilling fluids; Occupation health risk; Hazardous; BTEX; Barium sulphate  
Introduction1  
the drill hole via a mud pump and a discharge line. These drilling  
fluids are circulated down the drill string and then out through the  
bit. The drilling fluids are moved back up to the annulus and  
straight into the surface. The huge quantities of drill cuttings are  
composed of rocks and particulate mixtures which are released  
from geological formations generated during the drilling  
operation (5). Cuttings that are suspended from the hole by  
drilling fluids are unwanted and removed when they flow through  
the shale shaker (4). The above-mentioned drilling fluids flow  
cycle is illustrated in Figure 1.  
The selection of drilling fluids solely depends on their  
behaviours during the operation despite their drawbacks due to  
environmental concerns. The drilling fluids cycle will happen at  
elevated temperature together with agitation. This potentially  
exposes chemicals as well as oil vapour/mists; subsequently,  
affecting the health of workers both in short-term and long-term  
Drilling fluids have a vital role in measuring the success rate  
of drilling operations. These fluids are important to increase the  
oil recovery and shorten recovery time (1). Commonly used  
drilling fluids in the oil and gas industry are water-based, oil-  
based and synthetic-based muds (2). Drilling operation has three  
simultaneous systems that work in a boring hole. The first is a  
rotating system while second is a lifting system. The thirdsystem  
is a circulating system. The rotating system rotates the drill bit  
while the lifting system is used to lift up and lift down the drill  
string into the hole. The circulating system will circulate fluids  
around from the drill stem, out of the drill bit and up again into  
the hole at the surface.  
The drilling fluids are often used to eliminate cuttings from  
the drilling hole, transport them to the surface and are also used  
as a stabiliser and supporter to the wellbore (3). Besides, the  
drilling fluids help to cool and lubricate the drill bit (4).  
Preparation of drilling fluids starts at the mud mixing hopper. The  
mixing hopper performs as a chemical mixing station and then the  
fluids are retained in the mud pits/tanks before being pumped into  
(6). Comprehensive risk assessments of drilling fluid systems  
need to be conducted by the operator well planners, taking into  
consideration the aspects of health, environment and safety when  
deciding on the type of drilling fluids to be used for the system.  
Corresponding author: Nithiya Arumugam, Department of Engineering, Razak Faculty of Technology and Informatics, Universiti  
Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia. E-mail: nithiya85.a@gmail.com.  
1
029  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1029-1035  
The outcomes of these assessments should be made accessible to  
all employees who may be exposed to the system.  
Figure 1: The drilling fluids recirculation and preparation  
As highlighted in Figure 1, workers working in these three  
areas (drilling floor, shale shaker, chemical mixing station and  
mud pits/tanks) are highly exposed to hydrocarbons and oil mists  
that work-related illnesses may only be visible after a few years  
of exposure to toxic substances (8). Long-term exposure to barite  
(barium sulphate) in drilling fluids and oil mist/vapour may cause  
lung diseases (9). Drill cuttings are usually characterised by high  
content of polycyclic aromatic hydrocarbons (PAHs), which is  
potentially carcinogenic or mutagenic to mammals and aquatic  
organisms (10). Chen et al. (11) assessed the inhalator and dermal  
exposures to PAHs in oil mists and their consequential risks of  
cancer, specifically lung and skin, with regard to health-risk  
management. However, very few studies were carried out on oil  
well drilling workers’ exposure hazards (7,1214).  
The basic three components in drilling fluids that are used in  
large quantities are barite, calcium carbonate and linear paraffin-  
based oil. The vapour of non-aqueous drilling fluids consists of  
low-boiling point portion of hydrocarbons, while the mist consists  
droplets of the hydrocarbon portion. Although these hydrocarbon  
fractions may contain insignificant amount of known toxic  
components like benzene, toluene, ethylbenzene and xylene.  
They are collectively referred as BTEX, which will evaporate  
relatively faster, resulting in vapour with higher concentration  
than the estimated. Exposure to BTEX is correlated with health  
risks and may cause neurological effects,which is generally to the  
(7). At the shale shaker, they are possibly exposed by inhaling  
aerosols and vapour/mists or through dermal contact. Dermal  
contact predominantly occurs with drilling fluids, lubricants,  
hydraulic oils and other personnel at the drilling floor. At the  
chemical mixing station and mud pits/tanks, workers are greatly  
exposed to burns, or physical injuries due to dermal or eye  
contact. Potential inhalation risk and explosions or aggressive  
reactions from improper chemical mixing are also greatly  
possible in these areas.  
Skin irritation and skin diseases are the prevalent short-term  
health hazards observed when working with drilling fluids (7).  
Physicochemical properties of the drilling fluids, together with  
the inherent properties of the drilling fluid additives, are the root  
cause of these problems and are reliant on the exposure route,  
either through dermal absorption, inhalation or orally. There are  
concerns about the break down of organic components or even  
occurrence of chemical reactions which will produce more toxic  
components due to the operation of drilling fluids in an open  
system at elevated temperature and pressure (6). There are facts  
1
030  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1029-1035  
central nervous system depression via the oral route, as well as  
renal and hepatic effects (7,1517).  
of analytical methods used in this paper are discussed in  
subsequent sections.  
Barite is one of the most important components in drilling  
mud with its principal use as a weighting agent. It is used in  
substantial tonnages to increase the density of drilling mud due to  
its high specific gravity, balancing formation pressure and  
preventing a blowout (1820). Barite used combinely with other  
substances like calcium carbonate to produce mud. This mud will  
be pumped down into the drill hole to control the high pressure  
formation and avoid explosive discharges of oil and gas from the  
well. The soft characteristic of barite prevents the drilling  
equipment from becoming worn. Besides, it is nonmagnetic and  
does not interfere with the logging drill holes’ instrumentation.  
Basically, the usage of barite in drill hole differs significantly  
from site to site and depends on factors, such as hole depth and  
diameter, rocks types and drilling conditions like fractures and  
hole pressure (21).  
Analytical Methods  
a) Gastec® Gas Sampling System  
The Gastec® gas sampling system was used to check the level  
of BTEX in various locations at the drilling rig. These  
conventional Gastec tubes used colorimetric technology ,whereby  
the chemical reagent in the gas tube reacted with the gas sample  
as it was drawn towards the tube via a pump. Detector tubes were  
specified according to types of gas to be measured, as shown in  
Table 1. The length of colour stains produced was proportional to  
the concentration of gas. The concentration may be read  
immediately by using the calibration scale printed on the tube.  
b) X-ray Diffraction (XRD)  
Barite powder was compacted in the sample holder and  
placed in the PANalytical XRD Machine for analysis. The XRD  
patterns were documented with Cu Kα-radiation (λ=1.5406 Å).  
The 2θ values were scanned from 10º to 70º with 45kV and at a  
scan speed of 2º/min at 25ºC.  
Silica consists of silicon and oxygen in the form of silicon  
dioxide (SiO ) and is found abundantly on Earth. It exists either  
2
in a crystalline or non-crystalline form. Crystalline silica exists in  
several forms (polymorphs) and the most common polymorph is  
quartz. The surface of crystalline silica possesses reactive oxygen  
species when fractured, which is the reason of crystalline silica  
particles toxicity when inhaled (22). A common component of  
rock and soils is quartz, and employees may be exposed to dust  
that contains quartz during the drilling processs. When drilling  
materials contain quartz and are subjected to high temperature, it  
may cause the quartz to tranform physically and chemically,  
which are eventually exposed to the workers.  
c) Particle Size Analyzer  
The particle size distribution (PSD) of barite was measured  
by using a Malvern Mastersiser 3000 instrument with Hydro EV  
Flexible volume wet dispersion (23). The particle size was  
determined as volume percentage of particles classed into 101  
logarithmically distributed (log-spaced) size bins that ranged  
from 0.01 μm to 3000 μm. The signal was transformed into PSD  
data by using Fraunhofer or Mie scattering theory with the use of  
a laser device software (24). Fraunhofer approximation is a  
simplified method. Meanwhile a more accurate data can be  
obtained by using the Mie theory, but it requires the optical  
properties (refractive index and absorption coefficient of the  
sample) and the dispersant. Therefore, the latter provided more  
precise results (25). The analysis parameters for both barium  
sulphate is shown in the Table 2.  
The Agency for Occupational Safety and Health  
Administration (OSHA) of Europe and the USA have issued the  
guidelines of permissible exposure limit (PEL) for barite to be at  
3
3
3
5
mg/m , 0.05 mg/m for crystalline silica and 0.05 mg/m for oil  
mists. The particle size of barite is only controlled by personal  
protective equipment (PPE) at the cutoff point of 3.5µm. PPE is  
not able to filter a size that is finer than this, which means it will  
possibly enter the respiratory system of workers. Taking into  
account the occupational risks of drilling fluids, the objective of  
this research is to identify the existence of hazardous substances,  
such as BTEX in drilling fluids and mists/vapours that are  
released into the air, identify the presence of quartz (crystalline  
silica) followed by particle size analysis of crystalline silica in  
barite.  
Results and Discussions  
a) BTEX Analysis  
Benzene, toluene and xylene were detected at various  
locations in the drilling rig with concentrations of 1ppm, 20ppm  
and 5ppm, respectively. As there was no benchmark, standards  
and acts were available to compare the data collected. Therefore,  
this finding clearly showed and shall be considered as a base case  
for studying further on the existence of BTEX and its exposure at  
drilling rigs. Though the hydrocarbon fractions may contain  
insignificant quantities of toxic components, such as BTEX, these  
will evaporate at low-boiling point relatively at higher rates,and  
thus resulting in higher concentrations of BTEX in the vapour  
phase than expected (7). Furthermore, the high level of BTEX  
emissions due to ancillary activities associated with drilling  
operations were also proven by others (26, 27). Despite the  
challenges in setting the standards for health exposure of drilling  
fluid to workers, research studies were conducted by the Agency  
for Toxic Substances and Disease Registry (ATSDR) for BTEXs  
released during agitation of drilling fluids at high pressure and  
temperature (7). These results were used as an exposure indicator  
or lowest observed adverse effect level (LOAEL) for workers’  
exposure to drilling fluids. This indicator may act as a guideline  
to help decrease the adverse effects of exposure.  
Materials and Methods  
Materials  
The barite was sampled under controlled conditions from a  
barite storehouse. All samplings were done on a random basis.  
Barite was basically used without further purification. X-ray  
diffraction (XRD) and particle size analyser (PSA) were the  
analytical methods used for barite. XRD was used to identify the  
presence of crystalline silica, while PSA was used to determine  
the particle size. As for the mists/vapours, the sampling and  
measuring were conducted during recirculation of drilling fluids.  
Oil vapour was dispersed into the atmosphere when the high  
temperature drilling fluids were circulated out from the well. As  
the drilling floor, shale shaker, chemical mixing station and mud  
pits/tanks are identified as the highest possible locations where  
workers are subjected to exposure of mists/vapours,all samplings  
for BTEX analysis were conducted in these areas. The Gastec  
sampling method was used to analyse the BTEX level. The details  
1
031  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1029-1035  
b) Identification of Crystalline Silica  
supported and matched with the crystalline silica XRD analysis  
by others (28,29).  
The dominant peak as shown in Figure 2a is the XRD analysis  
result for barite. The samples were analysed at values from 20  
to 35. The peak was close to the selected reference data provided  
for silicon dioxide, as shown in the Figure 2b. This peak was also  
Table 1: Type of gases to be measured  
Benzene Detector  
Toluene Detector  
Xylene Detector  
Measurement Range (ppm)  
No. Pump Stroke  
0.1 to 10  
10 to 300  
10 to 250  
5
1
1
Correction Factor  
1
1
1
Sampling Time (minute/stroke)  
Detecting Limit (ppm)  
Color Change  
1.5  
0.05  
1.5  
1.5  
1
1
White to Dark Green  
White to Brown  
White to Brown  
Reaction Principle  
C
6
H
6
+I  
2
O
5
+H  
2
S
2
O
7
->I  
2
C
6
H
5
CH  
3
+I  
2
O
5
+H  
2
SO  
4
->I  
2
6 4 3 2 5 2 4 2  
C H (CH )+I O +H SO ->I  
Figure 2a: XRD analysis for barium sulphate  
1
032  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1029-1035  
Figure 3b: XRD analysis for barium sulphate with reference data  
Table 2: Analysis parameters of barium sulphate  
the sites. Furthermore, other than the BTEX and crystalline silica,  
the handling of barite is necessary to adhere to the guidelines  
where its permissible exposure limit (PEL) is at 5mg/m³.  
Analysis Parameters  
Particle Refractive Index  
Particle Absorption Index  
Dispersant Refractive Index  
Dispersant  
Barium Sulphate  
1.643  
0.010  
Table 3: PSD for barite  
1.330  
Measuring  
Concentration  
Results  
Water  
0.207%  
2.740  
Span  
The PSD for barite is shown in Table 3, as the cutoff point of  
.5µm filter in breathing apparatus. There were some portions of  
3
Uniformity  
Specific Surface Area  
Dv (10)  
1.064  
particle size, which were below 1µm and it will strengthen the  
threat of these particles. Therefore, it will flow through the filter  
and possibly be inhaled. Further to the particle size and with  
confirmation of the crystalline silica presence in barite, the threat  
was imminent to the workers’ health .  
713.1m²/kg  
3.48µm  
Dv (50)  
17.8µm  
Conclusions  
Dv (90)  
52.2µm  
This paper presents the tangible threats to workers  
working on drilling operations at drilling rigs, especially activities  
allied with preparation and recirculation of drilling fluids. The  
presence of BTEX and crystalline silica in these activities is  
confirmed by quantitative analysis of samples taken randomly at  
Control measures such as engineering control or PPEs  
implementation of these activities should also be reviewed and  
revised to ensure the mitigation of occupational risks. The  
introduction of new control measures, namely Artificial  
1
033  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1029-1035  
Intelligence (AI) and Internet of Things (IoT), whichare aligned  
with the 4 Industrial Revolution such as automation in drilling  
Exhibition and Conference. 1999;18.  
9. Okhrimenko A, Thuriere A, Tyczynski P. Evaluation of the respirable  
crystalline silica content in common oilfield minerals. 2015;2006.  
th  
fluids preparation and during circulation, will benefit the workers  
as well as companies reputation in the long run. Having  
considered all the risks related to incidental ingestion and  
inhalation of BTEX, crystalline silica and fine powder chemicals,  
below are the proposed control measures to minimise the risks:  
i) Substitution  shale shakers to the mud cube system (confined  
with vacuum)  
1
0. Olson GM, Meyer BM, Portier RJ. Assessment of the toxic potential  
of Polycyclic Aromatic Hydrocarbons (PAHs) affecting Gulf  
menhaden (Brevoortia patronus) harvested from waters impacted by  
the BP Deepwater Horizon Spill. Chemosphere. 2016;145:3228.  
11. Chen M-R, Tsai P-J, Wang Y-F. Assessing inhalatory and dermal  
exposures and their resultant health-risks for workers exposed to  
Polycyclic Aromatic Hydrocarbons (PAHs) contained in oil mists in  
a fastener manufacturing industry. Environ Int. 2008;34(7):9715.  
2. Steinsvåg K, Bråtveit M, Moen BE. Exposure to oil mist and oil  
vapour during offshore drilling in Norway, 1979-2004. Ann Occup  
Hyg. 2006;50(2):10922.  
3. Kazerouni N, Thomas TL, Petralia SA, Hayes RB. Mortality among  
workers exposed to cutting oil mist: Update of previous reports. Am  
J Ind Med. 2000;38(4):4106.  
4. Stenehjem JS, Kjærheim K, Bråtveit M, Samuelsen SO, Barone-  
Adesi F, Rothman N, Lan Q, Grimsrud TK. Benzene exposure and  
risk of lymphohaematopoietic cancers in 25000 offshore oil industry  
workers. Br J Cancer. 2015;112:160312.  
5. Mitra S, Roy P. BTEX: A serious ground-water contaminant. Res J  
Environ Sci. 2011;65(5):3948.  
ii) Engineering Control  in-situ local exhaust ventilation and  
isolation  
1
1
1
iii) Personal Protective Equipment  
apparatus  
zero-leak breathing  
Acknowledgment  
The authors would like to thank UTM Razak School for partly  
supporting this research with the assistance of the grant vot  
number (R.K130000.7740.4J302). The authors also thank Mr.  
Mohammad Saiful Omar from UTM UPMU and Shell for their  
support in conducting the necessary analysis.  
1
1
6. López E, Schuhmacher M, Domingo JL. Human health risks of  
petroleum-contaminated groundwater. Environ Sci Pollut Res.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics, specifically with regard to authorship  
2
008;15(3):27888.  
1
1
7. Gagnaire F, Langlais C. Relative ototoxicity of 21 aromatic solvents.  
Arch Toxicol. 2005;79(6):34654.  
8. Reynier M V., Tâmega FTS, Daflon SDA, Santos MAB, Coutinho R,  
Figueiredo MAO. Long- and short-term effects of smothering and  
burial by drill cuttings on calcareous algae in a static-renewal test.  
Environ Toxicol Chem. 2015;34(7):15727.  
19. Barlow MJ, Kingston PF. Observations on the effects of barite on the  
gill tissues of the suspension feeder Cerastoderma edule (Linné) and  
the deposit feeder Macoma balthica (Linné). Mar Pollut Bull.  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
2
001;42(1):716.  
2
2
0. Hamed SB, Belhadri M. Rheological properties of biopolymers  
drilling fluids. J Pet Sci Eng. 2009;67(34):8490.  
1. Bleiwas DI, Miller MM. BariteA case study of import reliance on  
an essential material for oil and gas exploration and development  
drilling. 2015;20145230:114.  
2. Jr. BLF. Longitudinal analysis of the OSHA IMIS Database for  
worker exposure to crystalline silica dust by industry and  
comparisons to the OSHA PEL, ACGIH TLV and NIOSH REL. In:  
ASSE Professional Development Conference and Exposition.  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing.  
2
2
References  
2
016;117.  
1
.
Nasser J, Jesil A, Mohiuddin T, Ruqeshi M Al, Devi G, Mohataram  
S. Experimental investigation of drilling fluid performance as  
nanoparticles. World J Nano Sci Eng. 2013;3:5761.  
3. Ahmed J, Taher A, Mulla MZ, Al-Hazza A, Luciano G. Effect of  
sieve particle size on functional, thermal, rheological and pasting  
properties of Indian and Turkish lentil flour.  
016;186:3441.  
4. Varga G, Újvári G, Kovács J. Interpretation of sedimentary  
sub)populations extracted from grain size distributions of Central  
J Food Eng.  
2
.
Vryzas Z, Mahmoud O, Nasr-El-Din HA, Kelessidis VC.  
2
2 3 2  
Development and testing of novel drilling fluids using Fe O and SiO  
nanoparticles for enhanced drilling operations. In: International  
Petroleum Technology Conference. 2015;116.  
2
2
2
(
European Loess-Paleosol series. Quat Int. 2019;502(Part A):6070.  
5. Varga G, Kovács J, Szalai Z, Cserháti C, Újvári G. Granulometric  
characterization of Paleosols in Loess series by automated static  
image analysis. Sediment Geol. 2018;370:114.  
6. Field RA, Soltis J, McCarthy MC, Murphy S, Montague DC.  
Influence of oil and gas field operations on spatial and temporal  
distributions of atmospheric non-methane hydrocarbons and their  
effect on ozone formation in winter. Atmos Chem Phys.  
3
4
.
.
Cook J, Growcock F, Guo Q, Hodder M, van Oort E. Stabilizing the  
wellbore to prevent lost circulation. Oilfield Review. 2011;23:2635.  
Al-Yasiri MS, Al-Sallami WT. How the drilling fluids can be made  
more efficient by using nanomaterials. Am J Nano Res Appl.  
2
015;3(3):415.  
5
6
7
8
.
.
.
.
Ayotamuno JM, Okparanma RN, Araka PP. Bioaugmentation and  
composting of oil-field drill-cuttings containing Polycyclic Aromatic  
Hydrocarbons (PAHs). J Food, Agric Environ. 2009;7(2):65864.  
Gardner R. Overview and characteristics of some occupational  
exposures and health risks on offshore oil and gas installations. Ann  
Occup Hyg. 2003;47(3):20110.  
Broni-Bediako E, Amorin R. Effects of drilling fluid exposure to oil  
and gas workers presented with major areas of exposure and exposure  
indicators. Res J Appl Sci Eng Technol. 2010;2(8):7109.  
2
015;15:352742.  
2
2
7. Field RA, Soltis JJ, Pérez-Ballesta P, Grandesso E, Montague DC.  
Distributions of air pollutants associated with oil and natural gas  
development measured in the upper green river basin of Wyoming.  
Elem Sci Anthr. 2015;3:114.  
8. Nandanwar R, Purnima S, Fozia ZH. Synthesis and characterization  
2
of SiO nanoparticles by sol-gel process and its degradation of  
methylene blue. Am Chem Sci J. 2015;5(1):110.  
Gardner RJ, Wiig H. Management of occupational health offshore:  
Still a challenge for the industry? In: Offshore Europe Oil and Gas  
1
034  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1029-1035  
2
9. Joni IM, Nulhakim L, Vanitha M, Panatarani C. Characteristics of  
crystalline silica (SiO ) particles prepared by simple solution method  
using sodium silicate (Na SiO ) Precursor. J Phys Conf Ser.  
018;1080:16.  
2
2
3
2
1
035