Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 894-899  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Effect of Pretreatment of Biosorbent in Biosorption:  
A Comparative Study  
Ariani Dwi Astuti 1,2, Khalida Muda 1*  
1
Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor,  
Malaysia  
2
Department of Environmental Engineering, Faculty of Landscape Architecture and Environmental Technology, Universitas Trisakti, Jakarta, Indonesia  
Received: 21/01/2020  
Accepted: 24/05/2020  
Published: 20/09/2020  
Abstract  
The textile industry generates large amounts of wastewater with strong BOD/COD and salt load, which are often seen in dark colour. An  
alternative treatment for this type of wastewater is the biosorption, where it involves a passive uptake of both the organic and inorganic  
compounds, including dye or its derivatives, using non-growing/living microbial mass. Biosorbent pretreatment, autoclaving techniques and  
combined with the chemical processes, such as acidification, were discussed. The response surface methodology (RSM) is used for  
researching and developing the effect of pH, contact time, dosage, and biosorbent size in the biosorption process in synthetic textile  
wastewater using Bjerkandera adusta. When the pH was 4, and the contact time, biosorbent dosage and biosorbent size were 90 minutes,  
3
000 mg/L and 0.4 mm, respectively, the optimal removal circumstance was able to be verified, at 53.55%, and 81.3% of colour removals  
were demonstrated through the experimental procedure. This leads to the high acceptance of the experimental findings and model forecast.  
2
2
adj  
In the optimisation of experimental parameters, the quadratic model estimated both R and R correlation coefficients quite satisfactorily  
as 0.988, 0.977, 0.926, and 0.783, respectively. It is more effective to combine the autoclaving technique with chemical processes than  
adopting just the autoclaving method. The two-sided t-test was used to identify any significant variations in the preparation techniques of  
biosorbents using p < 0.05. The biosorbent study using scanning electron microscopy (SEM) and characterisation of surface functional group  
using Fourier-transform infrared (FTIR) spectroscopy confirms the results obtained.  
Keywords: Bjerkandera adusta, Synthetic textile wastewater, Biosorbent, Response surface methodology, Colour removal efficiency  
Introduction1  
sectors (8). Various techniques for treating textile waste are being  
1
adopted, including physical-chemical methods, such as  
adsorption, filtering, biological processes, chemical flocculation,  
coagulation, and sedimentation (9). Although most of these  
approaches are highly effective, some are rather expensive and  
produce sludge that requires further treatment (e.g., sludge  
treatment). The ability of fungi to remove a large selection of  
contaminants that are intransigent, such as synthetic dyes, has  
been approved (10,11). The highest rate of degradation was  
recorded for Bjerkandera adusta, whose strain could completely  
decolourise a large number of colourants and detoxify synthetic  
wastewaters (7). Bjerkandera adusta, Phanerochaete  
chrysosporium, and Pleurotus ostreatus exhibited the best  
decolourisation properties (12), while Heinling et al. (1997) stated  
that Phanerochaete chrysosporium, Trametes versicolor, and  
Bjerkandera adusta had demonstrated their capability to decolour  
all of the colours tried (13). Through its production of ligninolytic  
enzymes, Bjerkandera adusta indicated that this strain could be  
beneficial for biotechnological advancement (14). Some methods  
of pretreatment may enhance the adsorption capacity of biomass  
materials. Other techniques of pretreatment include autoclaving,  
The textile dyeing process uses a large amount of water,  
making it one of the biggest liquid pollutant generators (1, 2).  
Towards the turn of the decade, the world population is estimated  
to be 11 billion due to its exponential growth from only 1 billion  
in the 1800s to more than 7 billion today. With a per capita intake  
of textiles and clothing of 7 kg per person per year, the global  
annual demand for textile products has exceeded 49 billion kg (3),  
where the discharge is between 115175 kg COD/ton of  
completed textile (4). Manufacturing license in Malaysia  
(Malaysia Investment Performance, MIDA, 2011) has  
documented a total of 662 licensed textile and 1,000 clothing  
mills on a small scale. The treatment of wastewater produced by  
textile companies creates an important environmental challenge,  
particularly in terms of the expense of quality of the resulting  
textile effluent (5). During the dyeing process, textile dyeing  
factories use adequate quantities of different colours or additional  
chemicals and ultimately emit robust textile wastewater (6,7).  
Azo dyes currently reflect the better standard of synthetic dyes by  
global standards (around 70 percent), and their large-scale  
production may be related to their use by various manufacturing  
Corresponding author: Khalida Muda, Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of  
Engineering, Universiti Teknologi Malaysia, Johor, Malaysia. E-mail: Khalida Muda. Email: khalida@utm.my.  
8
94  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 894-899  
which might break the structure of fungi and reveal the potential  
colour of the binding sites (15).  
(21). After stirring the flask for predetermined time intervals, the  
flasks were extracted and resuspended to obtain the liquid-solid  
separation prior to its analysis. In addition to the biosorbent used  
in this work, the SEM (TM3000 Hitachi High Technologies  
America, USA) was used to study the morphological structure,  
whereas FTIR spectroscopy (Nicolet iS10 FT-IR Spectrometer,  
USA) was used to investigate the chemical characterisation.  
Response surface methodology (RSM) was chosen as the  
analytical instrument for optimising multiple variables and  
predicting better performance. The method allows the  
determination of optimal conditions under predetermined factor  
preferences, such as high removal at the optimal condition and/or  
with the least number of experiments (16).  
The main aim of this research is to assess the effects of pH,  
biosorbent dosage, contact time, and biosorbent size in the  
biosorption process in synthetic textile wastewater using  
Bjerkandera adusta via two pretreatment methods of biosorbent;  
for instance, the process of autoclaving and combining  
autoclaving with chemical processes. RSM was applied, as it was  
among the most sophisticated and appropriate variable techniques  
used in analytical advancement. RSM was used for planning  
experiments, building models, and defining the optimal  
conditions.  
2.4 Experimental Design  
RSM was used to determine the relationship between colour  
removal and the critical variables (e.g., pH, biosorbent dosage,  
contact time, and biosorbent size). In this experiment, a four-  
factor with a five-level CCD was used, which required almost 30  
studies. The factors were: A: pH (48); B: biosorbent dosage; C:  
contact time (30150 minutes); and D: biosorbent size (0.20.6 ±  
0.05 mm). The experiments were selected randomly for statistical  
evaluations, and every sample was duplicated using a software  
package called the Design-Expert Version 11 (Stat-Ease,  
Statistical Made Easy, MN, USA).  
2
Methods  
2
.1 Synthetic Textile Effluent  
3 Results and Discussion  
The following contents of the synthetic wastewaterwere used  
The RSM can be in the form of a variety of mathematical  
and applied mathematical approaches. RSM promotes the  
practice of experimental data-based polynomial equations,  
which must characterise the knowledge conduct set with the  
goal of creating relevant mathematical forecasts (22). The  
expected value of information was achieved in this research  
by using the Design-Expert software to fit the model  
technique. After combining this information with distinct  
models such as cubic, ANOVA demonstrates that all responses  
were better represented by the mathematical quadratic  
polynomial model (Table 1).  
to test the performance: K  
2
HPO  
4
0.58 g/L, NH Cl 0.16 g/L,  
4
KH PO 0.23 g/L, MgSO 7H  
4
2
O 0.09 g/L, CaCl 2H 0 0.07 g/L,  
2
4
2
2
trace solution 1 ml/L, and EDTA 0.02 g/L. The carbon sources  
considered in this experiment were: sodium acetate (0.5 g/L),  
glucose (0.5 g/L) and ethanol (0.125 g/L). The trace element was  
composed of FeCl 4H O (1.5 g/L), H BO (0.15 g/L),  
3
2
3
3
MnCl 4H O (0.12 g/L), ZnCl (0.12 g/L), CoCl 6H O (0.15  
2
2
2
2
2
g/L), CuCl 2H O (0.03 g/L), NaMoO 2H O (0.06 g/L), and KI  
2
2
4
2
0
.03 g/L (17). For this study, the azo dyes were mixed at a  
concentration of 60 mg/L consist of Reactive Black 5, Reactive  
Blue 4 and Disperse Orange 2.  
2
The predicted R value for pretreatment method A of 0.9345  
2
is based on the rational consensus with the adjusted R value  
equivalent to 0.9776; this implies that the difference is below 0.2  
2
.2 Pretreatment of Biosorbents  
The Bjerkandera adusta fungi were cultivated in a static  
(23). In addition, sufficient accuracy also tests the signal-to-noise  
ratio. A ratio of above 4 is ideal in this circumstance, where it sets  
a satisfactory signal by a ratio value equivalent to 37.058. This  
model can, therefore, be used to manage research methods (Figure  
condition on malt extract agar (prepared in the laboratory  
following the DMZS media number 90 description) at a pH of 5.6  
and a temperature of 25°C. At the end of 7 days (18), when  
sporulation had taken place, the fungal biomass was autoclaved  
to eliminate the fungal biomass at 121°C and 103.42 kPa for 45  
min (19). Pretreatment method A (autoclaved) the autoclaved  
non-viable biomass was properly washed with distilled water and  
dried for 36 hours at 70 ± 1°C in the oven. Then, the dried fungal  
biomass was crushed into a powder form and sieved to a granular  
size between 0.20.6 mm. Next, it was transferred to 50 mL of  
2
1
). The predicted R value of 0.7820 is also reasonably under the  
2
arrangement, with the adjusted R of 0.9266 for pretreatment  
method B, at which the difference is less than 0.2. The 21,461  
ratio shows an appropriate signal; hence, this model is suitable to  
be used for navigating the design room.  
The highest colour removal was 53.55% and 81.3% for  
biosorbent preparation methods A and B, respectively, based on  
the experimental results. This condition is achieved when the pH,  
contact time, biosorbent dosage, and biosorbent size were 4, 90  
minutes, 3000 mg/L, and 0.4 mm, respectively. The primary  
means of comparison is the percentage difference between  
biosorbent preparation methods A and B. A research by Farah., J  
et al. (2007) using baker’s yeast as iosorbent (dried-autoclaved  
pretreatment) has achieved approximately 80% removal of  
Astrazon Blue in a contact time of 4 h, shaking speed of 150 rpm,  
biosorbent dosage of 6600 mg/L, initial pH of 7, and biosorbent  
size of 0.210 mm (24).  
0
.1 M HCl of autoclaved non-viable biomass (about 10.0 g) for  
pretreatment method B (a combination of autoclaved-chemical  
methods), and the mixture was stirred at 250 rpm and room  
temperature for 1 h (20). Subsequently, the non-viable acid-  
treated biomass was appropriately washed with distilled water,  
and then powdered in pretreatment method A.  
2
.3 Batch Testing  
A batch testing was conducted by stirring 50 ml of synthetic  
textile wastewater together with the biosorbents in a flask at a  
room temperature of 25°C ± 2°C and shaking speed of 160 rpm  
8
95  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 894-899  
Table 1: Variance analysis (ANOVA) and model statistics discovered using Bjerkandera Adusta from Dye Biosorption Process  
Pre-treatment Methods A*)  
Pre-treatment Methods B  
Source  
Sum of  
square  
Mean  
Sum of  
square  
Mean  
DF  
F-value  
P-value  
DF  
F-value  
P-value  
square  
301.69  
2953.9  
square  
520.18  
4746.9  
Model  
A-pH  
4223.68  
2953.93  
14  
1
91.5  
< 0.0001  
< 0.0001  
7282.5  
4746.9  
14  
1
27.14  
< 0.0001  
< 0.0001  
895.88  
247.70  
B-Weight  
Biosorbent  
C-Contact  
Time  
D-Size of  
Biosorbent  
5
70.57  
1
1
1
570.57  
14.41  
84.15  
173.04  
4.37  
< 0.0001  
0.054  
444.71  
37.68  
1
1
1
444.71  
37.68  
23.20  
1.97  
0.0002  
0.1812  
0.0034  
1
4.41  
4.15  
8
25.52  
0.0001  
231.57  
231.57  
12.08  
AB  
AC  
103.43  
1.69  
1
1
103.43  
1.69  
31.37  
0.5125  
20.02  
0.2089  
2.3  
< 0.0001  
0.485  
202.71  
14.04  
154.44  
12.66  
19.87  
7.22  
1
1
202.71  
14.04  
154.44  
12.66  
19.87  
7.22  
10.58  
0.7328  
8.06  
0.0054  
0.4054  
0.0124  
0.4291  
0.3247  
0.5485  
< 0.0001  
0.4954  
0.4478  
0.5995  
AD  
66.02  
0.6889  
7.59  
1
66.02  
0.6889  
7.59  
0.0004  
0.6542  
0.15  
1
BC  
1
1
0.6604  
1.04  
BD  
1
1
CD  
0.555  
412.39  
1.71  
1
0.555  
412.39  
1.71  
0.1683  
125.07  
0.5199  
0.0853  
3.34  
0.6874  
< 0.0001  
0.482  
1
0.3769  
66.95  
0.4882  
0.6076  
0.2878  
A²  
1
1283.1  
9.36  
1
1283.1  
9.36  
B²  
1
1
C²  
0.2812  
11.02  
49.46  
48.35  
1.11  
1
0.2812  
11.02  
3.3  
0.7743  
0.0875  
11.64  
5.52  
1
11.64  
5.52  
D²  
1
1
Residual  
Lack of Fit  
Pure Error  
Cor Total  
15  
10  
5
287.47  
286.24  
1.23  
15  
10  
5
19.16  
28.62  
0.2454  
4.83  
21.76  
0.0017  
116.63  
< 0.0001  
0.2221  
4273.14  
29  
7570.0  
29  
*) Astuti and Muda, (2018)  
(a)  
(b)  
Figure 1: Graph of The Predicted Vs. Actual Color Removal Process Using Bjerkandera Adusta (a.) Methods A and (b.) Methods B  
8
96  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 894-899  
(a)  
(b)  
Figure 2: (a) Methods A and (b) Methods B biosorbent process magnification powers (8000X)  
Figure 3: FTIR spectrum of biosorbent Bjerkandera adusta Methods A and Methods B  
The initial concentration of Astrazon Blue (single pure dye)  
Worku and Sahu (2014) had also carried out the colour  
removal work with various adsorbent pretreatment methods using  
rice husk. It was found that the maximum dye removal was 94%  
at pH 2; adsorbent dose 50,000 mg/L; dye initial concentration  
used was 100 mg/L. Meanwhile, Khalaf ‘s research findings  
showed that the dried-autoclaved pretreatment of biomass A.  
niger and Spirogyra sp. has a total dye removal of 88% and 85%,  
respectively, at a pH of 3, the temperature of 30°C and biosorbent  
dosage of 8000 mg/L after an 18-h contact time (25). Compared  
with the findings of this study, other researchers required higher  
doses of biosorbents and longer contact time.  
100 mg/L; and  
a contact time 160 minutes for the  
physicochemical treatment of rice husk and 73% at an adsorbent  
dosage of 50,000 mg/L, pH 2, dye initial concentration 50 mg/L,  
and 80 minute of contact time for the physically treated rice husk  
8
97  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 894-899  
(26). The colour removal is quite high compared to this result, but  
indicates aliphatic groups (symmetric and asymmetric  
it required a higher dose of adsorbent (i.e., 50,000 mg/L).  
However, a research conducted by Worku and Sahu is in line with  
the findings of this study, where the adsorbent pretreatment  
method had resulted in higher colour removal. This result is  
consistent with the results of previous studies, whereby it was  
learnt that autoclaving can break down the structure of fungi and  
expose the potential binding sites for dyes, while the pretreatment  
of acid can change the surface of negatively charged fungal  
biomass to become positively charged and thus, increasing the  
attractiveness between the fungal biomass and the  
colourants/dyes (15).  
A t-test is a type of descriptive statistics used to assess  
whether the two group means differ, which can be attributed to  
specific characteristics. Two-sided t-tests were used to identify  
any crucial differences between the preparation methods,  
autoclaving, and autoclaving techniques in combination with the  
chemical process, and colour removal efficiencies at p < 0.05. The  
findings showed a significant difference between the means of the  
methods, as the value of t calculated had exceeded the t table.  
The SEM analysis was carried out to clarify the  
morphological characteristics, along with the surface  
characteristics of the adsorption samples. The analysis also  
modelled the surface porosity and structure/texture of the  
processed biosorbent. In addition, the adsorption capacity relies  
on the particle size, distribution of pores, and surface area or  
porosity of micro/mesoporous materials (27).  
stretch/CH  
3
vibration). A cluster of water molecules was assigned  
to free the hydroxyl on biosorbents Bjerkandera adusta  
-
1
-1  
represented by the peak at 1640 cm . The peak at 1160 cm may  
imply the presence of a C-O stretching band of alcohol, hydroxyl,  
or ether. The intensity of the peaks gradually increases in the  
pretreatment of combining autoclave and chemical processes.  
-1  
-1  
Some new peaks were detected at 1800 cm and 1450 cm ;  
this datum shows that in pretreatment method B, the carboxyl  
groups have appeared, implying that the combination process has  
succeeded. The findings indicate that the biosorption process was  
affected by the presence of functional groups on the biosorbent  
Bjerkandera adusta surface. The results of this research are  
similar to those outlined by Mahmoud (28) and K. Jain (30). The  
FTIR and SEM analyses also confirmed the dye-biosorbent  
interactions and found that functional groups such as carboxyl,  
amine, amide, and hydroxyl on the surface of biosorbent were  
liable for the biosorption of a reactive dye (RB49) (31).  
4
Conclusion  
A study was carried out to investigate the effects of pH,  
biosorbent dosage, contact time, and biosorbent size in the  
biosorption process with Bjerkandera adusta in synthetic textile  
wastewater using two methods of biosorbent pretreatment, i.e.,  
autoclaving and combination of autoclaving with chemical  
processes. Research findings showed that variables, such as pH,  
biosorbent dosage, and biosorbent size, were the key factors that  
influenced colour removal in the biosorption with Bjerkandera  
Adusta. Experimental values are as expected under optimal  
conditions, demonstrating the suitability of the model and the  
achievement of RSM in optimising the state of the biosorption  
process using Bjerkandera adusta. The two-sided t-test was used  
with p < 0.05 to identify the important differences in the  
biosorbent pretreatment technique, in which it was found that the  
best biosorbent preparation method was the combination of  
autoclaving with chemical processes. The assessment of SEM and  
FTIR analyses has led to the conclusion that the colour removal  
technique was conducted via the biosorption process.  
Biosorbent Bjerkandera adusta had undergone the SEM  
analysis at a power magnification of 8000× and 2000× before and  
after the biosorption process, respectively. After some interaction  
with the pollutant dye, the controlled and treated biosorbents were  
monitored and confirmed to have experienced some changes,  
such as surface structure and size of pores. The size of the  
biosorbent pores Bjerkandera adusta method A was between  
2
.74–8.30 μm and changed to 1.31–2.14 μm after biosorption.  
Meanwhile, the size of the biosorbent pores Bjerkandera adusta  
method B had varied from 2.55–4.81 μm and became 1.14–4.25  
μm after biosorption. The dye deposits between biosorbents  
Bjerkandera adusta are indicated as crystalline. Therefore, the  
SEM results showed the most excellent bond with the colour  
being explored. These findings support the previous research by  
Mahmoud et al. (2017) using baker’s yeast (28). The biosorbent  
pores B. adusta method B has a pore size smaller than those in  
method A. Small pore size expands the surface of the adsorption  
to produce better colour removal (Figure 2).  
Acknowledgment  
The authors wish to thank Universiti Teknologi Malaysia for  
the financial support given to this research (Grant No. 18H96).  
References  
Biosorbent functional group Bjerkandera adusta was  
evaluated using FTIR spectroscopy to detect functional groups  
that could bind to the synthetic textile wastewater with dyes. The  
sample of adsorbent IR spectrum was captured between 4000–  
1. Hayat H, Mahmood Q, Pervez A, Bhatti ZA, Baig SA. Comparative  
decolorization of dyes in textile wastewater using biological and  
chemical treatment. Separation and Purification Technology.  
2
015;154:14953.  
-1  
2. Holkar CR, Jadhav AJ, Pinjari D V., Mahamuni NM, Pandit AB. A  
critical review on textile wastewater treatments: Possible approaches.  
Journal of Environmental Management. 2016;182:35166.  
4
00 cm . Figure 3 displays the biosorbent pretreatment methods  
A and B in the FTIR spectra, where it can be seen as identical. As  
for the spectra obtained for biosorbent pretreatment methods A  
3
.
Nimkar U. A solution to the textile industry in a developing world.  
1  
and B, the bands have shown between 38003700 cm could be  
due to the (O-H) vibrations in alcohol and phenol groups in  
hydroxyl groups, while the latter might suggest that the hydrogen-  
bonded OH is chemisorbed to water (29). The O-H stretching  
adsorption band in the structure of crystal of the biosorbent is also  
Green and Sustainable Chemistry. 2018;9:137.  
4. Li O, Casarci M, Mattioli D, Florio L De. Best available technique  
for water reuse in textile SMEs ( BATTLE LIFE Project ).  
Desalination. 2007;206(May 2006):6149.  
5
.
Mata AMT, Pinheiro HM, Lourenço ND. Effect of sequencing batch  
cycle strategy on the treatment of a simulated textile wastewater with  
aerobic granular sludge. Biochemical Engineering Journal.  
-
1
detected between 32003000 cm , indicating the presence of an  
OH group. From Figure 3, the most prominent bands can be found  
2
015;104:10614.  
-
1
at 3800, 3200, 2900, 1600, 1500, 1100, and 1000 cm . A weak  
6
.
Kolekar YM, Nemade HN, Markad VL, Adav SS, Patole MS, Kodam  
KM. Decolorization and biodegradation of azo dye, reactive blue 59  
-
1
absorption peak can be seen at 2920 cm ; however, it typically  
8
98  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 894-899  
by aerobic granules. Bioresource Technology. 2012;104.  
27. Kusmiyati, Listyanto PA, Vitasary D, Indra R, Islamica D. Coal  
Bottom Ash and Activated Carbon for Removal of Vertigo Blue Dye  
in Batik Textile Waste Waterꢀ: Adsorbent Characteristic , Isotherms ,  
and Kinetics Studies. Walailak Journal. 2016;14(5):42739.  
28. Mahmoud MS. Decolorization of certain reactive dye from aqueous  
solution using Baker’s Yeast (Saccharomyces cerevisiae) strain.  
Housing and Building National Research Center Journal.  
2016;12(1):8898.  
7
8
.
.
Anastasi A, Spina F, Prigione V, Tigini V, Giansanti P, Varese GC.  
Scale-up of a bioprocess for textile wastewater treatment using  
Bjerkandera adusta. Bioresource Technology. 2010;101(9):306775.  
Baêta BEL, Lima DRS, Silva SQ, Aquino SF. Evaluation of soluble  
microbial products and aromatic amines accumulation during a  
combined anaerobic / aerobic treatment of a model azo dye. Chemical  
Engineering Journal journal. 2015;259:93644.  
9
1
.
Debnath S, Ballav N, Maity A, Pillay K. Competitive adsorption of  
ternary dye mixture using pine cone powder modi fi ed with β -  
cyclodextrin. Journal of Molecular Liquids. 2017;225:67988.  
29. El-Dars FMSE, Bakr MHM, Gabre AME. Reduction of COD in  
Resin Production Wastewater Using Three Types of Activated  
Carbon. Journal of Environmental Treatment Techniques.  
2013;1(3):12636.  
30. Jain K, Shah V, Chapla D, Madamwar D. Decolorization and  
degradation of azo dye - Reactive Violet 5R by an acclimatized  
indigenous bacterial mixed cultures-SB4 isolated from anthropogenic  
dye contaminated soil. Journal of Hazardous Materials. 2012;213–  
214:37886.  
31. Tunali S, Gorgulu A, Kaynak Z, Anilan B, Akar T. Biosorption of  
Reactive Blue 49 dye under batch and continuous mode using a mixed  
biosorbent of macro-fungus Agaricus bisporus and Thuja orientalis  
cones. Chemical Engineering Journal journal. 2009;148:2634.  
0. Anastasi A, Spina F, Romagnolo A, Tigini V, Prigione V, Varese GC.  
Integrated Fungal Biomass and Activated Sludge Treatment for  
Textile Wastewaters Bioremediation. Bioresource Technology.  
2
012;123:10611.  
1
1
1. Aksu Z. Application of biosorption for the removal of organic  
pollutantsꢀ: a review. Process Biochemistry 40. 2005;40:997–1026.  
2. Eichlerova I, Homolka L, Nerud F. Decolorization of high  
concentrations of synthetic dyes by the white rot fungus Bjerkandera  
adusta strain CCBAS 232. Dyes and Pigments. 2007;75:3844.  
3. Heinfling A, Bergbauer M, Szewzyk U. Biodegradation of azo and  
phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta.  
Applied Microbiology and Biotechnology. 1997;48(2):2616.  
1
1
4. Gomi N, Yoshida S, Matsumoto K, Okudomi M, Konno H, Hisabori  
T, et al. Degradation of the synthetic dye amaranth by the fungus  
Bjerkandera adusta Dec 1: Inference of the degradation pathway from  
an  
analysis  
of  
decolorized  
products.  
Biodegradation.  
2
011;22(6):123945.  
1
1
5. Srinivasan A, Viraraghavan T. Decolorization of dye wastewaters by  
biosorbents: A review. Journal of Environmental Management.  
2
010;91(10):191529.  
6. Wahab RA, Basri M, Rahman RNZRA, Salleh AB, Basyaruddin  
Abdul Rahman M, Chaibakhsh N, et al. Article; food biotechnology  
enzymatic production of a solvent-free menthyl butyrate via response  
surface methodology catalyzed by a novel thermostable lipase from  
Geobacillus Zalihae. Biotechnology and Biotechnological  
Equipment. 2014;28(6):106572.  
1
1
1
2
2
7. Muda K, Aris A, Salim MR, Ibrahim Z, Yahya A, van Loosdrecht  
MCM, et al. Development of granular sludge for textile wastewater  
treatment. Water Research. 2010;44(15):434150.  
8. Aksu Z, Tatl I, Tunc O. A comparative adsorption / biosorption study  
of Acid Blue 161ꢀ: Effect of temperature on equilibrium and kinetic  
parameters. Chemical Engineering Journal. 2008;142:2339.  
9. Kumari K, Abraham TE. Biosorption of anionic textile dyes by  
nonviable biomass of fungi and yeast. Bioresource Technology.  
2
007;98:170410.  
0. Arica MY. Biosorption of Reactive Blue 4 dye by native and treated  
fungus Phanerocheate chrysosporiumꢀ: Batch and continuous flow  
system studies. Journal of Hazardous Materials. 2006;137:168997.  
1. Won SW, Kim H, Choi S, Chung B, Kim K, Yun Y. Performance,  
kinetics and equilibrium in biosorption of anionic dye Reactive Black  
5
by the waste biomass of Corynebacterium glutamicum as a low-cost  
biosorbent. Chemical Engineering Journal. 2006;121:3743.  
2. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA.  
Response surface methodology (RSM) as a tool for optimization in  
analytical chemistry. Talanta. 2008;76(5):96577.  
3. Astuti AD, Muda K. Biosorption Processof Synthetic Textile Waste-  
water using Bjerkandera Agusta via Response Surface Methodology  
2
2
2
2
2
(RSM). In: E3S Web of Conferences. EDP Sciences; 2018.  
4. Farah JY, El-gendy NS, Farahat LA. Biosorption of Astrazone Blue  
basic dye from an aqueous solution using dried biomass of Baker ’ s  
yeast. Journal of Hazardous Materials. 2007;148:4028.  
5. Khalaf MA. Biosorption of reactive dye from textile wastewater by  
non-viable biomass of Aspergillus niger and Spirogyra sp.  
Bioresource Technology. 2008;99:66314.  
6. Worku A, Sahu O. Removal of Reactive Dye from Aqueous Solution  
Using Physico- Chemically Treated Rice Husk. Journal of  
Environmental Treatment Techniques. 2014;2(3):7784.  
8
99