Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1232-1241  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/8(3)1241  
Enhanced Degradation of Reactive Black 5 from  
Aqueous Solution over TiO Nanoparticles under  
2
UV Light Irradiation: Optimization, Experimental  
&
Theoretical Approaches  
1
2 3  
4
Sabah Shiri , Mohsen Mehdipour Rabori , Zeinab Gholami , Zeinab Rahmati , Moayed  
5
3*  
Adiban *, Mansour Sarafraz  
1
Department of Chemistry. Payame Noor University. P.O. Box 19395-4697, Tehran, Iran  
2
Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran and Department of Environmental Health,  
School of Public Health, Kerman University of Medical Sciences, Kerman, Iran  
3
Student Research Committee, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran  
Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Science, Ilam, Iran  
Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Science, Ilam, Iran.  
4
5
6
Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran  
Received: 06/01/2020  
Accepted: 13/04/2020  
Published: 20/09/2020  
Abstract  
In this study, the elimination of dye from contaminated water was considered by the photocatalytic process with TiO2. The effects  
2
of operational parameters like TiO dosage, initial dye concentration, pH, contact time and temperature on the rate of dye decomposition  
are studied. TiO2 nanoparticles were characterized by XRD, FESEM, and FTIR. The Response Surface Methodology was carried out to  
investigate the composition effect of input independent factors and removal efficiency (one dependent output response). The F-value  
2
2
(
315.9), P-value (2.2 × 10−16), multiple R (0.9858), adjusted R (0.9827), and lack of fit (0.494) show that the reduced second-order  
model is greatly significant for dye removal by TiO nanoparticles. The efficacy of the process at the optimum operating conditions,  
pH=11, TiO dose (0.7 g/l), reaction time (67.5 minutes), Temperature (40 ℃), and initial dye concentration (55 mg/l) was 86.6%. By  
using regression coefficients derived from the model and the Solver “Add-ins”, higher removal efficiency was accounted to be 90%.  
2
2
2
The results showed that the TiO nanoparticles under UV light irradiation are very proper for reducing the concentration of pollutants in  
textile wastewater effluent.  
Keywords: TiO  
2
, Photocatalytic degradation, Reactive black 5, Optimization, UV light  
Introduction1  
chemical and biological methods (10). Because of the color  
1
stability against biodegradation, often for the removal of dyes  
have been used physical and chemical methods such as  
coagulation, flocculation, adsorption, chemical oxidation, and  
membrane processes. Often decomposition of materials via  
conventional treatment processes mayhap difficult. Therefore,  
it is essential to use more efficient treatment processes for  
demolition of these contaminants (11-14). Among the various  
wastewater treatment technologies, some systems such as  
advanced oxidation processes (AOPs) due to the production of  
very passive and oxidizing free radicals, have gained much  
attention. (15-17). In general, among AOPs the semiconductor  
photocatalysis is one of the most efficient destructive  
technologies for the complete elimination and full  
mineralization of undesirable organic pollutants (18-22).  
Annually about 70 tons of colors are produced worldwide  
1). Dyes, have a complex molecular structure and are often  
toxic, carcinogenic (production of amine groups in the  
anaerobic decomposition), mutagenic, non-biodegradable and  
consistent (2, 3). The use of dye in the textile, leather, paper,  
ceramics, cosmetics, ink and plastic industries and the entry  
effluents of these industries in water resources, is a major  
environmental problem (4, 5). Dye sewage and other effluents  
from these industries create several problems in terms of  
operation in the wastewater purification (6). Removal of dye  
from wastewater is often more important than the removal of  
other organic compounds because the presence of small  
amounts of dyes (below 1 ppm) is obviously visible and leaves  
a significant impact on the water bodies (7, 8). Discharge of  
colored wastewaters to the environment are leading  
eutrophication, interference in the ecology, affecting the  
intensity of photosynthesis of aquatic plants and algae (9). For  
dye removal from wastewater can be used as physical,  
2
Titanium dioxide (TiO ) as a semiconductor photocatalyst due  
to high oxidation power, photochemical stability, large surface  
area to volume ratio, low toxicity and low cost, are widely used  
as catalysts in photocatalysts reactions (23-27). To survey the  
*
Correponding author: (a) Moayed Adiban, Department of Environmental Health Engineering, School of Public Health, Ilam  
University of Medical Science, Ilam, Iran. E-mail: adiban-m @medilam.ac.ir. (b) Mansour Sarafraz, Student Research Committee,  
School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran. E-mail:  
mansour.sarafraz@yahoo.com  
1232  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1232-1241  
effects of various parameters, the interactions of the  
experimental variables and reduce number of required  
experiments was used the statistical RSM technique (28). The  
RSM is a statistical method that was used for experimental  
design to assig the amounts of process factors, experiential  
modeling to estimate the relationship among factors and  
responses and optimization of the operating conditions in the  
independent variables (29). The morphology and structure of  
0 t  
where C is the initial dye concentration and C , is the  
concentration of dye at intervals of the irradiation time. Surface  
morphology and characteristics of P-25 TiO nanoparticles  
were subjected by using XRD, FESEM and FTIR technology.  
X-ray diffraction patterns of the samples were done by an X'  
Pert Pro (PerkinElmer, Netherland) diffractometer, with Cu K훼  
radiation (λ =1.54060 å), Generator settings = 40 kV, 40 mA  
and the range from 10 to 80°. The average dimension (D) of  
particles was calculated based on the diffraction of peak  
broadening using the Debye–Scherrer’s Eq 2 (32):  
2
2
the nanocrystalline TiO were determined by XRD, FESEM  
and FTIR. The effect of some parameters such as temperature,  
catalyst dosage, the concentration of the dye and time were  
푘λ  
investigated. The aims of this study were characterized by TiO  
2
퐷 =  
(2)  
훽푐표푠휃  
nanoparticles, investigation of photo-degradation efficiency of  
Reactive Black 5 dyes, and optimization of main operational  
factors such as TiO2 dosage, solution pH, dye concentration,  
time and temperature by RSM. The innovations of this study  
were to investigate the effect of the Tio2 / UV process for the  
first time on the destruction of dyes with more complex  
structures such as Reactive black 5.  
where λ is the X-ray wavelength of the Cu Kα radiation (nm),  
 is the peak width of the diffraction peak profile at half the  
maximum height, which results from the small crystallite size  
(
radians), and K is a coefficient related to a crystalline shape  
which is normally equal to 0.9. The morphological features and  
surface characteristics of TiO were investigated using a Field  
Emission Scanning Electron Microscopy (FESEM) unit  
MIRA3, TE-SCAN, Czechoslovakia). Fourier-transform  
2
2
Materials and methods  
(
2
.1 Materials  
infrared spectroscopy (FTIR), is another characterization  
technique was obtained using (Spectrum Tow PerkinElmer,  
USA). Statistical analysis also was carried out by using the  
software R.  
De-ionized water is used to prepare all of the chemicals and  
standard solutions. Nanoparticles of P-25 TiO (mainly in  
2
anatase form), with an average particle size less than 30 nm, the  
2
specific surface area (BET) of 50±15 m /g and purity greater  
than 99.5% from Degussa (Germany) was used as the photo-  
catalyst without further treatment. The reactive Black-5 dye  
4 5 19 6  
with the chemical structure C26H21Na N O S and a molecular  
weight of 1029.88 g/mol as the sorbate in this study was  
provided from Alvan Sabet in Iran. To immobilization of TiO  
2
on Borosilicate glass plates (150mm × 150mm), commercially  
available Titanium powder such as peroxide P25 mixed with a  
solvent. Then coating was done by pipetting methods. In  
pipetting the substrate was left to dry until most of the solvent  
evaporated. After sintering at high temperature (400-600 °C)  
the film will adhere to the substrate (30). The distance between  
2
the UV lamps and TiO films were 1.5 cm.  
2
.2 Photocatalytic experiments  
The reactor used for photocatalytic oxidation of RB-5 dye  
by UV/TiO is shown in Figure 1. This reactor consists of two  
2
outer and inner parts, which A UV-lamp with 128 W medium-  
pressure, 220 V and maximum wavelength at 247.3 nm as the  
radiation source is placed in the inner part. The outer portion of  
the reactor should be contained 2 L solution for keeping the  
solution at 25 ±2 °퐶 . All irradiation experiments of dye  
solution were performed by stirring 1000 ml of dye solution  
Figure 1: Schematic diagram of the experimental photoreactor: (1)  
reaction chamber, (2) outlet chamber, (3 cooling water inlet, (4) LED  
lamp, (5) cooling water outlet, (6) quartz tube, (7) nano particles, (8)  
sampling port, (9) magnet  
2
with immobilized TiO and during the experiment, the solution  
in the reactor was constantly stirred. After preparing the Stock  
solution (1000 mg/L) of RB-5, photo-degradation dye  
experiments of dye were conducted in a batch reactor by using  
evaluation of the effect of pH (2 to 11), initial dye  
2.3 Experimental Design with Response surface method  
(RSM)  
RSM is an efficient statistical tool that was employed in the  
data analysis, statistical design of the experiments, and  
optimizing the operating conditions in independent variables  
(33). In RSM two designs have been used, which include: Box  
Behnken Design (BBD) and Central Composite Design (CCD).  
In this study, numbers of experiments were carried out  
according to a CCD for predicting and modeling the  
complicated relations between input-independent factors  
-
1
concentrations (10 to 100 mg L ), contact time (15 to 120  
-
1
minutes), TiO  
2
dose (0.2 to 1.2 g L ) and temperature (20 to 60  
°퐶). According to five variables pH, dye concentration, contact  
time, TiO  
2
dose and temperature, to do the tests were  
determined 62 runs by using the software R. Dye concentration  
for the samples were performed by spectrophotometer  
(DR5000, HACH LANGE, USA) according to standard  
method at a wavelength of 598 nm (31). For each experiment,  
the dye removal percentage (R%) was calculated using Eq. (1):  
(pH(X  
dose(X  
1
2 3 2  
), initial dye concentration(X ), reaction time(X ), TiO  
), and temperature(X ) ) and determining the dye  
4
5
removal efficiency(Y) under the optimum operational  
conditions (34). The real values of the independent variables  
that were used to the experimental design are presented in Table  
0−ꢀ푡  
푅 =  
× 1ꢁꢁ  
(1)  
0
1
.
1233  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1232-1241  
Table 1: Coded values of independent variables used for  
experimental design  
changes were noticed in the surface morphology of the TiO  
2
nanoparticles (Fig. 3C).  
Coded level  
Variable  
pH  
-1  
0
1
values  
6.5  
50.7  
67.5  
40  
x
1
x
2
x
3
x
4
x
5
2
11  
1.2  
120  
60  
-
1
TiO  
2
(gr L )  
0.2  
15  
20  
10  
Time (min)  
Temp (°퐶)  
Conc. RB  
-
1
5
(mg L )  
55  
100  
The Independent variables were varied over five levels as -  
, 0, and 1, respectively at the determined ranges based on a set  
1
of preliminary experiments. The experimental design was  
conducted using R software for Windows (version 3.0.3:6  
March 2014). The total number of experiments according to Eq.  
(3) were conducted for the five factors.  
Figure 2: XRD pattern of TiO nanoparticles  
2
k
No: of Experiments = 2 + 2k + 20  
(3)  
Energy-dispersive X-ray spectroscopy (EDS) is an  
analytical technique that performed for the elemental analysis  
Totally, 62 runs were designed using a 32 full factorial (the  
base design), 10 axial points and 20 replicates in the center  
point (35).  
2
of a sample. The EDS spectra of the TiO nanoparticles, before  
(B) and after (D) of dye removal in order to survey their  
localized elemental information are shown in Fig 3B. Oxygen  
A quadratic model as Eq. (4) was used to express the interaction  
and Titania are the elements throughout the surface of the TiO  
2
nanoparticles before removing the dye with weight percentages  
of 43.1 and 56.9 respectively. Therefore the existence of TiO  
was confirmed. After removing the dye O, Ti, C, Na, S, and N  
are the elements throughout the surface of the TiO  
nanoparticles with weight percentages of 43.6, 42.0, 14.4, 0.1,  
.0 and 0.0%, respectively. So after removing the dye with TiO  
nanoparticles, these elements are added in Fig. 3D (40, 41). To  
control frequency changes in the functional group of the  
photocatalyst and in order to investigate the surface  
between (Y) and (X  
1
, X  
2
, X  
3
, X  
4
5
and X ):  
2
훾 = 퐵 + ∑  푋 + ∑ 퐵 푋 + ∑  
푘−ꢅ  
퐵 푋 푋 + C  
푖ꢄꢅ 푗ꢄꢅ 퐼퐽 퐼 퐽  
푖ꢄꢅ  
퐼ꢄꢅ 푖푖  
(4)  
2
0
2
0 i  
where B is the intercept value, B , Bii, and Bij refer to the  
regression coefficient for linear, second- order, and interactive  
effects respectively, X and X are the independent variables,  
and C denotes the error of prediction (36-38).  
i
j
2
characteristics of the TiO nanoparticles before and after  
degradation of reactive black 5 dye, was considered the by  
using Fourier transform infrared spectroscopy (FTIR) spectra  
3
Results and discussion  
2
nanoparticles  
3
.1 Characterization of the TiO  
Physical, chemical and morphological properties of the  
nanoparticles were specified by means of various  
-
1
in the range of 400-4000 cm (Figures 4A and B). The FTIR  
spectrum of TiO nanoparticles before the degradation of dye  
illustrates that the peak positions are at 3390, 1631, 792 cm .  
2
TiO  
2
-
1
techniques including X-ray powder diffraction (XRD),  
scanning electron microscopy (FESEM) and Fourier transform  
infrared spectroscopy (FTIR). To evaluate the structure, nature  
and size of TiO crystalline phases was first performed XRD  
2
analysis as presented in Fig. 2. The XRD analysis illustrates the  
diffraction pattern and the mineralogical composition of the  
-
1
The degradation band at 3390 cm was the characteristic  
peak of alcohol and phenol groups due to the symmetric  
stretching vibration of OH. The intense broad peak at  
-1  
1631cm is assigned in the bending vibration of the C=O  
-1  
bond. Furthermore, the small peak at 792 cm can be  
allocated to the bending vibration of the NH bond. The FTIR  
2
TiO nanoparticles. According to the Debye Scherrer formula,  
spectrum of TiO nanoparticles after removal of dye shows the  
2
the average crystallite size based on the half-width of the most  
intense peak (101) was estimated 30 nm, suggesting an  
achievement to nanoscale crystals. In investigate of Figure 1,  
can observe several Titania crystalline peaks for sample at 2θ =  
-1  
peak at 3388, 1628 and 783 cm . The bond at 3388 specifies  
OH of alcohol and phenol groups, 1628 shows CH of amide  
group and 783 illustrates NH of Amine group (42-44).  
2
6
3
5.4(101), 37.9(004), 48.0(200), 54.5(211), 62.6(204),  
9.5(116) and 75.2(118) [JCPDS No. 71 -1167 were a =  
.786Å and c = 9.507Å] which indicates the existence of the  
3
.2 Quadratic models for degradation photocatalytic of dye  
via the TiO nanoparticles  
2
To survey the individual and combined effects of variables  
on dye removal efficiency, degradation experiments were  
carried out at the specified combinations of the physical  
parameters. The CCD design matrix was done to evaluate the  
contribution of five influential factors including pH, TiO  
dosage, time, temperature and dye concentration. The  
experimental design of 62 runs along with the experimental and  
anatase phase (39). Field emission scanning electron  
microscopy, affords topographical and fundamental  
information with virtually unlimited depth of field. The  
FESEM images of the TiO  
C) of degradation process are presented in Fig 3. As observed  
in Fig. 3A, nanoparticles are spherical and scattered in different  
sizes (2060 nm). The surface of this TiO nanoparticles shows  
2
nanoparticles before (A) and after  
2
(
2
2
the predicted data for the removal of dye by TiO nanoparticles  
irregular texture with finer particle size. Further, there are holes  
between particles that show the porous structure of this  
material. In some places the nanoparticles are compact in mass,  
but in general, optimum dispersion of particles in the surface is  
observed. After of the degradation process no noticeable  
in the CCD experimental design are shown in Table 2. To  
identify the optimum conditions, the RSM results need to be  
studied along the optimization process (45).  
1234  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1232-1241  
2
Figure 3: FE-SEM image and EDS spectrum of TiO nanoparticles before (A, B), and after (C, D) of dye removal  
From Table 2, it can be seen that the dye removal values  
are between 26.40% (Run 15) and 86.60% (Run 54). Moreover,  
the lowest dye removal efficiency has been understood in runs  
numbers 12, 15, 28, 30, 31, 38 and 39, that the main reasons for  
decreasing removal, can be lower pH level and/or lower TiO  
dosage. When the TiO dose and pH level are low, e.g. run 12,  
2
2
the synergistic effect was very significant and the dye removal  
efficiency reduced intensity. According to the Table 2, the time  
and temperature have low significant effects on dye removal  
with TiO  
2
nanoparticles (run numbers of 12, 15 and 38). Run  
5
4 was obvious as optimum condition, because it indicated the  
highest removal efficiency, and also the pH is a very  
fundamental parameter in water treatment plants. However, the  
pH, TiO dosage and dye concentration were appropriate as  
2
optimum conditions. The pH in acidic range may induce serious  
operational difficulties in water treatment processes. So,  
economically the conditions for run 54 with pH 11, Initial dye  
2
Figure 4: FT-IR spectra of TiO nanoparticles before (A), and after  
B) degradation of dye  
(
1  
concentration of 55 mg L , Time of 67.5 min, Temperature of  
Dye removal efficiency predicted by the model is shown in  
the Table 2. When the response predicted by the model and  
experimental data acquired in the laboratory have a correlate  
linearly, the model is dependable (46). The equations of the  
quadratic model, for both coded and uncoded values of the  
parameters, are presented at Eqs.4 and 5, respectively.  
Therefore, these models can be used for prediction and  
optimization (47-49).  
1  
2
dosage of 0.7 g L are the better runs.  
4
0  and TiO  
3
.3 Development of regression model equation and model  
analysis  
The reduced quadratic model was generated by multiple  
regression analysis on the experimental data, and are shown in  
Table 3. According to the table 3, it is observable that the pH  
(
0
X
1
2 2 3  
), TiO dosage (X ) and time (X ) are significant (p-values <  
.05), so three terms available in Table 3 could influence the  
model formulation. In this table can be seen that pH (X ), TiO  
and  have synergistic  
 ꢇ푦푒ꢄꢅꢃ.74ꢈ4.343ꢉ ꢈ39.84ꢉ −ꢃ.ꢅꢆꢃ4ꢉ ꢈꢃ.ꢆ68ꢅꢉ ꢈꢃ.497ꢉ ꢉ  
ꢊ ꢋ  
1
2
ꢃ.ꢃ389ꢅꢈꢃ.ꢃꢃꢃ7ꢅ4ꢉ−ꢆꢆ.ꢆ7ꢈꢃ.ꢃꢃꢃ8ꢅꢆꢉ−ꢃ.ꢃꢃꢆꢆ8ꢉ  
3
2 3 1 2 3 4  
dosage (X ), time (X ), X :X , X :X  
effect on the response prediction by the model, while X  
and  have antagonistic effect.  
(4)  
2
:X  
5
, ꢆ  
5
1235  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1232-1241  
ꢇ푦푒ꢄ6ꢃ.98ꢃ65ꢈꢆꢅ.ꢅꢃ893ꢉ ꢈ4.87979ꢉ ꢈꢃ.93ꢆꢆ5ꢉ ꢈꢅ.ꢅꢅ835ꢉ ꢉ −ꢃ.8754ꢃꢉ ꢉ  
ꢋ ꢍ  
fit value parameter reflected the variation of response around  
the fitted model; this parameter should be insignificant if the  
model fits data well (51). According to the ANOVA analysis,  
the higher F-value of 315.9 with a p-value lower than 0.0001  
as shown in Table 4 indicates that the second-order polynomial  
model is statistically significant, thus the model 652.17 and  
65.83 respectively, that shows the model and the individual  
coefficients of the model are more significant. The lack of fit  
value of the model available in Table 4, i.e. 0.494, indicates the  
significant correlation between factors and dye removal as a  
response.  
ꢈꢃ.75ꢃꢅꢅꢉ−5.56679ꢉꢈꢆ.ꢆ3775ꢉ−4.6ꢅꢆꢆ5ꢉ  
(5)  
The model adequacy can be made clear from ANOVA  
2
2
analysis; R and R adj are presented in Table 4. The ANOVA  
analysis is a statistical technique that in this technique,  
statistical significance and accuracy of the models can be  
predicted via high F, low p-value, correlation coefficient (R),  
and the results of lack of fit test (50). Also if p-value less than  
0
.05 shows the model terms are significant and the values  
greater than 0.10 indicate they are not significant. The lack of  
Table 2: CCD experimental design for RB5 removal by TiO  
2
nanoparticles  
Independent factors  
Expt.  
Pred.  
Run  
Independent factors  
Expt.  
Pred.  
Run  
Remova Remova  
Remova Remova  
X
1
X
2
X
3
X
4
X
5
X
1
X
2
X
3
X
4
X
5
l (%)  
l (%)  
l (%)  
l (%)  
1
2
3
4
5
6
7
8
9
2
11  
6.5  
2
6.5  
11  
6.5  
6.5  
11  
11  
6.5  
2
11  
11  
2
6.5  
2
11  
6.5  
2
11  
11  
11  
11  
2
1.2  
1.2  
0.7  
1.2  
0.7  
1.2  
0.7  
0.7  
0.2  
1.2  
0.7  
0.2  
1.2  
0.2  
0.2  
0.7  
1.2  
1.2  
0.7  
1.2  
1.2  
1.2  
0.2  
1.2  
0.7  
0.2  
1.2  
0.2  
120  
120  
67.5  
15  
67.5  
120  
67.5  
67.5  
15  
60  
20  
40  
20  
40  
20  
40  
40  
20  
20  
40  
60  
60  
60  
60  
40  
20  
60  
40  
60  
60  
60  
20  
20  
20  
40  
20  
20  
100  
10  
55  
100  
55  
100  
55  
55  
100  
10  
55  
100  
10  
10  
10  
55  
10  
10  
55  
10  
100  
100  
10  
100  
10  
55  
10  
100  
37.1  
83.4  
61.3  
32.6  
60.7  
78.7  
60.9  
58.1  
66.6  
80.3  
62.7  
27.9  
84.8  
68.9  
26.4  
63.3  
36.2  
77.4  
60.3  
40.6  
79.7  
75.9  
65.6  
78.4  
35.7  
51.6  
38.8  
28.5  
38.10  
81.75  
62.06  
34.30  
62.06  
79.13  
62.06  
62.06  
68.52  
81.38  
62.06  
32.34  
85.18  
68.07  
28.09  
62.06  
37.30  
81.81  
62.06  
40.73  
82.56  
79.19  
68.01  
78.76  
38.23  
51.62  
36.93  
28.91  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
2
1.2  
0.2  
0.7  
0.2  
1.2  
0.2  
0.2  
0.2  
0.2  
0.7  
1.2  
0.7  
0.7  
0.7  
0.7  
0.7  
1.2  
0.7  
0.7  
0.7  
120  
120  
67.5 40  
15  
15  
120  
15  
15  
120  
67.5 40  
15 60  
67.5 40  
67.5 40  
67.5 40  
67.5 40  
67.5 40  
67.5 40  
67.5 40  
67.5 40  
20  
60  
100  
100  
55  
100  
100  
100  
100  
10  
10  
55  
10  
55  
55  
55  
55  
55  
55  
55  
55  
55  
10  
55  
55  
55  
55  
55  
55  
100  
34.7  
70.6  
57.8  
69.3  
34.8  
68.5  
27.8  
30.3  
67.2  
55.6  
33.7  
60.6  
58.9  
59.2  
35.3  
61.1  
59.9  
60.5  
62.5  
61.7  
56.8  
59.3  
86.6  
63.3  
62.3  
63.9  
61.5  
58.6  
34.67  
72.32  
62.06  
68.95  
34.73  
68.89  
28.97  
27.66  
71.44  
62.06  
37.36  
62.06  
62.06  
62.06  
40.95  
62.06  
61.37  
62.06  
62.06  
62.67  
57.88  
61.09  
83.17  
62.06  
62.06  
62.06  
63.02  
57.01  
11  
6.5  
11  
2
11  
2
60  
60  
20  
60  
20  
60  
2
11  
6.5  
2
6.5  
6.5  
6.5  
2
6.5  
6.5  
6.5  
6.5  
6.5  
6.5  
6.5  
11  
6.5  
6.5  
6.5  
6.5  
6.5  
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
15  
67.5  
120  
120  
15  
15  
67.5  
120  
15  
67.5  
120  
120  
15  
120  
15  
120  
67.5  
15  
15  
40  
0.7  
67.5 40  
67.5 20  
67.5 40  
67.5 40  
67.5 40  
67.5 40  
67.5 60  
67.5 40  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
6.5  
2
2
120  
2
9
11  
0.2  
15  
20  
10  
65.2  
67.64  
60  
6.5  
0.7  
67.5 40  
55  
60.8  
62.06  
3
3
0
1
2
2
0.2  
0.2  
120  
15  
60  
20  
10  
100  
31.3  
27.9  
31.46  
28.54  
61  
62  
6.5  
6.5  
0.7  
0.7  
120  
67.5 40  
40  
55  
55  
67.4  
63.7  
62.06  
62.06  
1  
1  
)
X
1
: pH, X  
2
: TiO2 (gr L ), X  
3
: Time (min), X  
4
: Temperature (), X  
5
: dye concentration (mg L  
Table 3: Regression analysis for the reduced quadratic model  
Model term  
Intercept  
ꢅ  
ꢆ  
3  
Coefficient estimate  
60.98065  
21.10893  
4.87979  
0.93225  
1.11835  
-0.87540  
0.75011  
-5.56679  
2.23775  
Std. error  
0.42259  
0.37638  
0.38155  
0.37638  
0.39375  
0.39375  
0.38809  
1.13702  
1.23870  
1.23870  
t-Value  
144.3030  
56.0848  
12.7895  
2.4769  
2.8402  
-2.2232  
1.9328  
p-Value  
-
-
-
16  
16  
16  
2.2×10  
2.2×10  
2.2×10  
0.0166787  
0.0065035  
0.0307504  
0.0589335  
1.064×10  
0.0768539  
0.0004995  
푋 : 푋  
푋 : 푋  
5
푋 : 푋  
3
4
5
-4.8959  
1.8056  
-3.7235  
3
-4.61225  
5
1236  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1232-1241  
Table 4: Analysis of variance (ANOVA) for the reduced quadratic model  
Model formula in RSM  
,X  
DF  
Sum of squares  
Mean square  
Probability (P)  
F-value  
F
critical  
X
1,  
X
2,  
X
3,  
X
4
5
First-order response  
TWI(x1, x2)  
TWI(x2, x5)  
TWI(x3, x4)  
Pure quadratic response  
Residuals  
5
1
1
1
3
50  
31  
19  
15529.2  
53.9  
15.0  
3105.84  
53.89  
15.00  
10.06  
313.54  
4.76  
652.1796  
11.3161  
3.1505  
2.1130  
65.8376  
2.40  
2.2×10-16  
0.001482  
0.081993  
0.152306  
10.1  
-
16  
940.3  
238.1  
148.7  
89.4  
2.2×10  
Lack of fit  
Pure error  
4.80  
4.71  
1.0196  
2.07  
0.494661  
-
16  
Notes: Multiple R-squared: 0.9858, Adjusted R-squared: 0.9827, F-statistic: 315.9on 11 and 50 DF, p-value: < 2.2×10  
Moreover F-value of the model is significant (Fcal  
150.24 > F0.05, 5, 45 = 4.45) and the lack of fit value of the model  
available in Table 4, is not significant relative to pure error (Fcal  
1.09 < F0.05, 26, 19 = 2.1) that these are indicated correlation  
=
2
The percentage of dye removal was altered by varying the  
TiO dosage and pH. As can be understood from the figure in  
the pH range of 10-11, with an increase of the TiO dosage from  
0.8 to 1 gr L , removal efficiency was increased from 75 to  
80%, in other words, removal efficiency increased with  
increasing pH. These indications that pH plays an important  
role in the degradation process (59). Fig. 6(B) illustrations the  
2
=
2
-
1
between factors and dye removal as a response (52, 53). In  
2
general, the efficiency of the model is explained by R , however  
the multiple R-squared values (0.985) close to one and is very  
close to the adjusted R-squared value (0.982) anticipated a  
satisfactory adjustment between quadratic model and  
experimental data (54, 55). Pareto analysis using the Eq.7 was  
effects of TiO  
2
dosage and dye concentration in the removal  
efficiency of photo catalyst process. Based on this figure in the  
-
employed to assess the importance of the role (P  
i
) of the  
TiO  
2
dosage of 0.9-1 and at dye concentration of 50-60 mg L  
, removal efficiencies was increased from 62% to 80%. The  
interaction effects of time (X ) and temperature (X ) in Fig.  
1
selected factors (factor i) on the created response.  
3
4
ꢋ  
6(C), illustrations that the percentage of dye removal from 60  
to 65% was increased with increasing time from 20 to 120 min.  
 = ( 훽)  
(7)  
2
Based on the results, it is clear that the TiO dosage and pH are  
the most effective variables in the dye removal efficiency (60,  
61).  
As indicated in Fig. 5, the following sequence was gained  
in the terms containing singular factors X (pH, 77.1%) > X  
TiO ; 12.31%) > X (Time; 0.15%), which approves that pH  
and TiO plays the most important role among these terms. The  
quadratic terms have the sequence of X  
1
2
(
2
3
2
3
.5 Process Optimization and Confirmation  
2
2
(3.67%)  
2
(5.35%) > X  
(0.86%), while the interaction terms have the sequence of  
(0.21%) > X (0.13%) > X (0.1%). So the pH, the  
and pH-TiO interaction play the most crucial  
5
The Solver “Add-ins” was used by applying effective  
2
>
X
3
parameters to achieve the optimum degraded condition through  
the model equation predicted by RSM. These parameters  
X
1
X
2
2
X
5
3 4  
X
1  
quadratic TiO  
2
2
contained pH (2-11), TiO dosage (0.2-1.2 g L ), contact time  
2
role in the generated response. The results obtained from the  
Pareto method can be well confirmed by the F-values (56, 57).  
(15-120 min), temperature (20-60  ) and the initial dye  
concentration (10-100 mg L ). In the optimum conditions, all  
-1  
parameters simultaneously are favorable criteria, and in the  
predicted optimal the maximum removal efficiency was  
accounted to be 90%. The predicted optimal conditions by the  
3
.4 Response Surface Methodology and Contour Plotting  
In order to study the effects of different parameters and  
their interactions on the efficiency of the dye degradation via  
TiO nanoparticles, the contour plots which are determinate  
based on the model coefficients is shown in Fig. 6(A-C). It is  
notable that in these plots the effect of two variables is  
investigated while the other parameters are stabled (58). The  
effect of TiO dosage and pH solution on the removal efficiency  
2
at the initial time of 67.5 min, temperature of 40  and dye  
concentration of 55 mg L is shown in Fig 6-A.  
2
Solver “Add-ins” were: the pH of 11, TiO dosage of 0.973 g  
1  
2
L , contact time of 120 min, temperature 60 and initial dye  
-1  
concentration of 50.53 mg L . To confirm the validity of the  
predicted optimum conditions, laboratory experiments were  
accomplished, and the findings indicated that the experimental  
data were in good agreement with the above-mentioned optimal  
conditions (62-64). To verify the validity of the results  
predicted by the model, additional laboratory experiments were  
accomplished in four replicates. As it can be understood in  
Table 5, experimental data were in good consistency with those  
predicted through the regression model. Furthermore, there is  
another set of experiments presented in Table 5, which is the  
same as the above-mentioned optimal conditions except for  
initial pH.  
1  
The result indications that the R-squared value of the model  
is very near to the adjusted R-squared value. The presence of  
significant terms in the model was confirmed by the good  
2
agreement between R adj (0.98) and R pred. (0.98) which is  
presented in Fig. 7 (65).  
Figure 5: Pareto plot for studying the importance of each variable to  
2
the TiO response in the removal of dye  
1237  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1232-1241  
2 2  
Figure 6: Contour plot for the effect of TiO dose and pH (A), dye concentration and TiO dose (B), time and temperature (C)  
Table 5: Experimental and predicted values of the responses at the optimal levels predicted by RSM  
Dye removal (%)  
-
1
Dye concentration (mg L-1)  
pH  
TiO  
2
(g L )  
Time (min)  
120  
Temp ()  
Predicted  
90  
67.93  
Experimental  
87.45  
1
1
1
1
60  
60  
51  
51  
6
.5  
120  
65.08  
4
Conclusions  
In this survey, the degradation of dye via TiO  
2
nanoparticle  
at the solid/aqueous interface was studied. The CCD design  
matrix was accomplished to evaluate the relationship between  
-1  
2
input-independent factors (pH, TiO dose (g L ), contact time  
-1  
min), Temperature (), and Dye concentrations (mg L )) and  
one dependent output response (removal efficiency) on dye  
degradation with TiO Photo catalyst. The quadratic equations  
(
2
developed to for this study indicate good correlation between  
actual and model predicted values of response. The results such  
16  
2
as P-value (2.2 × 10 ), higher F-value (315.9), R (multiple  
R-squared: 0.9858, adjusted R-squared: 0.9827), insignificant  
lack of fit (0.494) show that the reduced full second order  
model is highly significant for dye removal by TiO  
2
nanoparticles. The closeness of the R-squared value of the  
model to the adjusted R-squared value demonstrates that the  
quadratic regression related to the reduced full second order  
Figure 7: Correlation of actual and predicted removal efficiency for  
dye direct blue 71  
1238  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1232-1241  
8
9
1
1
1
1
1
.
Bhatnagar A, Minocha A. Assessment of the biosorption  
characteristics of lychee (Litchi chinensis) peel waste for the  
removal of Acid Blue 25 dye from water. Environmental  
technology. 2010;31(1):97-105.  
model can be applied for prediction and optimization. The  
maximum percentage removal of dye: 86.6% were achieved at  
-1  
optimum operating conditions, pH=11, TiO  
2
dose (0.7 g L ),  
contact time (67.5 min), Temperature ( ꢐꢁ ℃ ), and dye  
. Li W, Li D, Chen Z, Huang H, Sun M, He Y, et al. High-efficient  
Degradation of Dyes by Zn x Cd1− x S Solid Solutions under  
Visible Light Irradiation. The Journal of Physical Chemistry C.  
-
1
concentrations (55 mg L )), respectively. The maximum  
removal efficiency was predicted to be 90%, using regression  
coefficients achieved from the model and Solver “Add-ins”.  
The predicted optimal conditions by the Solver “Add-ins” were  
2
008;112(38):14943-7.  
0. Marugán J, López-Muñoz M-J, van Grieken R, Aguado J.  
Photocatalytic decolorization and mineralization of dyes with  
nanocrystalline TiO2/SiO2 materials. Industrial & Engineering  
Chemistry Research. 2007;46(23):7605-10.  
1. Devi LG, Kumar SG. Exploring the critical dependence of  
adsorption of various dyes on the degradation rate using Ln3+-  
TiO2 surface under UV/solar light. Applied Surface Science.  
-
1
achieved at the pH of 11, TiO  
2
dose of 1 g L , contact time of  
1
5
20 min, Temperature of ꢑꢁ ℃ and initial dye concentration of  
1 mg L . So the results indicate that the photocatalytic process  
-1  
is very impressive in eliminating dye from contaminated water,  
and it has a good efficiency in removing textile dyes.  
2
012;261:137-46.  
2. Jiang Y, Luo Y, Zhang F, Guo L, Ni L. Equilibrium and kinetic  
studies of CI Basic Blue 41 adsorption onto N, F-codoped flower-  
like TiO2 microspheres. Applied Surface Science. 2013;273:448-  
Acknowledgement  
This study is related to the project NO 904003/81 from the  
Student Research Committee, Ilam University of Medical  
Sciences, Ilam, Iran. We also appreciate the “Student Research  
Committee” and “Research & Technology Chancellor” in Ilam  
University of Medical Sciences for their financial support of  
this study.  
5
6.  
3. Liang C-H, Li F-B, Liu C-S, Lü J-L, Wang X-G. The enhancement  
of adsorption and photocatalytic activity of rare earth ions doped  
TiO2 for the degradation of Orange I. Dyes and pigments.  
2
008;76(2):477-84.  
4. Muthirulan P, Devi CN, Sundaram MM. Synchronous role of  
coupled adsorption and photocatalytic degradation on CACTiO2  
composite generating excellent mineralization of alizarin cyanine  
green dye in aqueous solution. Arabian Journal of Chemistry.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
2
017;10:S1477-S83.  
1
1
1
5. Ajoudanian N, Nezamzadeh-Ejhieh A. Enhanced photocatalytic  
activity of nickel oxide supported on clinoptilolite nanoparticles  
for the photodegradation of aqueous cephalexin. Materials Science  
in Semiconductor Processing. 2015;36:162-9.  
6. Babaahamdi-Milani M, Nezamzadeh-Ejhieh A. A comprehensive  
study on photocatalytic activity of supported Ni/Pb sulfide and  
oxide systems onto natural zeolite nanoparticles. Journal of  
hazardous materials. 2016;318:291-301.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
7. Massoudinejad MR, Sadani M, Gholami Z, Rahmati Z, Javaheri M,  
Keramati H,et al. Optimization and modeling of photocatalytic  
degradation of Direct Blue 71 from contaminated water by TiO  
2
nanoparticles: Response surface methodology approach (RSM).  
Iranian Journal of Catalysis. 2019;9(2):121-132.  
8. Kordouli E, Bourikas K, Lycourghiotis A, Kordulis C. The  
mechanism of azo-dyes adsorption on the titanium dioxide surface  
and their photocatalytic degradation over samples with various  
anatase/rutile ratios. Catalysis Today. 2015;252:128-35.  
9. Belessi V, Romanos G, Boukos N, Lambropoulou D, Trapalis C.  
Removal of Reactive Red 195 from aqueous solutions by  
adsorption on the surface of TiO2 nanoparticles. Journal of  
hazardous materials. 2009;170(2-3):836-44.  
0. Carvalho HW, Batista AP, Hammer P, Ramalho TC. Photocatalytic  
degradation of methylene blue by TiO2Cu thin films: Theoretical  
and experimental study. Journal of hazardous materials.  
Authors’ contribution  
1
1
2
2
2
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
References  
1
2
3
4
5
. Sharma P, Kaur H, Sharma M, Sahore V. A review on applicability  
of naturally available adsorbents for the removal of hazardous dyes  
from aqueous waste. Environmental monitoring and assessment.  
2
011;183(1-4):151-95.  
. Du Y, Pei M, He Y, Yu F, Guo W, Wang L. Preparation,  
characterization and application of magnetic Fe3O4-CS for the  
adsorption of orange I from aqueous solutions. PloS one.  
2
010;184(1-3):273-80.  
2
014;9(12):1160-73.  
1. Othman NH, Alias NH, Shahruddin MZ, Bakar NFA, Him NRN,  
Lau WJ. Adsorption kineticsof methylene blue dyes onto magnetic  
graphene oxide. Journal of Environmental Chemical Engineering.  
. Manikandan G, Kumar S, Saravanan A. Modelling and analysis on  
the removal of methylene blue dye from aqueous solution using  
physically/chemically modified Ceiba pentandra seeds. Journal of  
Industrial and Engineering Chemistry. 2018;62:446-61.  
. Aksu Z, Tatlı Aİ, Tunç Ö. A comparative adsorption/biosorption  
study of Acid Blue 161: Effect of temperature on equilibrium and  
2
018;6(2):2803-11.  
2. Esmaili-Hafshejani J, Nezamzadeh-Ejhieh A. Increased  
photocatalytic activity of Zn (II)/Cu (II) oxides and sulfides by  
coupling and supporting them onto clinoptilolite nanoparticles in  
the degradation of benzophenone aqueous solution. Journal of  
hazardous materials. 2016;316:194-203.  
kinetic  
parameters.  
Chemical  
Engineering  
Journal.  
2
008;142(1):23-39.  
. Guerrero-Coronilla I, Morales-Barrera L, Villegas-Garrido TL,  
Cristiani-Urbina E. BIOSORPTION OF AMARANTH DYE  
FROM AQUEOUS SOLUTION BY ROOTS, LEAVES, STEMS  
AND THE WHOLE PLANT OF E. crassipes. Environmental  
Engineering & Management Journal (EEMJ). 2014;13(8): 1917-  
2
3. Zangeneh H, Zinatizadeh A, Habibi M, Akia M, Isa MH.  
Photocatalytic oxidation of organic dyes and pollutants in  
wastewater using different modified titanium dioxides:  
A
comparative review. Journal of Industrial and Engineering  
Chemistry. 2015;26:1-36.  
1
926.  
2
2
4. Pirkarami A, Olya ME, Farshid SR. UV/NiTiO2 nanocatalyst for  
electrochemical removal of dyes considering operating costs.  
Water Resources and Industry. 2014;5:9-20.  
5. Ba-Abbad MM, Kadhum AAH, Mohamad AB, Takriff MS, Sopian  
K. Synthesis and catalytic activity of TiO2 nanoparticles for  
photochemical oxidation of concentrated chlorophenols under  
direct solar radiation. Int J Electrochem Sci. 2012;7:4871-88.  
6
7
.
Guerrero-Coronilla I, Morales-Barrera L, Cristiani-Urbina E.  
Kinetic, isotherm and thermodynamic studies of amaranth dye  
biosorption from aqueous solution onto water hyacinth leaves.  
Journal of environmental management. 2015;152:99-108.  
. Srinivasan A, Viraraghavan T. Decolorization of dye wastewaters by  
biosorbents: a review. Journal of environmental management.  
2
010;91(10):1915-29.  
1239  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1232-1241  
graphene oxide: equilibrium, kinetic and thermodynamic studies.  
Journal of colloid and interface science. 2017;496:188-200.  
26. Yazdanbakhsh AR, Eslami A, Massoudinejad MR, Avazpour M.  
Enhanced degradation of sulfamethoxazole antibiotic from  
aqueous solution using Mn-WO3/LED photocatalytic process:  
Kinetic, mechanism, degradation pathway and toxicity reduction.  
Chemical Engineering Journal. 2020;380: 122497.  
27. Zabihi-Mobarakeh H, Nezamzadeh-Ejhieh A. Application of  
supported TiO2 onto Iranian clinoptilolite nanoparticles in the  
photodegradation of mixture of aniline and 2, 4-dinitroaniline  
aqueous solution. Journal of Industrial and Engineering Chemistry.  
2015;26:315-21.  
4
4
4
5. Aslani H, Nabizadeh R, Nasseri S, Mesdaghinia A, Alimohammadi  
M, Mahvi AH, et al. Application of response surface methodology  
for modeling and optimization of trichloroacetic acid and turbidity  
removal using potassium ferrate (VI). Desalination and water  
treatment. 2016;57(52):25317-28.  
6. Ghafari S, Aziz HA, Isa MH, Zinatizadeh AA. Application of  
response surface methodology (RSM) to optimize coagulation–  
flocculation treatment of leachate using poly-aluminum chloride  
(
3
PAC) and alum. Journal of hazardous materials. 2009;163(2-  
):650-6.  
28. Hosseini SA, Saeedi R. Photocatalytic degradation of rhodamine B  
by nano bismuth oxide: process modeling by response surface  
methodology (RSM). Iranian Journal of Catalysis. 2017;7(1):37-  
46.  
7. Garg KK, Prasad B. Treatment of multicomponent aqueous solution  
of purified terephthalic acid wastewater by electrocoagulation  
process: optimization of process and analysis of sludge. Journal of  
the Taiwan Institute of Chemical Engineers. 2016;60:383-93.  
8. Umar M, Aziz HA, Yusoff MS. Assessing the chlorine disinfection  
of landfill leachate and optimization by response surface  
methodology (RSM). Desalination. 2011;274(1-3):278-83.  
9. Mansoor Ahammed M, Dave S, Nair AT. Effect of water quality  
parameters on solar water disinfection: a statistical experiment  
design approach. Desalination and water treatment.  
29. Nosuhi M, Nezamzadeh-Ejhieh A. High catalytic activity of Fe (II)-  
clinoptilolite nanoparticales for  
indirect voltammetric  
4
4
determination of dichromate: Experimental design by response  
surface methodology (RSM). Electrochimica Acta. 2017;223:47-  
62.  
30. Shan AY, Ghazi TIM, Rashid SA. Immobilisation of titanium  
dioxide onto supporting materials in heterogeneous photocatalysis:  
a review. Applied Catalysis A: General. 2010;389(1-2):1-8.  
31. Patnaik P. Handbook of environmental analysis: chemical  
pollutants in air, water, soil, and solid wastes: Crc Press; 2010.  
32. Aghabeygi S, KIAKOJORI R, VAKILI AH. SONOSYNTHESIS,  
2
015;56(2):315-26.  
5
5
5
0. Van Thuan T, Quynh BTP, Nguyen TD, Bach LG. Response  
surface methodology approach for optimization of Cu2+, Ni2+ and  
Pb2+ adsorption using KOH-activated carbon from banana peel.  
Surfaces and Interfaces. 2017;6:209-17.  
1. Hassani G, Takdastan A, Ghaedi M, Goudarzi G, Neisi A, Babaei  
AA. Optimization of 4-chlorophenol Oxidation by Manganese  
Ferrite Nanocatalyst with Response Surface Methodology. Int J  
Electrochem Sci. 2016;11:8471-85.  
CHARACTERIZATION  
AND  
PHOTOCATALYTIC  
DEGRADATION PROPERTY OF NANO ZNO/ZEOLITEA.  
2016;6(3):275-279.  
33. Rajkumar K, Muthukumar M. Optimization of electro-oxidation  
process for the treatment of Reactive Orange 107 using response  
surface methodology. Environmental Science and Pollution  
Research. 2012;19(1):148-60.  
34. Ghafoori S, Mowla A, Jahani R, Mehrvar M, Chan PK.  
Sonophotolytic degradation of synthetic pharmaceutical  
wastewater: Statistical experimental design and modeling. Journal  
of environmental management. 2015;150:128-37.  
2. Senobari S, Nezamzadeh-Ejhieh A. A comprehensive study on the  
enhanced photocatalytic activity of CuO-NiO nanoparticles:  
Designing the experiments. Journal of Molecular Liquids.  
2
018;261:208-17.  
5
5
3. Nosuhi M, Nezamzadeh-Ejhieh A. An indirect application aspect  
of zeolite modified electrodes for voltammetric determination of  
iodate. Journal of Electroanalytical Chemistry. 2018;810:119-28.  
4. Senobari S, Nezamzadeh-Ejhieh A. A pn junction NiO-CdS  
nanoparticles with enhanced photocatalytic activity: A response  
surface methodology study. Journal of Molecular Liquids.  
35. Bandpei AM, Mohseni SM, Sheikhmohammadi A, Sardar M,  
Sarkhosh M, Almasian M, et al. Optimization of arsenite removal  
by adsorption onto organically modified montmorillonite clay:  
Experimental & theoretical approaches. Korean Journal of  
Chemical Engineering. 2017;34(2):376-83.  
Moghaddam SS, Moghaddam  
2
018;257:173-83.  
36.  
MA,  
Arami  
M.  
5
5
5. Nosuhi M, Nezamzadeh-Ejhieh A. Voltammetric determination of  
trace amounts of permanganate at a zeolite modified carbon paste  
electrode. New Journal of Chemistry. 2017;41(24):15508-16.  
6. Amani-Beni Z, Nezamzadeh-Ejhieh A. Construction of a sensitive  
non-enzymatic fructose carbon paste electrodeCuO nanoflower:  
designing the experiments by response surface methodology. New  
Journal of Chemistry. 2018;42(2):1021-30.  
7. Derikvandi H, Nezamzadeh-Ejhieh A. Designing of experiments  
for evaluating the interactions of influencing factors on the  
photocatalytic activity of NiS and SnS2: Focus on coupling,  
supporting and nanoparticles. Journal of colloid and interface  
science. 2017;490:628-41.  
Coagulation/flocculation process for dye removal using sludge  
from water treatment plant: optimization through response surface  
methodology. Journal of hazardous materials. 2010;175(1-3):651-  
7.  
37. Nair AT, Makwana AR, Ahammed MM. The use of response  
surface methodology for modelling and analysis of water and  
wastewater treatment processes: a review. Water Science and  
Technology. 2014;69(3):464-78.  
38. Zainal-Abideen M, Aris A, Yusof F, Abdul-Majid Z, Selamat A,  
Omar S. Optimizing the coagulation process in a drinking water  
treatment plantcomparison between traditional and statistical  
experimental design jar tests. Water Science and Technology.  
2012;65(3):496-503.  
39. Abou-Gamra ZM, Ahmed MA. TiO2 nanoparticles for removal of  
malachite green dye from waste water. Advances in Chemical  
Engineering and Science. 2015;5(03):373.  
40. Park Y, Sun Z, Ayoko GA, Frost RL. Bisphenol A sorption by  
organo-montmorillonite: implications for the removal of organic  
contaminants from water. Chemosphere. 2014;107:249-56.  
41. Godini H, Hashemi F, Mansuri L, Sardar M, Hassani G, Mohseni  
S, et al. Water polishing of phenol by walnut green hull as  
adsorbent: an insight of adsorption isotherm and kinetic. Journal of  
Water Reuse and Desalination. 2016;6(4):544-52.  
5
5
5
8. Chong SS, Aziz AA, Harun SW, Arof H, Shamshirband S.  
Application of multiple linear regression, central composite  
design, and ANFIS models in dye concentration measurement and  
prediction using plastic optical fiber sensor. Measurement.  
2
015;74:78-86.  
9. Azad FN, Ghaedi M, Dashtian K, Jamshidi A, Hassani G,  
Montazerozohori M, et al. Preparation and characterization of an  
ACFe 3 O 4Au hybrid for the simultaneous removal of Cd 2+,  
Pb 2+, Cr 3+ and Ni 2+ ions from aqueous solution via  
complexation with 2-((2, 4-dichloro-benzylidene)-amino)-  
benzenethiol:  
Taguchi  
optimization.  
RSC  
Advances.  
2
016;6(24):19780-91.  
42. Petroski J, El-Sayed MA. FTIR study of the adsorption of the  
capping material to different platinum nanoparticle shapes. The  
Journal of Physical Chemistry A. 2003;107(40):8371-5.  
43. Wang S, Jiang SP, Wang X. Microwave-assisted one-pot synthesis  
of metal/metal oxide nanoparticles on graphene and their  
6
6
0. Derikvandi H, Nezamzadeh-Ejhieh A. Comprehensive study on  
enhanced photocatalytic activity of heterojunction ZnS-  
NiS/zeolite nanoparticles: experimental design based on response  
surface methodology (RSM), impedance spectroscopy and GC-  
MASS studies. Journal of colloid and interface science.  
electrochemical  
applications.  
Electrochimica  
Acta.  
2
017;490:652-64.  
2011;56(9):3338-44.  
44. Konicki W, Aleksandrzak M, Moszyński D, Mijowska E.  
1. Derikvandi H, Nezamzadeh-Ejhieh A. A comprehensive study on  
enhancement and optimization of photocatalytic activity of ZnS  
and SnS2: Response Surface Methodology (RSM), nn  
Adsorption of anionic azo-dyes from aqueous solutions onto  
1240  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1232-1241  
6
6
4. Chen T-S, Tsai R-W, Chen Y-S, Huang K-L. Electrochemical  
degradation of tetracycline on BDD in aqueous solutions. Int J  
Electrochem Sci. 2014;9(8422):e8434.  
5. Podstawczyk D, Witek-Krowiak A, Dawiec A, Bhatnagar A.  
Biosorption of copper (II) ions by flax meal: empirical modeling  
and process optimization by response surface methodology (RSM)  
and artificial neural network (ANN) simulation. Ecological  
Engineering. 2015;83:364-79.  
heterojunction, supporting and nanoparticles study. Journal of  
Photochemistry and Photobiology A: Chemistry. 2017;348:68-78.  
62. Wu J, Yu D, Sun H, Zhang Y, Zhang W, Meng F, et al. Optimizing  
the extraction of anti-tumor alkaloids from the stem of Berberis  
amurensis by response surface methodology. Industrial Crops and  
Products. 2015;69:68-75.  
63. Naserifar M, Msoudpanah SM, Alamolhoda S. Effect of fuel  
content on structural and magnetic properties of solution  
combusted Mn0. 8Zn0. 2Fe2O4 powders. Journal of Ultrafine  
Grained and Nanostructured Materials. 2018;51(1):26-31.  
1241