Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1163-1167  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Estimating Water Footprint of Palm Oil Production:  
Case Study in Malaysia  
1
, 2  
1, 2*  
1, 3  
Noor Salehan Mohammad Sabli , Zainura Zainon Noor , Kasturi Devi Kanniah , Siti  
Nurhayati Kamaruddin1  
1
Centre for Environmental Sustainability and Water Security (IPASA), Research Institute of Sustainable Environment (RISE), Universiti Teknologi  
Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia  
2
School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia  
3
Department of Geoinformation, Faculty of Geoinformation & Real Estate, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia  
Received: 06/02/2020  
Accepted: 19/07/2020  
Published: 20/09/2020  
Abstract  
Malaysia is currently facing some issues in fulfilling the high demand in palm oil production, which inevitably led to a rapid expansion  
of palm oil industry in Malaysia. Therefore, water-related problems have become a major concern in environmental and social issues  
associated to palm oil industries. Inevitably, it is very important that the water consumption in this sector be analysed. Water footprint is  
one of the methods that can be used as a tool for sustaining appropriate freshwater resources. The main purpose of this study is to evaluate  
water footprint at palm oil mill from fresh fruit bunches to the production of crude palm oil. Water footprint revealed that the main  
potential impacts within the system boundary are dominated by water usage at the process through producing crude palm oil and  
wastewater effluent. At this stage, the total water input mainly comes from the nearest water resources such as rivers and lakes. In one  
operating day, the mill can produce wastewater of 3.81 m3/tonne of CPO. This amount is equivalent to 0.74 m3/tonne of average  
production rate of POME for each t of FFB process. At the end of this paper, strategies to optimise the use of water in palm oil mills are  
presented.  
Keywords: Agricultural Industry, Water degradation, Water footprint, ISO 14046, Sustainable Palm Oil Plantation  
Introduction1  
vision for a sustainable development in which food and  
1
agriculture, people’s livelihood and the management of natural  
resources are addressed as one (7). Following this trend, all  
stakeholders including companies should ensure that the palm  
oil industry is sustainably structured to enter global market.  
Malaysia, one of the members of Roundtable for Sustainable  
Palm Oil (RSPO), is regularly associated with some  
sustainability issues including carbon emissions, deforestation,  
biodiversity loss, habitat fragmentation, reduction of freshwater  
and soil quality. Freshwater reduction and pollution have  
become some of the major problems related to oil palm  
industries. To evaluate and connect the performance of an oil  
palm industries under the outlook of three sustainability pillars  
In Malaysia, oil palm plantation area production has  
markedly increased from 5.23 million ha in 2013 to 5.85 million  
ha in 2018 (1). Currently, after Indonesia, Malaysia is the second  
largest oil palm producer in the world with an oil palm planted  
area of 5.85 million ha. As one of the main contributors to the  
economic growth, annual high export of this industry was RM  
7
7.85 billion in 2017, which has increased from RM 67.92  
billion in 2016 (2). Oil palm (Elaeis guineensis) is cultivated in  
humid tropical regions in the world such as Indonesia, Malaysia,  
Thailand Columbia and Nigeria (3). This plant requires 100 mm  
of precipitation monthly or annual rainfall of 2000 mm and is  
able to tolerate drought period no longer than three months (4,  
(economic, social and environmental pillar), quantitative  
5
). Moreover, palm oil is semi-solid and can stand high  
indicators have been proposed as a suitable and effective mean.  
Among the indicators concerning the assessment of  
environmental impacts, water footprint describes the impacts of  
a system or product on water resources from quantitative and  
qualitative perspectives. The water footprint (WF) is a useful  
indicator to report on total water consumption, water scarcity  
level and reduction achieved after implementing response  
strategies. Hoekstra et al. (2011) introduced this concept, which  
was implemented through Water footprint Assessment (WFA).  
WFA is divided into three sub-indicators of WF:  
temperature (6).  
Overcoming the obstacles faced by the world, FAO has  
made the sustainability of food production as 2030 Agenda’s  
Coresponding author: Zainura Zainon Noor, (1) Centre for  
Environmental Sustainability and Water Security (IPASA),  
Research Institute of Sustainable Environment (RISE),  
Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul  
Takzim, Malaysia. (2) School of Chemical and Energy  
Engineering, Faculty of Engineering, Universiti Teknologi  
Malaysia, 81310 Skudai, Johor, Malaysia. E-mail:  
zainurazn@utm.my  
Green WF - water from rainwater is stored in the root zone  
and used by plants through evaporation, transpiration and  
1
163  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1163-1167  
incorporation in the biomass.  
consumption in each step of palm oil mill. It was analysed using  
water balance approach by (12). In estimating this data, material  
balance by (13) was also used. For indirecting water use in palm  
oil mill, secondary data from (14) was used. Meanwhile, no  
water from rainwater or evapotranspiration is required at the  
palm oil mill. Usually, the water from these sources are used  
during nursery and plantation stage.  
Blue WF - irrigation water uptake by plants.  
Grey WF  amount of fresh water required to assimilate the  
critical pollutants to meet specific water quality standards.  
Studies related to WF have been improving over time and  
many methods have emerged for calculating and assessing  
possible environmental impacts from water consumption. In  
2
014, a research group of Water Use in Life Cycle Assessment  
(
WULCA) from UNEP-SETAC developed new water  
a
footprint framework. As defined in (8), LCA is a method used to  
assess possible environmental effects for a product or process  
over its entire life cycle. WF is a part of the whole LCA.  
Subsequently, the LCA-based WF includes the quantification of  
water effects related to freshwater use in terms of water  
availability footprint and water scarcity footprint as well as  
water quality in terms of ecotoxicity, eutrophication and  
acidification (9, 10). Both WFA and LCA are complement to  
each other and can be used to obtain sustainable freshwater.  
The objective of this study is to investigate the water  
footprint in the milling process of crude palm oil production at  
selection palm oil mills.  
Ʃ water consumption in  
each stage of CPO  
production  
Ʃ quantity and quality  
of wastewater  
WF Production (WFPr  
)
W
WF Wastewater (WF )  
WF of Palm Oil Mill  
2
Materials and Methods  
This study assessed the Water Footprint (WF) of crude palm  
Figure 2: The Calculation Method of WF at Palm Oil Mill  
oil production according to the ISO 14046 standard, which  
adopted an LCA approach as the framework. The LCA  
framework consists of goal and scope definition, inventory  
analysis, environmental impact assessment and interpretation of  
the result (11). The whole process of this study is shown in  
Figure 1. This study adopted a functional unit of water required  
to produce 1 t crude palm oil. In determining WF at mill, the  
methods were divided into two categories, which were:  
For calculating wastewater that came out from CPO process,  
formula by (15) was used.  
WFw = (Ceffl - Cact)  
(Cmax - Cnat)  
Effl  
Ceffl  
Cact  
= Effluent volume (volume/time)  
= Concentration of pollutant (mass/volume)  
Actual concentration of the intake water  
=
(mass/volume)  
Cmax  
Cnat  
= Maximum concentration allowed (mass/volume)  
= Concentration in natural form (mass/volume)  
2
.1 Boundary of Study  
Figure 3 displays the diagram of the process in palm oil mill.  
The boundary of this study was until the production of crude  
palm oil (CPO). Therefore, the flow process is shown from the  
fresh fruit bunch to the sterilisation process where the bunches  
were fully cooked and the wet heat weakened the fruit stem,  
making it easy to remove the fruits from bunches by shaking or  
tumbling in the threshing machine. Then, the stripper was  
utilised to separate the fruits, nuts and fibre. After that, the fruits  
were sent to the digester. Digestion is the process of releasing  
the palm oil in the fruits through the rupture or breaking down of  
oil-bearing cells. At the clarification tank, fine suspended solids  
were separated and removed from crude oil. Raw crude oil from  
the settling tank (top oil) was combined with recovered oil from  
the treatment of the settling tank underflow. The flow process is  
highlighted with red arrow in Figure 3. Data for water input  
were given from the respondents using questionnaires and  
interview session. Primary and secondary data were used in this  
study. Primary data were collected by interviewing the  
stakeholders. Moreover, these data were collected based on  
direct observations at selected palm oil mills. Meanwhile, the  
secondary data were obtained by reviewing literature and  
Figure 1: LCA Framework including the Significant Steps for WF  
1
. Total water consumption in each stage of CPO process = WF  
process (WFPr).  
2
(
. Total quantity and quality of wastewater = WF wastewater  
WF ).  
w
Total consumption from both methods will be combined as  
total WF at mill (WF ). Simplified water calculation stage can  
M
be referred to Figure 2. The water footprint (WF) of the  
production (WFPr) was determined using the data of water  
1
164  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1163-1167  
documents related to this study. The followings are the detailed  
LCI description of the data collection as in Table 1. Figure 4  
displays the site visit at one of the palm oil mills.  
5. In one operating day, the mill can produce wastewater of 3.81  
m /tonne of CPO. This amount is equivalent to 0.74 m3/tonne of  
3
average production rate of POME for each t of FFB process.  
One of the factors that influences the amount of wastewater is  
the final discharge maximum allowable limit by law. Palm oil  
mills in Peninsular Malaysia are allowed to discharge at a higher  
level (100mg/l) compared to mills in Sabah and Sarawak where  
their discharge limit is 20 mg/l. Based on the result, the major  
contributor to the water footprint is from the process followed  
by wastewater discharged. Rainwater feed gave nil value as  
water for the crop is only up until the plantation stage.  
FFB  
1
00%  
(5.15  
Fruit Bunches  
Condensate  
2%  
EFB 22%  
6
6%  
1
Press  
Cake 26%  
Crude Oil  
40%  
Figure 3: Palm Oil Mill Flow Process Diagram  
Fibre  
4%  
Kernel  
12%  
CPO  
Drab  
Water 15%  
2
5%  
1
Palm  
Kernel 7%  
Shell  
5%  
Figure 5: Material balance for 1 t CPO production  
Table 1: Primary data and secondary information obtained.  
Primary Data for 1t CPO  
Data Required  
Source  
Methods  
of  
Collection  
Land area  
Location of Interview and site  
Study visit  
Location of Interview and site  
Study visit  
Location of Interview and site  
Study visit  
Location of Interview and site  
Study visit  
for Location of Interview and site  
Study visit  
Steam generation Location of Interview and site  
Figure 4: Site visit at Kahang Palm Oil Mill, Kahang, Johor.  
Processing  
capacity  
Steam input  
3
Result and Discussions  
The input and output of materials for the process are  
represented in the material balance. Figure 5 shows the material  
balance for 1 t of CPO in palm oil mill. In material balance,  
there are three sources of POME namely steriliser condensate,  
separator sludge or sludge centrifuge and hydro cyclone  
wastewater or clay bath, which are used for cracked mixture  
separation (kernel separation). Table 2 shows the percentage of  
three POME sources of FFB processed and the value per 1 t  
CPO production. Meanwhile, Table 3 shows the water related  
life cycle inventory (LCI) for the production of 1 t CPO at the  
palm oil mill. These data were analysed based on data collection  
during site visit at the selected palm oil mills. Moreover, Table 4  
illustrates the additional data derived from the LCI for WF of  
wastewater calculations.  
FFB average (t)  
Diesel  
transportation (L)  
3
for boiler (m /yr)  
Mesocarp fibre (t)  
Study  
Location of Interview and site  
Study visit  
Location of Interview and site  
Study visit  
Fruit Location of Interview and site  
Study visit  
visit  
Shell (t)  
Empty  
Bunch (t)  
w
Total WF can be summed up using the value of WF from  
production process and WF from wastewater as shown in Table  
Palm oil mill Location of Interview and site  
1
165  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1163-1167  
effluent (t)  
Boiler Ash (t)  
Study  
Location of Interview and site  
Study visit  
visit  
water use, reducing the water during the process should  
potentially reduce the level of wastewater being discharged.  
Table 6: Total water footprint for the production of 1 t CPO  
Table 2: Value of WF Production  
(nursery-plantation-mill)  
Source of POME  
% to FFB Value WF Production  
Water  
Water  
3
Water  
consumpti  
on from  
per 1t CPO (m /ton)  
consumpti consumpti Sub-  
steriliser condensate 12  
0.62  
2.58  
0.26  
3.46  
on from  
the water  
sources  
on to  
total WF  
by  
stage.  
sludge centrifuge  
clay bath  
50  
5
assimilate  
pollutants  
rainfeed  
3
(
m /ton)  
3
3
Total  
67  
(m /ton)  
(m /ton)  
Nursery  
Plantation 1509  
310  
6.1  
nil  
28  
143  
344.1  
1652  
Table 3: Life cycle inventory (water related data) for the  
production of 1 t CPO  
Palm Oil  
Mill  
Sub-total  
nil  
3.46  
0.35  
3.81  
Inventory  
Water for milling process  
Unit 1t per CPO  
7.4 m  
3
Diesel (startup process and 1.8 kg  
vehicles within mill)  
by Water  
Category  
Total  
1921.8  
6.56  
185.05  
Electricity  
2.47 kWhr  
Water  
1999.91  
Footprint  
Table 4: The additional data derived from the LCI for WF of  
wastewater calculation (16)  
Parameters  
Amount  
4 Limitations and Conclusion  
The main aim for this paper is to determine the water  
footprint in milling process in crude palm oil production at  
selection palm oil mills. In addition, this paper is the sequence  
from previous study of WF at cultivation stage. To increase the  
accuracy of this study, more data and information from a lot of  
palm oil mills are needed.  
C
effl  
40 mg litre-1 (for mills in  
Peninsular Malaysia)  
-1  
30 mg litre  
-1  
C
C
act  
max  
100 mg litre (limit set by law for  
palm oil mills in Peninsular  
Malaysia)  
-1  
1 mg litre (17)  
C
nat  
Acknowledgement  
Table 5: Water footprint for the production of 1 t Crude Palm  
Oil (CPO)  
m /ton of CPO  
Water from the process 3.46  
material balance)  
The authors would like to acknowledge the support from  
UTM Research University Grant with Cost Centre No.  
Q.J130000.2544.04H76 provided by Universiti Teknologi  
Malaysia and the Zamalah Scholarship, which provided  
scholarship to the authors.  
3
(
Wastewater (limit set by 0.35  
law at BOD:100 ppm)  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
Water from rainfeed  
Total  
nil  
3.81  
(avoidance of guest authorship), dual submission, manipulation  
The result from cradle to gate system boundary (nursery-  
plantation-mill) as in Table 6 shows that the highest water  
footprint came from the plantation as expected since growing oil  
palm trees require a lot of water, which is almost 1652  
m3/tonne. The second highest contribution to the water footprint  
was water consumption to assimilate pollutants from fertilisers  
and herbicides. The reduction of water footprint can be achieved  
by increasing best practice in cultivation process; hence, it will  
increase the water productivity. Water productivity is the  
amount of yield harvested per metre cubic of the irrigated water  
use. To reduce the water consumption in assimilating pollutants  
during cultivation stage, the use of inorganic fertilisers must be  
controlled. Precise dosage, timing, type and placement of  
fertilisers must be well applied and managed. Moreover, the  
mixing between organic and inorganic fertilisers have to be  
precise to optimise the yield and reduce leaching. As in  
industrial process, the use of efficient water becomes necessary.  
In order to minimise the potential environmental impact from  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
Competing interests  
The authors declare no conflict of interest that would  
prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
References  
Malaysian Palm Oil Board (MPOB); Economics & Industry  
1
.
Development Division. Oil Palm Planted Area (Internet). July 27,  
1
166  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1163-1167  
2
019.  
Available  
from:  
http://bepi.mpob.gov.my/index.php/en/statistics/area.html.  
2
.
Kushairi, D. Overview of the Malaysian Oil Palm Industry 2017.  
MPOB Palm Oil Statistics. Malaysian Oil Palm Board (Internet).  
2
018.  
July  
27,  
2019.  
Available  
from:  
http://palmoilis.mpob.gov.my/index.php/overview-of-industry/593-  
overview-of-industry-2017.  
3
4
.
.
Sylvester Chibueze Izah and Elijah Ige Ohimain. Comparison of  
Traditional and Semi-mechanized Palm Oil processing Approaches  
in Nigeria; Implications on Biodiesel Production. Journal of  
Environmental Treatment Techniques. 2015; 3: 82-87.  
Silalertruksa, T., Gheewala, S. H., Pongpat, P., Kaenchan, P.,  
Permpool, N., Lecksiwilai, N., Mungkung, R. (2017):  
Environmental sustainability of oil palm cultivation in different  
regions of Thailand: greenhouse gases and water use impact.  
Journal of Cleaner Production 167(Supplement C). 2017; 1009-  
1
019.  
5
6
.
.
Herda,S.D,K., Kris,R.D.L.,Chay,A. Estimating Water Footprint of  
Palm Oil Production in PTP Mitra Ogan Baturaja South Sumatera.  
International Journal on Advanced Science Engineering Information  
Technology. 2017; 7: 2115- 2121  
Elijah Ige Ohiman and Sylvester Chibueze Izah. Physicochemical  
Characteristics and Microbial Population of Palm Oil Sold in Major  
Markets in Yenagoa Metropolis, Bayelsa States, Nigeria. Journal  
Environmental Treatment Techniques. 2015; 3: 143-147.  
7
8
9
.
.
.
FAO. Transforming Food and Agriculture to Achieve the SDGs.  
2
018.  
WULCA (Internet). 2014. August 5, 2019. Available from:  
http://www.wulca-waterlca.org/footprinting.html.  
Bayart,  
J.B.,  
Bulle,  
A
C.,Deschênes,L.,Margni,M.,Pfister,S.,Vince,F.,Koehler,A.  
Framework for Assessing Off-Stream Freshwater use in LCA.  
International Journal Life Cycle Assessment. 2010; 15:439-453.  
doi.org/10.1007/s11367-010-0172-7.  
1
0. Boulay, A.-M., Hoekstra, A.Y., Vionnet, S. Complementarities of  
Water-Focused Life Cycle Assessment and Water Footprint  
Assessment. Environmental Science Technology. 2013; 47: 11926–  
1
1927. doi.org/10.1021/es403928f  
1
1
1. ISO 14044. Environmental management- Life cycle Assessment-  
Requirement and guidelines. International Standard Organization  
(
ISO), Geneva. 2006.  
2. Chukalla AD., Krol MS., A.Y. Hoekstra. Green and Blue Water  
Footprint Reduction in Irrigated Agriculture: Effect of Irrigation  
Techniques, Irrigation Strategies and Mulching. Hydrology and  
Earth System Sciences. 2015; 19: 48774891.  
1
1
3. Ropandi,M., Astimar, A.A., Rohayu,M.H. Waste Minimisation for  
Palm Oil Mills: A Case Study. Palm Oil Engineering Bulletin. 2017;  
1
22.  
4. Vijaya,S.MA, A.N., Choo, Y.M., Nik Meriam, N.S. Life Cycle  
Inventory of The Production of Crude Palm Oil  A Gate to Gate  
Case Study of 12 Palm Oil Mills. Journal of Oil Palm Research.  
2
008; 20: 484-494.  
1
1
1
5. Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M and Mekonnen,  
M.M. The water footprint assessment manual: Setting the goal  
standard. 2011. Earthscan, London,UK.  
6. Vijaya, S.MA, Halimah,M., Zulkifli, H., Choo, Y.M. Water  
Footprint: Part 3- The Production of Crude Palm Oil in Malaysian  
Palm Oil Mills. Journal of Oil Palm Research. 2014; 6: 292-299.  
7. Mohd Ekhwan, T., Mohd Khairul, A.K.,Muhammad Barzani, G.,  
Mokhtar, J., Nor Azlina, A.A., Pan, L.L. Water Quality Status &  
Hydrological Analysis in Upper Tropical River Malaysia.  
International Journal of Agriculture and Crop Sciences. 2012; 4-  
2
:33-39.  
1
167