Journal of Environmental Treatment Techniques
2020, Volume 8, Issue 3, Pages: 1017-1022
1
8
Gandhi, P., Paritosh, K., Pareek, N., Mathur, S., Lizasoain, J.,
Gronauer, A., et al. Multicriteria decision model and thermal
pretreatment of hotel food waste for robust output to biogas: Case
study from city of Jaipur, India. BioMed Research International,
2018; 1-13.
References
1
Bong, C. P. C., Goh, R. K. Y., Lim, J. S., Ho, W. S., Lee, C. T.,
Hashim, H., et al. Towards low carbon society in Iskandar Malaysia:
Implementation and feasibility of community organic waste
composting. Journal of Environmental Management, 2017; 203,679–
19 Jin, Y., Li, Y., & Li, J. Influence of thermal pretreatment on physical
and chemical properties of kitchen waste and the efficiency of
anaerobic digestion. Journal of Environmental Management, 2016;
180, 291–300.
20 Pagliaccia, P., Gallipoli, A., Gianico, A., Gironi, F., Montecchio, D.,
Pastore, C., et al. Variability of food waste chemical composition:
Impact of thermal pre-treatment on lignocellulosic matrix and
anaerobic biodegradability. Journal of Environmental Management,
2019; 236, 100–107.
6
87.
Dinie, M., Samsudin, M., Teknologi, U., Mat, M., & Universiti, D.
2016). Municipal Solid Waste Management in Malaysiaꢀ: Current
Practices, Challenges and Prospects Jurnal Teknologi Full paper,
016 June; 95–101.
Xiao, B., Qin, Y., Zhang, W., Wu, J., Qiang, H., Liu, J., et al.
Temperature-phased anaerobic digestion of food waste:
2
3
(
2
A
comparison with single-stage digestions based on performance and
energy balance. Bioresource Technology, 2018; 249, 826–834.
Scherhaufer, S., Moates, G., Hartikainen, H., Waldron, K., &
Obersteiner, G. Environmental.impacts of food waste in Europe.
Waste Management, 2018; 77, 98–113.
Melikoglu, M., Lin, C. S. K., & Webb, C. Analyzing global food
waste problem: Pinpointing the facts and estimating the energy
content. Central European Journal of Engineering, 2013; 3(2), 157–
21 Chu, C. F., Li, Y. Y., Xu, K. Q., Ebie, Y., Inamori, Y., & Kong, H.
N. A pH and temperature-phased two-stage process for hydrogen and
methane production from food waste. International Journal of
Hydrogen Energy, 2008; 33(18), 4739–4746.
22 Pramanik, S. K., Suja, F. B., Zain, S. M., & Pramanik, B. K. The
anaerobic digestion process of biogas production from food waste:
Prospects and constraints. Bioresource Technology Reports, 2019
July; 100310.
4
5
1
64.
23 Amiri, L., Abdoli, M. A., Gitipour, S., & Madadian, E. The effects of
co-substrate and thermal pretreatment on anaerobic digestion
performance. Environmental Technology (United Kingdom), 2017;
38(18), 2352–2361.
24 De la Rubia, M. A., Villamil, J. A., Rodriguez, J. J., Borja, R., &
Mohedano, A. F. Mesophilic anaerobic co-digestion of the organic
fraction of municipal solid waste with the liquid fraction from
hydrothermal carbonization of sewage sludge. Waste Management,
2018; 76, 315–322.
6
7
Peng, W., & Pivato, A. Sustainable Management of Digestate from
the Organic Fraction of Municipal Solid Waste and Food Waste
Under the Concepts of Back to Earth Alternatives and Circular
Economy. Waste and Biomass Valorization, 2017; 0(0), 1–17.
Li, L., He, Q., Ma, Y., Wang, X., & Peng, X. A mesophilic anaerobic
digester for treating food waste: Process stability and microbial
community analysis using pyrosequencing. Microbial Cell Factories,
2
016; 15(1), 1–11.
8
9
1
1
1
Ivanovs, K., Spalvins, K., & Blumberga, D. Approach for modelling
anaerobic digestion processes of fish waste. Energy Procedia, 2018;
25 Deepanraj, B., Sivasubramanian, V., & Jayaraj, S. Effect of substrate
pretreatment on biogas production through anaerobic digestion of
food waste. International Journal of Hydrogen Energy, 2017; 42(42),
26522–26528.
26 Zhang, J., Lv, C., Tong, J., Liu, J., Liu, J., Yu, D., et al. Optimization
and microbial community analysis of anaerobic co-digestion of food
waste and sewage sludge based on microwave pretreatment.
Bioresource Technology, 2016; 200, 253–261.
27 Lou, X. F., Nair, J., & Ho, G. Effects of volumetric dilution on
anaerobic digestion of food waste. Journal of Renewable and
Sustainable Energy, 2012; 4(6), 1–11.
28 Silva, F. M. S., Mahler, C. F., Oliveira, L. B., & Bassin, J. P.
Hydrogen and methane production in a two-stage anaerobic digestion
system by co-digestion of food waste, sewage sludge and glycerol.
Waste Management, 2018; 76, 339–349.
29 Li, Y., Jin, Y., Borrion, A., Li, H., & Li, J. Effects of organic
composition on the anaerobic biodegradability of food waste.
Bioresource Technology, 2017; 243, 836–845.
30 Li, J., Zhang, W., Li, X., Ye, T., Gan, Y., Zhang, A., Liu, Y.
Production of lactic acid from thermal pretreated food waste through
the fermentation of waste activated sludge: Effects of substrate and
thermal pretreatment temperature. Bioresource Technology, 2018;
247, 890-896.
31 Seswoya, R., Abd Karim, A. T., Darnak, N. A., & Abd Rahman, M.
F. Methane Potential from the Digestion of Food Waste in a Batch
Reactor, International Journal of Engineering & Technology, 2018;
7, 36–39.
32 Lü, F., Xu, X., Shao, L., & He, P. Importance of storage time in
mesophilic anaerobic digestion of food waste. Journal of
Environmental Sciences (China), 2015; 45, 76–83.
1
47, 390–396.
Fricke, K., Santen, H., & Wallmann, R. Comparison of selected
aerobic and anaerobic procedures for MSW treatment. Waste
Management, 2005; 25(8), 799–810.
Veluchamy, C., & Kalamdhad, A. S. Enhanced methane production
and its kinetics model of thermally pretreated lignocellulose waste
material. Bioresource Technology, 2017; 241, 1–9.
0
1
2
Xu, F., Li, Y., Ge, X., Yang, L., & Li, Y. Anaerobic digestion of food
waste Challenges and opportunities. Bioresource Technology, 2018;
2
47, 1047–1058.
Khairuddin, N., Abd Manaf, L., Hassan, M. A., Wan Abdul Karim,
W. A., & Halimoon, N. Biogas Harvesting from Organic Fraction of
Municipal Solid Waste as a Renewable Energy Resource in Malaysia:
A Review. Polish Journal of Environmental Studies, 2015; 24,1477–
1
490.
Ariunbaatar, J., Panico, A., Frunzo, L., Esposito, G., Lens, P. N. L.,
Pirozzi, F. Enhanced anaerobic digestion of food waste by thermal
1
3
&
and ozonation pretreatment methods. Journal of Environmental
Management, 2014; 146, 142–149.
Tampio, E., Ervasti, S., Paavola, T., Heaven, S., Banks, C., & Rintala,
J. Anaerobic digestion of autoclaved and untreated food waste. Waste
Management, 2014; 34(2), 370–377.
1
1
4
5
Ferreira, L. C., Donoso-Bravo, A., Nilsen, P. J., Fdz-Polanco, F., &
Pérez-Elvira, S. I. Influence of thermal pretreatment on the
biochemical methane potential of wheat straw. Bioresource
Technology, 2013; 143, 251–257.
Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.
L., Guwy, A. J., et al. Defining the biomethane potential (BMP) of
solid organic wastes and energy crops: A proposed protocol for batch
assays. Water Science and Technology, 2009; 59(5), 927–934.
Yeshanew, M. M., Frunzo, L., Lens, P. N. L., Pirozzi, F., & Esposito,
G. Mass Loss Controlled Thermal Pretreatment System to Assess the
Effects of Pretreatment Temperature on Organic Matter
Solubilization and Methane Yield from Food Waste. Frontiers in
Environmental Science, 2016; 4, 1–13.
1
1
6
7
33 Cabbai, V., Ballico, M., Aneggi, E., & Goi, D. BMP tests of source
selected OFMSW to evaluate anaerobic co-digestion with sewage
sludge. Waste Management, 2013; 33(7), 1626–1632.
34 Paudel, S. R., Banjara, S. P., Choi, O. K., Park, K. Y., Kim, Y. M., &
Lee, J. W. Pretreatment of agricultural biomass for anaerobic
digestion: Current state and challenges. Bioresource Technology,
2017; 245, 1194–1205.
1
021