Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1017-1022  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Methane Production from the Digestion of Thermally  
Treated Food Waste at 80°C  
Farizah Fadzil , Farihah Fadzil , Siti Mariam Sulaiman , A'isyah Mardhiyyah Shaharoshaha,  
Roslinda Seswoya*  
Micro Pollutant Research Centre (MPRC), Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Johor, Malaysia  
Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Johor, Malaysia  
Received: 10/05/2020  
Accepted: 23/06/2020  
Published: 20/09/2020  
Abstract  
Food waste is the most suitable feedstock for anaerobic digestion. However, methane yield from the digestion of food waste is low.  
Therefore thermal pretreatment serves as the best solution. Also, the effect of thermal pretreatment on food waste (Malaysian dietary) before  
anaerobic digestion has low documentation. Hence this research aims to analyze the methane production and its kinetics from the digestion  
of thermally treated food waste. The result showed that thermal treatment improves the bioavailability of food waste, subsequently improve  
the methane production of food waste. The ultimate methane yield for thermally treated food waste at 80°C was 883.08 CH4/gVS higher  
than untreated food waste. The kinetic parameters observed from Modified Gompertz modeling were slightly lower from the laboratory data  
for both substrates. Thus, thermal pretreatment undoubtedly improved the anaerobic digestion of food waste.  
Keywords: Anaerobic, Food waste, Thermal, AMPTS, Gompertz  
List of symbols and unit1  
Symbols and Unit  
thrown from the residential, commercial and institutional areas,  
and it is characterized in ranges of 52 and 66 % in moisture  
Description  
content. MSW increases proportionally with population growth in  
developed and developing countries. The MSW is rising at the  
rate of 0.5-0.8 kg/person-day and is expected to exceed 9 Mt/year  
in the year 2020 [1]. The disposal of MSW in an open dumping  
area is producing environmental impacts on soil, water, and air.  
Dumping MSW on soil affecting soil fertility by reducing the crop  
yield, the degradation of organic waste in the landfill produced  
the leachate. The discharge of untreated leachate into the river  
causes groundwater contamination. Also, the landfill area  
associated with an unpleasant odor and uncontrolled release of  
methane through waste decomposition [2]. The landfill is also  
diminishing the nation's land area to 54% from the year 1990-  
AD  
Anaerobic digestion  
Organic Fraction of Municipal  
Solid Waste  
Municipal Solid Waste  
Food Waste  
OFMSW  
MSW  
FW  
Thermally treated food waste at  
FW80  
8
0°C  
BMP  
Biomethane Potential  
Automated Methane Potential  
Test II  
Total Solid  
Volatile Solid  
Chemical Oxygen Demand  
Alkalinity  
Modified Gompetrz Model  
Lag phase  
Ultimate methane yield  
Methane production rate  
AMPTS II  
TS (g/L)  
VS (g/L)  
COD (mg/L)  
2
008 in Malaysia [1]. 30% of MSW is food waste [3]. Food waste  
causes alarming problems to its surroundings due to its essence as  
material that is easy to decompose [3].  
3
(mgCaCO /L)  
GM  
(day)  
Food waste can be segregated into four groups, which are  
edible, non-edible, avoidable, and unavoidable. The edible food  
waste, also known as avoidable food and is defined as the food  
and drinks that are eaten by people. Others choose not to  
consume, whereas the non-edible and unavoidable food waste is  
the residue food preparation [4]. Food waste consists of complex  
(
(
mlCH  
mlCH  
4
4
/gVS)  
/gVS-day  
1
Introduction  
Municipal solid waste (MSW) is defined as unwanted waste  
Corresponding author: Roslinda Seswoya, (a) Micro Pollutant Research Centre (MPRC), Universiti Tun Hussein Onn Malaysia, 86400,  
Parit Raja, Johor, Malaysia; and (b) Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit  
Raja, Johor, Malaysia. E-mail: roslinda@uthm.edu.my.  
1
017  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1017-1022  
organic compounds (e.g carbohydrate polymers, lipids, protein,  
and some other inorganic components (e.g silica) [3]. About a  
quarter of 1.3 billion food was lost along the food chain due to  
human consumption, in the way of preparation of food (e.g food  
processing factory) [5].  
The method for treating MSW includes incineration, landfill,  
and anaerobic digestion [1]. Anaerobic digestion was used for  
treating the organic fraction of municipal solid waste (OFMSW),  
particularly food waste [6]. Anaerobic digestion is a devoted  
method to manage food waste due to its high bio-methane  
potential [7]. It can develop renewable energy (methane and  
hydrogen), volatile fatty acid (VFA), and alcohol. Anaerobic  
digestion is the cost-effective treatment in managing waste  
because of high energy recovery and low environmental impact  
Gomperts Modelling [22]. Modified Gompertz is regarded as the  
kinetic model of asigmoid function, which is used for a time series  
as a mathematical model [23]. Modified Gompertz is the highest  
feature in anticipating the output of biogas, as the model has one  
of the highest fits for methane manufacturing information as a  
function of time [24]. In this model, the rate of biogas production,  
the maximum biogas production, and the lag phase can be  
estimated [25]. Gandhi et al., [18] evaluated the kinetics of  
anaerobic digestion of food waste using Modified Gompertz  
modeling, and it is reported that the ultimate biogas yield was  
improved from the digestion of thermally treated food waste at  
80°C and the lag phase was reduced significantly. Unfortunately,  
there is limited information on the anaerobic digestion of  
thermally treated food waste in Malaysia. Therefore this research  
aspiration is to study the effect of thermal pretreatment of food  
waste towards the methane yield.  
[
3]. Besides, anaerobic digestion is the biochemical method that  
occurs when there is no oxygen at all [8]. The absence of oxygen  
is a significant difference between anaerobic and aerobic  
digestion [9]. Anaerobic digestion involves several biochemistry  
processes, such as hydrolysis, acidegenosis, acetogenesis, and  
methanogenesis [10]. The implementation of anaerobic digestion  
can improve the economic feasibility and become an  
environmentally sustainable solution in managing waste [11]. For  
instance, methane from anaerobic digestion can replace fossil fuel  
power used and reduce greenhouse emissions [12].  
2
Material and Methodology  
2
.1 Substrate and inoculum  
The food waste was collected from a cafeteria. The collected  
food waste consists of cooked food such as meat, rice, bone, and  
vegetables [26]. Impurities such as bone, tissue, and plastic were  
manually removed and sorted [11]. The fresh food waste was  
collected for two days. The collection during this period is due to  
the cafeteria operation period. The special treatment such as  
sterilization is not conducted on food waste. Then, the fresh food  
waste was diluted with tap water at a ratio of 1:1 for food waste  
slurry preparation [27]. After that, the food waste was  
homogenized with the aid of kitchen blender [22]. The food waste  
was filled in a 1 L glass bottle (Schott Duran) and then was  
thermally treated in the oven at 80°C for about 1.5 hours [13].  
After 1.5 hours, the bottle was left to cool at room temperature  
before it was used for biochemical methane potential (BMP) test  
The ultimate methane yield from the digestion of food waste  
is low [13] because the solubilization of particulate matter to  
simple monomer during the hydrolysis stage of the anaerobic  
digestion process requires a long time and thus making this step  
problematic [14]. Pretreatment was applied to enhance the biogas  
production and overcome problems during the hydrolysis stage of  
anaerobic digestion of food waste. The pretreatment methods are  
mechanical, biological, chemical, and thermal [13]. Thermal  
o
pretreatment was introduced at a mild temperature of 55 to 90 C  
[
15]. Thermal pretreatment increased the organic particle  
[
13].  
Anaerobically digested sludge used as inoculum was collected  
solubilization, subsequently making it more assessable by  
anaerobic microbes [13].  
from an anaerobic digester treating POME. The sludge was stored  
in a plastic container and refrigerated at 4°C prior used for BMP  
testing [28].  
Thermal pretreatment is a proven approach, as it improved the  
digestion process [16]. The characteristics of food waste such as  
COD, carbohydrate, and protein were also enhanced as well as  
methane production after undergoing thermal pretreatment [17].  
Gandhi et al., [18] observed an improvement in protein  
solubilization after the thermal pretreatment process. According  
to Jin et al., [19], the changes in pH after thermal pretreatment are  
lesser in low temperature and higher in high temperature  
depending on the duration of the pretreatment. Longer period with  
the high temperature of pretreatement, increased the release of  
organic acid, making the pH of the substrate to reduce [19].  
Thermally treated food waste obtained a higher value of total  
solids, volatile solids, and chemical oxygen demand (COD) than  
the untreated food, indicated that the thermal pretreatment  
increased bioavaiability. Bioavailability makes the thermally  
treated food waste easily digested subsequently resulted in higher  
methane yield [20]. Meanwhile, according to Ariunbaatar et al.,  
2
.2 Biodegradability assay (biochemical methane potential)  
BMP is a well known effective technique for evaluating the  
rate of methane transformation of organic matter [29]. The batch  
test was conducted by practicing Automated Methane Potential  
System Test System II (AMPTS II), as shown in Figure 1  
[1][26][30]. The system serves swift service of measuring  
biomethane flow and ultra-low biogas in determining biogas  
potential [30].  
The digestibility of food waste was studied through a series of  
batch anaerobic digester conducted using a 500ml digester with a  
mass of 400g [31]. The value of substrate and inoculums added  
into the mixture were calculated based on VS [31]. Substrate and  
inoculums were mixed at inoculum to substrate ratio of 2.0 [28].  
This ratio is recommended to avoid the inhibitory effect [32]. The  
pH of each reactor was recorded between 7.2 to 7.4. This pH is in  
the range for anaerobic digestion, which is from 6.5 to 7.5 [33].  
The reactor was flushed with nitrogen for two minutes to provide  
an anaerobic condition [30]. Mesophilic state (37±0.5°C) was  
maintained by a thermostatic water bath incubator [26]. The  
reactor was stirred with a mechanical mixing at 90rpm [18].  
[
13], the thermal pretreatment at 80°C for 1.5 hours produces  
higher methane yields than untreated food waste. The difference  
in methane yield between untreated food waste and thermally  
treated food waste at 80°C was about 221.5 ml CH /gVS.  
4
Kinetic analysis is implemented to predict and express the  
performance of anaerobic digestion systems [21]. The kinetic  
analysis of anaerobic digestion can be accomplished using First  
Order Kinetic, the Logistic Function Model, and Modified  
1
018  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1017-1022  
FW and FW80 is also shown in Table 2. Carbohydrate and protein  
concentration was higher, as observed from FW80. Yeshanew et  
al., [17] also measured higher carbohydrate and protein content in  
thermally treated food waste. Carbohydrate is higher than protein  
for FW and FW80, similar to the observation by Ariunbaatar et  
al., [13].  
The characteristics of inoculum are also shown in Table 2. The  
pH obtained is 8.7. Vrieze et al., [40] stated that full-scale  
anaerobic digester used inoculums with pH ranging from 8.0-9.0.  
The TS and VS attained for this study are lower than what was  
observed by Ariunbaatar et al., [13]. The alkalinity observed for  
3
this study was 758.33mg/L as CaCO , which is lower than what  
was found in [41]. The protein concentration is much higher than  
the carbohydrate. The result shown here is similar to the result  
obtained by Ariunbaatar et al., [13].  
Figure 1: AMPTS II  
Table 2: Characteristic of FW, FW80, and inoculum (N=3)  
2
.3 Analytical methods  
Characteristics  
FW  
FW80  
Inoculum  
The method used to measure the characteristic of the substrate  
was stated in Table 1. The results were triplicate and calculated in  
mean values.  
pH  
7.2±0.1  
7.3±0.1  
8.7±0.1  
Total Solid (TS) (g/L)  
Volatile Solid (VS) (g/L) 143.9 ± 67.3 233.6 ± 27.9 11.18 ± 1.12  
198.5 ± 6.4 264.6 ± 39.7 20.82 ± 1.53  
Alkalinity (mgCaCO  
Chemical oxygen demand  
mg/L)  
3
/L)  
250 ± 117.9 250 ± 117.9 758.33 ± 11.79  
Table 1: Methods of characterization  
1399 ± 3.6 2317.3 ± 2.5 798±3.0  
(
Parameter  
COD  
Method of Measurement  
Hach™ 2011 procedure method  
References  
[18]  
Protein (mg/L)  
Carbohydrate (mg/L)  
108.5 ± 0.1 114.3 ± 0.4  
277.2 ± 0.1 279.7 ± 0.1  
94.89 ± 0.11  
279.73 ± 0.12  
8
000  
Protein  
Carbohydrate  
VS  
TS  
Alkalinity  
pH  
Lowry method  
[34]  
[35]  
[18]  
[18]  
[33]  
[34]  
3
.2 Methane Accumulation  
Figures 2 and 3 show the methane accumulation for 20-day  
Phenol-Sulphuric Acid  
Section 2540G (APHA 2005)  
Section 2540G (APHA 2005)  
Section 2320B (APHA 2005)  
pH meter  
assay, each for FW and FW80, respectively. For both substrates,  
the methane accumulation started to reach the plateau at day 15.  
The BMP assay was terminated at day 20 after the methane  
production became insignificant consistantly for several days.  
The net collection was higher for FW80, which the net collection  
for FW was lesser by 501.8ml as compared to the FW80.  
2
.4 Modified Gompertz Model (GM)  
GM was used to complement the result of data obtained from  
the BMP test [28]. The use of the GM equation is based on the  
premise that methane production is evidence of bacterial growth  
9
8
7
00.0  
00.0  
00.0  
[
36]. The lag (λ) phase in batch growth can be obtained from the  
GM equation.  
푅·푒  
푀 = 푃 · exp {−exp[ (  ) (휆 − 푡) + 1]  
(1)  
600.0  
5
4
3
2
00.0  
00.0  
00.0  
00.0  
NET  
where M is cumulative methane production (mL CH  
4
/g VS added),  
P is methane production potential (mL CH  
4
/g VS added), R is  
FW  
methane production rate (mL/g VS-d),  is lag phase (d), t is  
duration of the assay (d), and e is [exp(1) =2.7183].  
BLANK  
3
Results and Discussion  
100.0  
.0  
3
.1 Characteristics of untreated food waste (FW), thermally  
0
treated food waste (FW80) and inoculum  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20  
Days  
FW and FW80 underwent several testings to determine their  
characteristics. The results were tabulated in Table 2. The pH of  
FW and FW80 was 7.2 and 7.3. Saragih et al., [37] observed a pH  
of 7.0-8.5 for food waste and thermally treated food waste. The  
TS and VS values for FW80 were higher than FW. It is similar to  
the observation by Ma et al., [38]. The COD of FW80 was greater  
than FW, and this is similar to that observed by Pagliaccia et al.,  
Figure 2: Methane accumulation of FW for 20 days duration  
3
.3 Ultimate Methane Yield  
Table 3 shows the methane yield for FW and FW80. The  
ultimate methane yield for FW80 was about 1916.72 mlCH  
meanwhile for FW was about 1033.64 mlCH /gVS. The higher  
ultimate methane yield observed from this study was higher than  
the observation in Ariunbaatar et al., [13]. Besides, Seswoya et  
al., [31] found the higher methane yield for untreated food waste,  
4
/gVS,  
4
[
3
20]. The alkalinity was 250 ± 117.9 mgCaCO /L for both  
samples. Oliveira et al., [39] also reported the alkalinity of food  
waste which is lesser than 300 mg/L as CaCO  
The complex organic content (carbohydrate and protein) of  
3
.
4
which exceeded 1000 CH /gVS. Ariunbaatar et al., [13] and Jin  
1
019  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1017-1022  
et al., [19] also observed that the thermally treated food waste at  
[44]. Based on Xue et al., [45], a higher value of protein and  
carbohydrate results in higher methane production. Carbohydrate  
concentration is associated with a higher methane production  
8
0°C has a higher ultimate methane yield compared to the  
untreated food waste.  
[45].  
1
1
1
400.0  
200.0  
000.0  
3
.4 Modified Gompertz Model (GM)  
Table 4 tabulates the kinetic parameters for FW and FW80.  
The methane production rate for FW is lower than the methane  
production rate for FW80. Gandhi et al., [18] observed a similar  
observation where they reported that the lag phase of 0.5 and 0.02  
for untreated food waste and thermally treated food waste.  
Meanwhile, the lag phase observed in this study remained the  
same for both substrates. The difference between the laboratory  
and modeling is possible. The modeling data are lower compared  
to the experimental data similar with to what observed in Gandhi  
et al., [18].  
8
6
4
2
00.0  
00.0  
00.0  
00.0  
NET  
FW80  
BLANK  
Table 4: Comparison of the test result and modeling result of  
0
.0  
FW and FW80  
Modified  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20  
Days  
BMP Kinetic parameter  
Laboratory  
Gompertz  
993.40  
Figure 3: Methane accumulation of FW80 for 20 days duration  
Ultimate methane yield (mlCH  
4
/gVS) 1033.64  
Methane production rate  
FW  
408.47  
361.63  
The higher ultimate methane yield observed from thermally  
treated food waste (FW80) as compared to the untreated food  
waste (FW) was due to the improved bioavailability of FW80  
(mlCH /gVS/day)  
4
Lag phase (day)  
Ultimate methane yield (mlCH  
Methane production rate  
0.04  
/gVS) 1916.72  
0.00  
1857.18  
4
(Table 2). VS/TS ratio is referred to as the organic content [42].  
FW80  
462.84  
0.04  
394.09  
0.00  
(
mlCH /gVS/day)  
4
In this study, the VS/TS ratio of FW80 is 0.95, indicating that  
more organic presence in FW80. Guo et al., [43] differentiated the  
ultimate methane yield from the waste with different VS/TS ratio,  
and found that the waste with higher VS/TS ratio resulted in the  
higher methane yield.  
Lag phase (day)  
4
Conclusion  
Food waste that has undergone thermal pretreatment at 80°C  
improves bioavailability in term of higher total solids, volatile  
solids, chemical oxygen demand, protein, and also carbohydrates  
were observed. Thermal pretreatment support breaking the  
complex component in food waste hence preparing the food waste  
to be digested easily as well as improves the methane production.  
The net methane accumulation for thermally treated food waste  
Table 3: The methane yield (mlCH  
4
/gVS) for FW and FW80 for  
2
0 days duration  
Day  
0
FW  
0.00  
FW80  
0.00  
462.84  
816.98  
1
2
3
4
5
6
7
8
408.47  
668.22  
798.98  
855.93  
903.47  
945.17  
962.29  
965.85  
971.78  
987.63  
1002.37  
1018.22  
1025.34  
1031.36  
1035.25  
1033.90  
1033.64  
1033.64  
1033.64  
1033.64  
(FW80) was higher by 501.8ml as compared to the untreated food  
waste (FW). The increase of bioavailability in the food waste  
increased the ultimate methane yield and methane production rate  
as well. As expected, the kinetic parameters from the digestion of  
FW80 were higher, observed from laboratory data and modeling  
analysis. However, the modeling analysis consistently showed the  
lower value of each kinetic parameter, both for FW and FW80.  
1105.00  
1318.02  
1508.36  
1647.76  
1715.78  
1762.41  
1795.34  
1815.60  
1821.90  
1841.47  
1856.55  
1877.50  
1899.83  
1912.67  
1916.72  
1916.72  
1916.72  
1916.72  
9
1
1
1
1
1
1
1
1
1
1
2
0
1
2
3
4
5
6
7
8
9
0
Acknowledgment  
The authors wished to thank to Universiti Tun Hussein Onn  
Malaysia for the funding of this research through GPPS-H565,  
and MDR Grant-H489. We also want to congratulate Cenergi  
SEA Sdn. Bhd for their cooperation.  
Ethical issue  
The authors comply with the publication requirements that the  
submitted work is original and has not been published elsewhere  
in any language.  
Besides, the higher in COD has resulted in high methane  
production [44]. Thermal pretreatment enhanced the digestibility  
of protein in a short time hence improving the methane production  
Competing interests  
The authors declare that no conflict of interest would  
prejudice the impartiality of this scientific work.  
1
020  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1017-1022  
1
8
Gandhi, P., Paritosh, K., Pareek, N., Mathur, S., Lizasoain, J.,  
Gronauer, A., et al. Multicriteria decision model and thermal  
pretreatment of hotel food waste for robust output to biogas: Case  
study from city of Jaipur, India. BioMed Research International,  
2018; 1-13.  
References  
1
Bong, C. P. C., Goh, R. K. Y., Lim, J. S., Ho, W. S., Lee, C. T.,  
Hashim, H., et al. Towards low carbon society in Iskandar Malaysia:  
Implementation and feasibility of community organic waste  
composting. Journal of Environmental Management, 2017; 203,679–  
19 Jin, Y., Li, Y., & Li, J. Influence of thermal pretreatment on physical  
and chemical properties of kitchen waste and the efficiency of  
anaerobic digestion. Journal of Environmental Management, 2016;  
180, 291300.  
20 Pagliaccia, P., Gallipoli, A., Gianico, A., Gironi, F., Montecchio, D.,  
Pastore, C., et al. Variability of food waste chemical composition:  
Impact of thermal pre-treatment on lignocellulosic matrix and  
anaerobic biodegradability. Journal of Environmental Management,  
2019; 236, 100107.  
6
87.  
Dinie, M., Samsudin, M., Teknologi, U., Mat, M., & Universiti, D.  
2016). Municipal Solid Waste Management in Malaysiaꢀ: Current  
Practices, Challenges and Prospects Jurnal Teknologi Full paper,  
016 June; 95101.  
Xiao, B., Qin, Y., Zhang, W., Wu, J., Qiang, H., Liu, J., et al.  
Temperature-phased anaerobic digestion of food waste:  
2
3
(
2
A
comparison with single-stage digestions based on performance and  
energy balance. Bioresource Technology, 2018; 249, 826834.  
Scherhaufer, S., Moates, G., Hartikainen, H., Waldron, K., &  
Obersteiner, G. Environmental.impacts of food waste in Europe.  
Waste Management, 2018; 77, 98113.  
Melikoglu, M., Lin, C. S. K., & Webb, C. Analyzing global food  
waste problem: Pinpointing the facts and estimating the energy  
content. Central European Journal of Engineering, 2013; 3(2), 157–  
21 Chu, C. F., Li, Y. Y., Xu, K. Q., Ebie, Y., Inamori, Y., & Kong, H.  
N. A pH and temperature-phased two-stage process for hydrogen and  
methane production from food waste. International Journal of  
Hydrogen Energy, 2008; 33(18), 47394746.  
22 Pramanik, S. K., Suja, F. B., Zain, S. M., & Pramanik, B. K. The  
anaerobic digestion process of biogas production from food waste:  
Prospects and constraints. Bioresource Technology Reports, 2019  
July; 100310.  
4
5
1
64.  
23 Amiri, L., Abdoli, M. A., Gitipour, S., & Madadian, E. The effects of  
co-substrate and thermal pretreatment on anaerobic digestion  
performance. Environmental Technology (United Kingdom), 2017;  
38(18), 23522361.  
24 De la Rubia, M. A., Villamil, J. A., Rodriguez, J. J., Borja, R., &  
Mohedano, A. F. Mesophilic anaerobic co-digestion of the organic  
fraction of municipal solid waste with the liquid fraction from  
hydrothermal carbonization of sewage sludge. Waste Management,  
2018; 76, 315322.  
6
7
Peng, W., & Pivato, A. Sustainable Management of Digestate from  
the Organic Fraction of Municipal Solid Waste and Food Waste  
Under the Concepts of Back to Earth Alternatives and Circular  
Economy. Waste and Biomass Valorization, 2017; 0(0), 117.  
Li, L., He, Q., Ma, Y., Wang, X., & Peng, X. A mesophilic anaerobic  
digester for treating food waste: Process stability and microbial  
community analysis using pyrosequencing. Microbial Cell Factories,  
2
016; 15(1), 111.  
8
9
1
1
1
Ivanovs, K., Spalvins, K., & Blumberga, D. Approach for modelling  
anaerobic digestion processes of fish waste. Energy Procedia, 2018;  
25 Deepanraj, B., Sivasubramanian, V., & Jayaraj, S. Effect of substrate  
pretreatment on biogas production through anaerobic digestion of  
food waste. International Journal of Hydrogen Energy, 2017; 42(42),  
2652226528.  
26 Zhang, J., Lv, C., Tong, J., Liu, J., Liu, J., Yu, D., et al. Optimization  
and microbial community analysis of anaerobic co-digestion of food  
waste and sewage sludge based on microwave pretreatment.  
Bioresource Technology, 2016; 200, 253261.  
27 Lou, X. F., Nair, J., & Ho, G. Effects of volumetric dilution on  
anaerobic digestion of food waste. Journal of Renewable and  
Sustainable Energy, 2012; 4(6), 111.  
28 Silva, F. M. S., Mahler, C. F., Oliveira, L. B., & Bassin, J. P.  
Hydrogen and methane production in a two-stage anaerobic digestion  
system by co-digestion of food waste, sewage sludge and glycerol.  
Waste Management, 2018; 76, 339349.  
29 Li, Y., Jin, Y., Borrion, A., Li, H., & Li, J. Effects of organic  
composition on the anaerobic biodegradability of food waste.  
Bioresource Technology, 2017; 243, 836845.  
30 Li, J., Zhang, W., Li, X., Ye, T., Gan, Y., Zhang, A., Liu, Y.  
Production of lactic acid from thermal pretreated food waste through  
the fermentation of waste activated sludge: Effects of substrate and  
thermal pretreatment temperature. Bioresource Technology, 2018;  
247, 890-896.  
31 Seswoya, R., Abd Karim, A. T., Darnak, N. A., & Abd Rahman, M.  
F. Methane Potential from the Digestion of Food Waste in a Batch  
Reactor, International Journal of Engineering & Technology, 2018;  
7, 3639.  
32 Lü, F., Xu, X., Shao, L., & He, P. Importance of storage time in  
mesophilic anaerobic digestion of food waste. Journal of  
Environmental Sciences (China), 2015; 45, 7683.  
1
47, 390396.  
Fricke, K., Santen, H., & Wallmann, R. Comparison of selected  
aerobic and anaerobic procedures for MSW treatment. Waste  
Management, 2005; 25(8), 799810.  
Veluchamy, C., & Kalamdhad, A. S. Enhanced methane production  
and its kinetics model of thermally pretreated lignocellulose waste  
material. Bioresource Technology, 2017; 241, 19.  
0
1
2
Xu, F., Li, Y., Ge, X., Yang, L., & Li, Y. Anaerobic digestion of food  
waste Challenges and opportunities. Bioresource Technology, 2018;  
2
47, 10471058.  
Khairuddin, N., Abd Manaf, L., Hassan, M. A., Wan Abdul Karim,  
W. A., & Halimoon, N. Biogas Harvesting from Organic Fraction of  
Municipal Solid Waste as a Renewable Energy Resource in Malaysia:  
A Review. Polish Journal of Environmental Studies, 2015; 24,1477–  
1
490.  
Ariunbaatar, J., Panico, A., Frunzo, L., Esposito, G., Lens, P. N. L.,  
Pirozzi, F. Enhanced anaerobic digestion of food waste by thermal  
1
3
&
and ozonation pretreatment methods. Journal of Environmental  
Management, 2014; 146, 142149.  
Tampio, E., Ervasti, S., Paavola, T., Heaven, S., Banks, C., & Rintala,  
J. Anaerobic digestion of autoclaved and untreated food waste. Waste  
Management, 2014; 34(2), 370377.  
1
1
4
5
Ferreira, L. C., Donoso-Bravo, A., Nilsen, P. J., Fdz-Polanco, F., &  
Pérez-Elvira, S. I. Influence of thermal pretreatment on the  
biochemical methane potential of wheat straw. Bioresource  
Technology, 2013; 143, 251257.  
Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.  
L., Guwy, A. J., et al. Defining the biomethane potential (BMP) of  
solid organic wastes and energy crops: A proposed protocol for batch  
assays. Water Science and Technology, 2009; 59(5), 927934.  
Yeshanew, M. M., Frunzo, L., Lens, P. N. L., Pirozzi, F., & Esposito,  
G. Mass Loss Controlled Thermal Pretreatment System to Assess the  
Effects of Pretreatment Temperature on Organic Matter  
Solubilization and Methane Yield from Food Waste. Frontiers in  
Environmental Science, 2016; 4, 113.  
1
1
6
7
33 Cabbai, V., Ballico, M., Aneggi, E., & Goi, D. BMP tests of source  
selected OFMSW to evaluate anaerobic co-digestion with sewage  
sludge. Waste Management, 2013; 33(7), 16261632.  
34 Paudel, S. R., Banjara, S. P., Choi, O. K., Park, K. Y., Kim, Y. M., &  
Lee, J. W. Pretreatment of agricultural biomass for anaerobic  
digestion: Current state and challenges. Bioresource Technology,  
2017; 245, 11941205.  
1
021  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1017-1022  
3
5
Krishna, D., & Kalamdhad, A. S. Pre-treatment and anaerobic  
digestion of food waste for high rate methane production A review.  
Journal of Environmental Chemical Engineering, 2014; 2(3), 1821–  
1
830.  
3
3
6
7
Qiao, W., Wang, W., Zhu, C. P., & Zhang, Z. Z. Biogas recovery  
from microwave heated sludge by anaerobic digestion. Science China  
Technological Sciences, 2010; 53(1), 144149.  
Saragih, F. N. A., Priadi, C. R., Adityosulindro, S., Abdillah, A., &  
Islami, B. B. The effectiveness of anaerobic digestion process by  
thermal pre-treatment on food waste as a substrate. Earth and  
Environmental Science, 2019; 251, 012014.  
3
3
8
9
Ma, J., Duong, T. H., Smits, M., Verstraete, W., & Carballa, M.  
Enhanced biomethanation of kitchen waste by different pre-  
treatments. Bioresource Technology, 2011; 102(2), 592599.  
Oliveira, L. R. G. De., Derovil, A., Filho, S., Vasconcelos, K. C.,  
Lucena, T. V. De. Methanization potential of anaerobic biodigestion  
of solid food waste. Revista Brasileira de Engenharia Agrícola e  
Ambiental, 2018; 22(1), 6973.  
4
4
0
1
De Vrieze, J., Raport, L., Willems, B., Verbrugge, S., Volcke, E.,  
Meers, E., Boon, N. Inoculum selection influences the biochemical  
methane potential of agro-industrial substrates. Microbial  
Biotechnology, 2015; 8(5), 776786.  
Facchin, V., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F., &  
Bolzonella, D. Effect of trace element supplementation on the  
mesophilic anaerobic digestion of foodwaste in batch trials: The  
influence of inoculum origin. Biochemical Engineering Journal,  
2
013; 70, 7177.  
4
2
Seswoya, R., Yang, L. K., Fen, A. S., & Sulaiman, S. M. Mesophilic  
anaerobic Co-Digestion of fruit and vegetable waste and domestic  
primary sewage sludge: Performance and kinetic. International  
Journal of Integrated Engineering, 2019; 11(6), 268273.  
4
4
4
3
4
5
Guo, J., Wang, W., Liu, X., Lian, S., & Zheng, L. Effects of thermal  
pre-treatment on anaerobic co-digestion of municipal biowastes at  
high organic loading rate. Chemosphere, 2014; 101, 6670.  
Zhang, C., Su, H., Baeyens, J., & Tan, T. Reviewing the anaerobic  
digestion of food waste for biogas production. Renewable and  
Sustainable Energy Reviews, 2014; 38, 383392.  
Xue, S., Zhao, N., Song, J., & Wang, X. Interactive effects of  
chemical composition of food waste during anaerobic co-digestion  
under thermophilic temperature. Sustainability (Switzerland), 2019;  
1
1(10), 115.  
1
022