2020, Volume 8, Issue 3, Pages: 988-998  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Mitigation of Environmental Degradation in  
Merapi Volcano Disaster-Prone Area: A Case  
Study of Klaten District  
3
1
2
3
3
Widodo Brontowiyono* , Lupiyanto R. , J. Hamidin , Julianto E. A , Widyastuti A ,  
3
4
Harmawan F. and Supriyo  
1
Department of Environmental Engineering, Universitas Islam Indonesia (UII), Yogyakarta, Indonesia  
2
Center for Environmental Study, Universitas Islam Indonesia, Yogyakarta  
3
Karunia Sejahtera, Yogyakarta, INDONESIA  
4
Dept. of Agrotechnology, University of Pembangunan Nasional “Veteran” Yogyakarta Doctor Candidate, Faculty of Economy, UII  
Received: 06/01/2020 Accepted: 13/04/2020 Published: 20/09/2020  
Abstract  
Eruptions of Mount Merapi have provided economic benefits, including increased soil fertility and abundant sand and stone. As time  
goes by, mining has been spreading to yards, getting uncontrolled and disregarding rules as well as good management. As a result,  
environmental degradation, particularly land criticality, is highly likely to occur. This study was conducted to identify the levels of land  
criticality in the slope of Merapi. The output was recommendations for land rehabilitation to achieve sustainable development. The  
results showed that the study area with highly critical land reached an extent of 696.43 Ha or 4.48%. Critical, medium, and potentially  
critical lands covered an area of 133.02 Ha or 0.85%, 80.35 Ha or 0.52 %, and 527.17 Ha, respectively. Meanwhile, uncritical land had  
the largest extent, reaching 14.123 Ha. Recommendations for critical lands include vegetation and civil engineering methods.  
Keywords: Mitigation, Environmental degradation, Critical land, Merapi Volcano  
Introduction1  
distribution and extent of critical lands and to provide mitigation  
and recommendation for land rehabilitation in the scope of  
regional development according to the criticality map  
1
Indonesia is an archipelago with 129 active volcanoes and  
approximately 500 non-active volcanoes [1]. One of the most  
active volcanoes in Indonesia is Merapi Volcano. Its latest  
eruption in 2010 released around 100 million cubic meters of  
volcanic materials [2]. Eruptions of Merapi pose disaster risks and  
impacts while at the same time providing considerable economic  
benefits. The positive impacts of Merapi post-eruption include  
increasing soil fertility and an abundance of sand and stone  
materials. The area around Merapi Volcano is a fertile region for  
agriculture. A study by [3] showed that the carrying capacity of  
agricultural land in disaster-prone area III of Merapi Volcano is  
extremely high. Another business activity developing in the  
region is sand and stone mining.  
2 Material and methods  
2.1 Data collection methods  
Data was gathered using two methods, including: (1)  
Secondary Data Collection: Secondary data was obtained from a  
range of previous research, studies, and reports as well as from  
the reports of related agencies and existing regional regulations.  
Such method involved a literature study and institutional research;  
(2) Primary Data Collection: Primary data was collected through  
field observation and interview. The results consisted of  
documents, interview transcripts, and location plotting from GPS.  
With the course of time, sand and stone in the river become  
less available, making miners expand their activity to house yards.  
Mining activities become uncontrollable without regulations or  
good management. Consequently, the area is prone to  
environmental degradation in the form of critical land that makes  
a negative impact on fertile agricultural land.  
Based on the abovementioned empirical conditions, this study  
is relevant to identify the criticality levels of Merapi slope regions.  
As the research output, land rehabilitation is recommended to  
achieve sustainable development. Identified critical level and  
rehabilitation recommendation of land used Digital Soil Mapping  
2.2 Data Analysis Methods  
The analysis methods to determine the criticality levels,  
distribution, and land area referred to the regulation from the  
Directorate General of Watershed Management and Social  
Forestry of the Ministry of Forestry No. P.4/V-SET/2013  
concerning Technical Guidelines for Preparing Critical Land  
Spatial Data. Classification of critical lands is based on the total  
score of critical land parameters shown in Table 1. The following  
criteria show criticality levels in agricultural land based on the  
research area (Table 2). Analysis of recommendations for land  
rehabilitation referred to the Government Regulation No. 76 Year  
2008 concerning Forest Reclamation and Rehabilitation as well  
as Regulation of Forestry Minister of the Republic of Indonesia  
No. P.32/MENHUT-II/2009 concerning Guidelines for Preparing  
(DSP) defined as the creation and population of spatial soil  
information systems by the use of field and laboratory  
observational methods coupled with spatial and non-spatial soil  
inference systems” [4]. This study aims to map and identify the  
Corresponding author: Widodo Brontowiyono, Department of Environmental Engineering, Universitas Islam Indonesia (UII),  
Yogyakarta, Indonesia. E-mail: widodo.bronto@uii.ac.id, lupy.algiri@gmail.com, pt.karuniakons@gmail.com.  
9
88  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: xxx-xxx  
Technical Plan of Land and Forest Rehabilitation in Watershed  
Area (RTk RHL-DAS).  
perspective of agriculture, critical land is associated with  
production whereas the perspective of forestry correlates critical  
land to its function as a medium for water management, forest  
production, and protection from flood and/or downstream  
sedimentation [9].  
Table 1: Classification of Critical Lands Based on the Total  
Score  
Total Score in  
Land degradation is defined as the process of temporary as  
well as permanent decrease in land productivity characterized by  
decreasing physical, chemical, and biological properties. Critical  
land is one of the forms of land degradation [10]. In general,  
critical land is among the indicators of environmental degradation  
as an impact of different types of imprudent land use [11]. The  
main characteristics of critical land include barrenness, aridity,  
rocks emanating on the ground, and areas generally located in hilly  
or steep sloping topography [12, 13]. Low productivity is  
characterized by high acidity, low nutrient content (P, K, Ca, and  
Mg), low cation exchange capacity, base saturation, and organic  
content as well as high levels of Al and Mn that can poison plants  
and are sensitive to erosion. In addition, critical land is also  
generally characterized by reed vegetation with a relatively low  
soil pH of 4.8 to 5.2 due to high intensity of soil washing and large  
quantity of rhizomes that become mechanical barriers in plant  
cultivation [14].  
According to United Nations University Institute of Advanced  
Studies [15], degradation of natural resources reduces the  
productivity. [16] emphasized the development of high yielding  
crop varieties with little attention given to the ecology on which  
the plant survival. He suggested that crop yields in Africa could be  
tripled through proper management of the soil environment. [17]  
also reported that long-term fertilization effects on crop yield and  
soil fertility changes. Studies showed that rice productivity was  
strongly influenced by soil texture, nutrient concentration and  
organic matter [18]. Paddy soils are naturally heterogeneous.  
Complex interrelationships existing between physical, chemical  
and biological soil properties have long been recognized.  
Protected  
Criticality  
Area outside Level  
Reserved  
Forest Area  
Cultivation  
Area  
the Forest  
Highly  
110-200  
1
1
2
20-180  
81-270  
71-360  
115-200  
201-275  
276-350  
critical  
201-275  
276-350  
Critical  
Rather  
Critical  
Potentially  
Critical  
3
4
61-450  
51-500  
351-425  
426-500  
351-425  
426-500  
Uncritical  
3
Literature Review  
Critical land is defined as land with changes in its use and  
ability that eventually endanger the hydrological function, hydro-  
orological function, agricultural production, settlements, socio-  
economic life, and environment [5]. Critical land is currently  
unproductive land or soil due to land use and management that  
does not consider the requirements of soil and water conservation,  
leading to damage, loss or reduced function to predetermined or  
expected limits [6].  
Critical land has to be controlled due to increasing food  
demand. According to Food and Agriculture Organization (FAO),  
the global rice requirements in 2025 will be 800 million tons (MT)  
while the present production is 600 MT and an additional 200 MT  
still needs to be produced by increasing productivity per hectare to  
meet the future requirements [7]. Suitable rice based cropping has  
to be evaluated to assess the stability in production [8].  
The definition of critical land varies between one institution  
and another due to different perspectives of each user. From the  
Table 2: Criteria of Criticality in Agricultural Land  
Criteria (%  
weight)  
No.  
Class  
Percentage/Description  
Score  
Note  
5
1
2
. Extremely High  
. High  
>80%  
Assessed based on the  
ratio to optimum  
general commodity  
production in a  
60-80%  
41-60%  
21-40%  
<20%  
Productivity *)  
4
3
2
1
5
4
3
1
3. Medium  
4
5
(30)  
. Low  
. Extremely Low  
traditional management  
1
2
. Leveled  
. Sloping  
<8%  
8-15%  
16-25%  
26-40%  
>40%  
2
Slope (20)  
3. Medium Steep  
4
5
. Steep  
. Extremely Steep  
2
1
5
4
3
2
5
1
2
3
4
. Light  
0-I  
II  
III  
IV  
. Medium  
. Intense  
. Severe  
Calculated using USLE  
formula  
3
4
Erosion (20)  
Management  
-Application of soil conservation technology  
1
. Good  
Complete and in accordance with technical guidelines  
- Incomplete or unmaintained  
2. Average  
. Poor  
(30)  
3
1
3
-
Not available  
9
89  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 988-998  
Figure 1: Map of Land Use in the Research Area  
9
90  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: xxx-xxx  
Their responses along with management-induced soil changes,  
like tillage, liming and fertilizer amendments result in soil  
variation within cropped fields [19,20,21], and thus, as a surrogate  
measure of more costly soil chemical and physical measurements  
that directly affect plant growth and yield [22].  
including leveled bench terrace, reverse back bench terrace,  
sloping bench terrace, orchard terrace, and intermittent terrace).  
Area with >40% slope gradient accompanied by signs of  
landslides, including an extremely deep sand mining area, is  
recommended to use the vegetative method of organic fertilizer or  
permanent vegetation (Figure 6).  
For critical lands in a river cliff area, rehabilitation can be  
done through civil engineering with flood control and/or  
riverbank protection as well as through vegetation by planting  
grass. Rehabilitation of an area with slopes and signs of ravine  
through civil engineering can be done by clogging ravines and  
through vegetation by grass planting.  
4
Analysis and results  
According to the spatial planning of Klaten District, the  
research area is intended for farming. Therefore, the identification  
of critical land refers to the guidelines for agricultural land in the  
Regulation of the Minister of Forestry No. P.32/Menhut-II/2009.  
Factors that determine the criticality include land cover, gradient  
of slope, erosion, and productivity.  
Meanwhile, critical lands in a settlement area with sand  
mining are recommended to use the vegetative method of grass  
stripes and civil engineering method of controlling erosion and  
runoff, adding soak pits/biopore holes and absorption wells, as  
well as repairing drop structure drains. Kemalang Sub-district is  
given the most technical recommendations, indicating the critical  
condition compared to other sub-districts, including  
Manisrenggo, Karangnongko, and Jatinom Sub-districts. The  
Villages of Tegalmulyo, Balerante, Sidorejo and Tlogowatu are  
located very near to the peak of Merapi, and these villages have  
the largest number of critical lands. The path of critical lands  
moves from the north to the south following the river flow, and  
most of them are located along the left and right sides of the river  
although some of them exist near settlements or road access.  
In the Sub-district of Karangnongko, several spots of critical land  
are also found, particularly in Gemampir and other villages  
around. Tibayan, Temuireng, and other villages around Jatinom  
Sub-district also have spots of critical land. A detailed observation  
proves that the location of critical lands is either near the river or  
close to road access, which is probably related to easier access to  
transportation (transporting sand from the mining). Civil  
engineering recommendation for the lower area is not as  
challenging as for the upper area of a sub-district that must  
combine several recommendations (Figure 7). Therefore,  
recommendation is determined based on the critical levels.  
According to the identification results, highly critical and critical  
lands include fields, cemeteries, stream buffers, and moors. The  
recommendations for critical land rehabilitation based on regional  
spatial planning are as follows.  
4
.1 Land Cover  
Land cover was obtained from land use analysis based on the  
Landsat Imagery dated 8 August 2018. Figure 1 shows the spatial  
display of land use in the study area.  
4
.2. Gradient of Slope  
Spatial data of slope gradient was prepared by processing the  
map of area elevations (DEM) obtained from the National  
Geospatial Information Agency. The following Figure 2 shows  
the elevation map of the research area.  
4
.4 Productivity  
Productivity was assessed based on the ratio to optimum  
general commodity production in a traditional management. The  
dominant commodities consisted of rice, corn, chili, and durian.  
Data was obtained through in-depth interviews with PPL  
(Agriculture Extension Agent), and the analysis result is  
presented in the following map (Figure 4).  
4
.5 Land Criticality Level  
Using the four factor maps, overlay was performed to  
determine land criticality. As previously described, criticality  
criteria referred to agricultural production area, and the results are  
as follows. The research area with highly critical lands reached an  
extent of 696.43 Ha or 4.48% of the total research area. The  
distribution included 24 villages in 3 sub-districts (Kemalang,  
Karangnongko, and Jatinom). Critical lands had 133.02 Ha area  
or 0.85% of the total research area with the distribution in 7  
villages of Kemalang Sub-district. Meanwhile, 80.35 Ha or 0.52%  
of the total research area had rather critical lands distributed in 23  
villages of all sub-districts (Kemalang, Karangnongko,  
Manisrenggo, and Jatinom). Land with potential criticality  
reached 527.17 Ha or 3.39% of the total research area that covered  
5 Conclusion  
The research results showed that all categories of land  
criticality are located in the research area with the following  
detail:  
1. Highly critical land has 696.43 Ha area or 4.48% of total  
research area distributed in 24 villages of 3 sub-districts.  
2. Critical land is 133.02 Ha in extent or 0.85% of total research  
area located in 7 villages of Kemalang Sub-district.  
3. Rather critical land has 80.35 Ha area or 0.52% of the total  
research area spread in 23 villages of all sub-districts.  
7
villages in 2 sub-districts (Kemalang and Karangnongko).  
Finally, the uncritical lands had the largest extent, reaching  
4.123 Ha or 90.77% of the total research area covering 61  
villages in all sub-districts. The spatial map is presented in Figure  
1
5
.
4
.
Potentially critical land reaches an extent of 527.17 Ha or  
3.39% of total research area covering 6 villages in 2 sub-  
districts.  
4
.3 Erosion Hazard Level  
Erosion Hazard Level is normally calculated by comparing  
the erosion level of a land unit with its effective soil depth. In this  
case, erosion level was calculated by assessing average annual  
soil loss due to sheet erosion and rill erosion using Universal Soil  
Loss Equation (USLE) formula (Figure 3).  
5. Uncritical land has the largest area with 14.123 Ha or 90.77%  
of total research area distributed in 61 villages of all sub-  
districts.  
Critical land rehabilitation through civil engineering and  
vegetation methods can be recommended. In general, the selected  
vegetation should optimize the available in-situ vegetation while  
the recommended civil engineering method is the terracing  
system (bench terrace, including leveled bench terrace, reverse  
back bench terrace, sloping bench terrace, orchard terrace, and  
intermittent terrace).  
4
.6 Recommendation for Land Rehabilitation  
It is recommended that the aforementioned critical lands be  
given rehabilitation through vegetation and civil engineering. In  
general, the choice of vegetation is expected to originate from the  
existing in-situ vegetation while civil engineering general  
recommendations can use the terracing system (bench terrace,  
9
91  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 988-998  
Figure 2: Map of Slope Gradient of the Research Area  
9
92  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: xxx-xxx  
Figure 3: Map of Soil Erosion in the Research Area  
9
93  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 988-998  
9
94  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: xxx-xxx  
Figure 4: Map of Productivity in the Research Area  
Figure 5: Map of Land Criticality in the Research Area  
9
95  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 988-998  
Figure 6: Map of Recommendations for Land Rehabilitation Using Vegetative Methods  
9
96  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: xxx-xxx  
Figure 7: Map of Recommendations for Land Rehabilitation Using Civil Engineering Methods  
9
97  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 988-998  
Table 3: Recommendation for Critical Land Rehabilitation  
Spatial Plan  
Field  
Recommendation  
Migrate to or search for uncritical lands  
Cemetery  
Migrate to (by considering local socio-cultural condition) or search for uncritical lands  
Return stream buffers to their function as river protection. In a river without embankments, the distance of 3-20  
meters can only be used for bridges, gas pipes, and power cables. Other constructions, including residential buildings  
or business sites (such as sand mining) are forbidden. In the area of former extremely deep sand mining (>40m)  
terraces can be built for easier access downwards as well as for soil and water conservation. Vetiver grass can be  
planted at the initial stage, and when the environmental condition has improved, other vegetation with high economic  
benefits can be introduced, such as corn and chili intercropped with perennials, for example durian, jackfruit, or  
avocado.  
Stream buffer  
In general, suitable seasonal plants with a dense crown and economic value can be selected, terracing can be built,  
and planting surrounding the slope can be done. From highly critical lands, several characteristics will appear, for  
example, the presence of river cliffs and ravines for which vegetative recommendation can be executed by planting  
grass, and in potential landslide area, the vegetative recommendation is the use of organic fertilizers, permanent  
vegetation including industrial plants, plantation, protected forest park, community forests, reserved forests, and  
tourism forests. Meanwhile, the civil engineering recommendations can be done by constructing river embankments,  
clogging ravines, (or if possible, ravines can be turned into reservoirs for irrigation water reserves during the dry  
season). The area of former extremely deep sand mining (>40m) can be given terraces for easier downward access  
and also for conservation of soil and water. At the initial stage, Vetiver grass can be planted, and for improved  
environmental condition, other vegetation of high economic value can also be planted, such as corn and chili  
intercropped with perennials, such as durian, jackfruit, or avocado.  
Moor  
Vegetative recommendation for an area with >40% slope  
gradient and signs of landslides, such as extremely deep sand  
mining area, is the use of organic fertilizer and permanent  
vegetation.  
Penerapan Teknologi (Mineral Resources Technology Center- Board  
for Technology Research and Implementation). Jakarta. 2008  
Prawira, A.Y., Wikantika, K. and Hadi, F. Analisis Lahan Kritis di  
Kota Bandung Utara Menggunakan Open Source GRASS (Bandung  
Critical Land Analysis by Using GRASS), Proceeding PIT MAPIN  
XIV. Bogor. 2005  
Herdiana, D. Identifikasi Lahan Kritis dalam Kaitannya dengan  
Penataan Ruang dan Kegiatan Rehabilitasi Lahan di Kabupaten  
Sumedang (Critical Land Analysis related to Spatial Planning in  
Sumedang). Unpublished Thesis. Sekolah Pasca Sarjana Institut  
Pertanian Bogor (Bogor Agriculture University). Bogor. 2008  
1
1
2
3
Aknowledgment  
It is appreciated to the Environmental and Forestry Agency of  
Klaten District for supporting the research.  
References  
14 Balai Pengelolaan DAS Tondano. Data Spasial Lahan Kritis  
Kabupaten Kepulauan Sangihe (Critical Land Spatial Data in  
Sangihe), Manado: Balai Pengelolaan DAS Tondano (Tondano River  
Basin Management Board). 2011  
15 UNU-IAS. Environment for Africa Development: A Sustainable  
Future through Science. 2008  
16 Sanchez P A. Tripling crop yields in tropical Africa. Nature Geo-  
Science 3. 2010: 299-300  
17 Ladha J K. How extensive are yield decline in long-term rice wheat  
experiments in Asia? Field Crops Research 82. 2003: 159-80.  
1
2
3
Kaswanda. Penginderaan Jauh dalam Menunjang Pemantauan  
Gunungapi di Indonesia (Remote Sensing for Indonesia Volcano  
Monitoring), Proceeding IIPRS. 1992  
BNPB., Laporan Harian Tanggap Darurat Gunung Merapi  
(Emergency Daily Report of Merapi): 6 November 2010 - 24.00,  
Jakarta.  
Lupiyanto, Ribut, Daya Dukung Lingkungan Kawasan Rawan  
Bencana III Gunungapi Merapi (Environmental Carrying Capacity  
on Merapi Disaster Prone III), unpublished theses, Yogyakarta:  
Faculty of Geography, Gadjah Mada University. 2005  
Lagacherie, P. Mc Bratney, A.B., Voltz, M. (Eds.), Digital Soil  
Mapping, an introductory perspective. Developments in soil science,  
vol. 31.2006. Amsterdam: Elsevier, pp. 3-24.  
18 Aminuddin  
B
Y, Zulkafli I, Abd Razak H, Abdul  
4
5
6
Munir J and Abdul Rahim A. Mapping soil and nutrient variations for  
precise fertilizer management in rice farm. Poster paper, Modern rice  
farming, Alor Setar. 2003  
Puslittanak. Panduan Pemetaan Lahan Kritis (Critical Land  
Mapping Guidelines), Bogor: Pusat Penelitian Tanah dan Agroklimat  
19 Baucer A and Black A L. Quantification of the effect of soil organic  
matter content on soil productivity. Soil Science Society of America  
Journal 58. 1994:185-93.  
20 Olson G L, McQuaid B G, Easterling K N and Scheyer J M.  
Quantifying soil condition and productivity in Nebraska. Publ. 49.  
SSSA, Madison, WI. 1996: pp 357-69  
(Center for Agro-Climate and Soil Research). 1997  
Romenah, Eko Tri Rahardjo dan Asih Priati. Lahan Potensial dan  
Lahan Kritis (Potential and Critical Land), Yogyakarta: Faculty of  
Geography, Gadjah Mada University. 2010  
7
8
9
Swaminathan M S. An evergreen revolution. Crop Science 46 (5).  
21 Gardner  
practices  
J
C
and Clancy  
on soil quality  
and Jones (eds.). SSSA Spec. Publ. 49.  
S
A. Impact of farming  
in North Dakhoda.  
2
006: 2293-2303.  
Kumpawat B S. Production potential and economics of different crop  
sequences. Indian Journal of Agronomy 46 (3). 2001: 421-4  
Didu MS, , Analisis Posisi dan Peran Lembaga Serta Kebijakan  
dalam Proses Pembentukan Lahan Kritis (Analysis of Policy and  
Institution Role for Creating Critical Land), Jurnal Teknologi  
Lingkungan. Bogor. 2 (1). 2001: 93-105  
Doran  
J
W
A J  
Madison, WI. 1996: pp 337-43.  
22 Jaynes B. 1996. Improved soil mapping using  
D
electromagnetic induction surveys. In Robert et al. (eds.) Proceeding  
International Conference on Precision Agriculture, 3rd, Minneapolis,  
MN. 23-26 June 1996: pp 169-79.  
1
1
0
1
Dariah, A. Erosi dan Degradasi Lahan Kering di Indonesia (Erosion  
and Dry Land Degradation in Indonesia), Bogor: Balittanah-Litbang  
Deptan. 2004  
Nugroho, S.P. and Prayogo, T. Penerapan SIG untuk Penyusunan dan  
Analisis Lahan Kritis pada Satuan Wilayah Pengelolaan DAS Agam  
Kuantan, Provinsi Sumatera Barat (Critical Land Analysis based on  
GIS). Pusat Teknologi Sumberdaya Mineral - Badan Pengkajian dan  
9
98