Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1191-1195  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/8(3)1195  
Modeling of Adsorption Isotherms of Caffeine onto  
Groundnut Shell as a Low Cost Adsorbent  
Abdoulaye Demba N’diaye 1 * and Mohamed Sid’Ahmed Kankou1  
,2  
1
Unité de Recherche Eau, Pollution et Environnement, Département de Chimie, Faculté des Sciences et Technique, Université de Nouakchott Al Aasriya,  
BP 880, Nouakchott, Mauritanie  
2
Laboratoire de Chimie, Service de Toxicologie et de Contrôle de Qualité, Institut National de Recherches en Santé Publique, BP 695, Nouakchott,  
Mauritanie  
Received: 29/06/2020  
Accepted: 05/08/2020  
Published: 20/09/2020  
Abstract  
Caffeine is a chemical compound that has been detected in the environment and belongs to some of the most popular emerging pollutants  
that may cause serious environmental and human health problems. In this study, the adsorption of caffeine on groundnut shell as low cost  
adsorbent was investigated using the batch equilibrium method. Three adsorption isotherms namely the Langmuir, Freundlich and Redlich–  
Peterson isotherms in their non-linear forms were applied to the adsorption equilibrium data. Both the Langmuir and RedlichPeterson models  
were found to fit the adsorption isotherm data well. The retention of caffeine on the groundnut shell showed a relatively significant adsorption  
-
1
with a maximal quantity of 4.21 mg g . The present study showed that the powdered groundnut shell is a promising and alternative adsorbent  
for the removal of caffeine from aqueous solutions.  
Keywords: Caffeine, Groundnut shell, Adsorbent, Isotherms  
1
Introduction  
adsorbents are preferred for their biodegradable, non-toxic nature,  
low commercial value and highly cost-effective nature. In order  
to decrease the cost of treatment and expand its use in wastewater  
treatment, we have used groundnut shell considered as solid waste  
of agriculture. Groundnut is cultivated in over 100 nations around  
the world. Main producers are China, India, Nigeria, Senegal and  
Sudan [16].  
The aim of this study was to describe the modeling of  
adsorption isotherms of caffeine from aqueous solutions using  
groundnut shell as a low cost adsorbent. Three adsorption  
isotherms such as the Langmuir, Freundlich and Redlich–  
Peterson isotherms in their non-linear forms were applied to the  
equilibrium data of adsorption of caffeine by groundnut shell.  
1
Caffeine (1, 3, 7-Trimethyl-3,7-dihydro-1H-purin-2,6-dion)  
is a methylxanthine alkaloid with chemical formula C  
1]. Caffeine acts as psychostimulant and analeptic [2]. Many  
8
10 4 2  
H N O  
[
drugs contain caffeine: analgesics, antihistamines, diet pills, cold  
remedies, and stimulants of psychophysical activity. A potentially  
toxic dose is considered to be above 10 mg kg [3]. Caffeine has  
high water solubility and low octanolwater partition  
-
1
a
coefficient. Due to the low efficiency of conventional wastewater  
treatment process, caffeine has been detected in many surface  
water and ground water [4; 5]. Several methods have been applied  
for treatment of pharmaceutical products like photocatalytic  
degradation [6], micro extraction [7], oxidation [8],  
biodegradation [9], chlorination [10], biofiltration [11],  
nanofiltration and reverse osmosis [12], electrochemical  
oxidation [13], and adsorption [14]. Adsorption process has been  
a prominent method of treating aqueous effluent in industrial  
processes for a variety of separation and purification purposes.  
Besides, adsorption on activated carbon is very widely used for  
achieving high water purification. However, although activated  
carbon is a preferred adsorbent, its widespread use is restricted  
due to its cost. Commercially available activated carbons are still  
expensive due to the use of non-renewable and relatively high-  
cost starting material [15].  
2
Materials and methods  
2
.1 Adsorbate, adsorbent and experimental procedures  
Caffeine, in analytical purity and used in the experiments  
directly. The caffeine solutions were prepared by diluting stocks  
solution to appropriate concentrations when needed [4; 5]. The  
used groundnut shell (Figure 1) was collected from the local  
market of Nouakchott City in Mauritania. Details on the  
preparation of the groundnut shell as adsorbent, as well as some  
characterization parameters of the groundnut shell have been  
reported in previous studies [16].  
In this reason, researchers have concentrated on finding  
alternative natural adsorbents to activated carbon. Natural  
*
Corresponding author: Abdoulaye Demba N’diaye, (a) Unité de Recherche Eau, Pollution et Environnement, Département de Chimie, Faculté des Sciences  
et Technique, Université de Nouakchott Al Aasriya, BP 880, Nouakchott, Mauritanie and (b) Laboratoire de Chimie, Service de Toxicologie et de Contrôle  
de Qualité, Institut National de Recherches en Santé Publique, BP 695, Nouakchott, Mauritanie. E-mail : abdoulndiaye1974@gmail.com  
1
191  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1191-1195  
caffeine per g of dried groundnut shell) was calculated using the  
equation (1):  
C Ce  
   
V
i
m
(1)  
q   
e
e
where q is the caffeine concentration in groundnut shell as  
-1 -  
i
adsorbent (mg g ), C is the initial caffeine concentration (mg L  
-1  
1
e
); C is the caffeine concentration at equilibrium (mg L ); V is  
the solution volume (L) and m is the mass of the groundnut shell  
used (g).  
3
Results and Discussion  
The analysis of the isotherm data by fitting them to different  
isotherm models is an important step to find the suitable model  
that can be used for design purpose. Typically, the mathematical  
correlation, which constitutes an important role towards the  
modeling analysis, operational design and applicable practice of  
the adsorption systems, is usually depicted by graphically  
expressing the solid-phase against its residual concentration [17].  
Over the years, a wide variety of equilibrium isotherm models  
such as Langmuir, Freundlich, BrunauerEmmettTeller,  
RedlichPeterson, DubininRadushkevich, Temkin, Toth,  
KobleCorrigan, Sips, Khan, Hill, FloryHuggins and Radke–  
Prausnitz isotherm, have been formulated in terms of three  
fundamental approaches [18]. Kinetic consideration is the first  
approach to be referred. Hereby, adsorption equilibrium is  
defined being a state of dynamic equilibrium, with both  
adsorption and desorption rates are equal [19]. Whereas,  
thermodynamics, being a base of the second approach, can  
provide a framework of deriving numerous forms of adsorption  
isotherm models, and potential theory, as the third approach,  
usually conveys the main idea in the generation of characteristic  
curve [20]. However, an interesting trend in the isotherm  
modeling is the derivation in more than one approach, thus  
directing to the difference in the physical interpretation of the  
model parameters [21]. In this work, Langmuir, Freundlich ad  
Redlich-Peterson isotherms in their non-linear forms were applied  
to the equilibrium data of adsorption of caffeine by groundnut  
shell. The Langmuir adsorption isotherm assumes that the  
adsorption takes place at specific homogeneous surface sites  
within the adsorbent and has found successful application in many  
adsorption processes of monolayer adsorption [22]. The nonlinear  
Langmuir model can be expressed by equation (2):  
Figure 1: Collected groundnut shell  
The results of physicochemical characteristics of the  
groundnut shell are shown in Table 1 [16].  
Table 1: physicochemical characteristics of groundnut shell  
Parameters  
pHpzc  
Moisture (%)  
Ash (%)  
Mean  
5.8±0.10  
4.7±0.36  
2.7±0.17  
67.1±1.57  
0.57±0.03  
< 100  
Volatile matter (%)  
Bulk density (g mL )  
Particle size (µm)  
-
1
The value of the pHpzc revealed that the studied groundnut  
shell possess predominantly acidic nature. From the proximate  
analysis, it was observed that moisture, ash and volatile matter  
was slightly high which may be due to its plant origin. The X-Ray  
fluorescence results show that the potassium, calcium,  
magnesium and silica oxides are major component of the  
groundnut shell. The Fourier Transform Infra-Red spectroscopy  
analyses of the groundnut shell showed some functional groups  
content in groundnut shell can act as proton donor and  
consequently coordination is possible with the positively charged  
caffeine [16].  
q K C  
L
m
e
(2)  
qe   
1
L
 K Ce  
2
.2 Adsorption isotherms  
The adsorption isotherms at ambient temperature are obtained  
e
where q is the amount of caffeine adsorbed per unit mass of  
-1  
groundnut shell (mg.g ), k  
L
-1  
is the Langmuir constant related to  
by mixing (70 rpm), for 6 hours, 0.5 g of groundnut shell  
adsorbent with 50 mL of caffeine solutions with different  
concentrations varying from 0 to 100 mg L . At the end of each  
experiment the agitated solution mixture was micofiltered using  
micro filter and the residual concentration of caffeine was  
determined by High Performance Liquid Chromatography  
e
the adsorption capacity (L g ), C is the concentration of caffeine  
-1  
in the solution at equilibrium (mg L ), q  
m
is the maximum uptake  
per unit mass of groundnut shell (mg.g ). The factor of separation  
of Langmuir, R , which is an essential factor characteristic of this  
-
1
-1  
L
isotherm is calculated by equation (3):  
(
HPLC). Ultra pure water and methanol (70:30 V/V) were used  
1
(3)  
-1  
as a mobile phase at a flow rate of 1 mL min at a selected wave  
length of 254 nm [4; 5]. The caffeine uptake amount q (mg of  
R   
L
(1 k C )  
L
0
e
1
192  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1191-1195  
where C  
the Langmuir constant. The R  
defavourable (R >1), linear (R  
irreversible (R =0). The Freundlich isotherm is an empirical  
0
is the higher initial concentration of caffeine and K  
value implies the adsorption to be  
=1), favourable (0<R <1), or  
L
is  
adsorption studies of pharmaceutical products on various  
adsorbents follow the Langmuir isotherm model [26-35].  
L
L
L
L
L
1
equation employed to describe heterogeneous systems [22]. The  
nonlinear representation of the Freundlich model is as in equation  
0,9  
0
0
0
0
,8  
,7  
,6  
,5  
(
4):  
Experimental data  
Langmuir  
1
e
/ n  
q  K C  
(4)  
0,4  
,3  
0,2  
e
F
Freundlich  
0
-1 -1 n  
F
Where K (mg g ) (L mg ) and 1/n are the Freundlich constants  
Redlich-Peterson  
0
,1  
0
related to adsorption capacity and adsorption intensity,  
respectively. The RedlichPeterson isotherm model combines  
elements from both the Langmuir and Freundlich equation and  
the mechanism of adsorption is a hybrid one and does not follow  
ideal monolayer adsorption. It is used as a compromise to improve  
the fit by Langmuir or Freundlich [23]. The nonlinear  
representation of the RedlichPeterson model is as in equation  
0
20  
40  
60  
80  
100  
(mg L-1)  
e
C
Figure 2: Comparison between the experimental and predicted isotherms  
for the adsorption of caffeine by groundnut shell  
Table 2: Parameters isotherm model for caffeine retention on the  
Groundnut Shell  
(
5):  
Parameters  
Values  
4.21  
K Ce  
q
m
RP  
(5)  
qe   
n
Ce  
RP  
KL  
R
L
SSE  
R )%(  
0.0031  
0.76  
0.00065  
99.87  
0.87  
0.018  
0.0018  
99.63  
0.0125  
0.00018  
0.96  
1
Langmuir  
Freundlich  
-
1
-1  
where KRP (L g ) and αRP (L mol ) are the Redlich-Peterson  
isotherm constants, while n is the exponent, which lies between 0  
and 1. Two errors functions including the Sum of the Squares of  
the Errors (SSE) and the correlation coefficient (R ) were used to  
verify the model for the adsorption systems [24; 25]. The SSE and  
2
1
/n  
KF  
SSE  
R )%(  
2
2
2
R values, by using the Solver Excel, are determined respectively  
by following equations (6) and (7):  
K
RP  
α
RP  
Redlich-Peterson  
n
2
SSE=  
q  q  
mod  
(6)  
(7)  
SSE  
R )%(  
0.00034  
99.93  
exp  
2
2
q -q  
mod  
Table 3: Adsorption capacities of different adsorbents for the uptake of  
different pharmaceutical products from their aqueous solutions  
2
exp  
R =100 1-  
2
q -q  
exp  
−1  
avr  
Adsorbate  
Carbamazepine  
Ibuprofen  
Adsorbent  
q (mg g ) Ref.  
m
0.37  
0.32  
0.12  
0.037  
1.74  
0.77  
0.99  
3.8  
Cork  
[36]  
[37]  
[38]  
-
1
where qexp (mg g ) is equilibrium capacity from the experimental  
data, qavr (mg g ) is equilibrium average capacity from the  
-
1
Sugar Can Bagasse  
Vegetable Sponge  
Grape Stalk  
Yonimbe Bark  
Cork Bark  
Parthenium weed  
Posidonia Oceanica  
Dehydrated Sewage  
Sludge  
Paracetamol  
-
1
experimental data and qmod (mg.g ) is equilibrium from model.  
2
So that R  100 – the closer the value is to 100, the more perfect  
Paracetamol  
Ibuprofen  
is the fit. Figure 2 shows the experimental data fitted to non-linear  
forms of the three isotherms, using Solver Excel, for caffeine  
adsorption by groundnut shell. The isotherms constants related to  
Langmuir, Freundlich and RedlichPeterson models determined  
from the plots shown in Figure 2 are listed in Table 2. The values  
[39]  
1.638  
[
40]  
Paracetamol  
0
.956  
of R  
favorability of the adsorption of caffeine onto groundnut shell. It  
is interesting to note that the value of K < 0.1 is a sign of low  
surface energy, which indicates stronger bonding between  
caffeine and the groundnut shell as adsorbent.  
L
, K  
L
and 1/n are in between 0 and 1 give an indication of the  
Aspirin  
Caffeine  
Banana peel  
Grape stalk  
2.29  
0.938  
[41]  
[42]  
Present  
study  
L
Caffeine  
Groundnut shell  
4.21  
As can be clearly seen from Table 2, the Langmuir and  
m
The monolayer adsorption capacity, q , was found to be 4.21  
-1  
2
RedlichPeterson models gave the highest R and low SSE value  
mg g . A list showing the adsorption capacity of different low  
cost adsorbents for the adsorption of different pharmaceutical  
products from their aqueous solutions is given in Table 3. From  
Table 3, it is observed that the adsorption capacities of groundnut  
shell adsorbent for pharmaceutical product uptake are superior  
with other low cost adsorbents. It can be concluded that the  
groundnut shell without any treatment applied in this work can be  
showing that the adsorption isotherms of caffeine by groundnut  
shell were best described by these two models. The suitability of  
the Langmuir isotherm to fit the data was confirmed by the  
exponent value of the Redlich Peterson model, n, which was  
near to one. It should be noted that most of the isotherm  
1
193  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1191-1195  
considered a promising material to be used for caffeine  
adsorption.  
8. Wang C., Siriwardane D.A., Jiang W, Mudalige T, Quantitative analysis  
of cholesterol oxidation products and desmosterol in parenteral liposomal  
pharmaceutical formulations. International Journal of Pharmaceutics,  
2
019, 118576.  
4
Conclusions  
9
.
Wei Z, Li W, Zhao D, Seo Y, Spinney R, Dionysiou D.D, … Xiao R,  
Electrophilicity index as a critical indicator for the biodegradation of the  
pharmaceuticals in aerobic activated sludge processes. Water Research,  
The equilibrium data were analyzed using non-linear method  
by fitting them to the Langmuir, Freundlich and RedlichPeterson  
model equations. Both the Langmuir and RedlichPeterson  
isotherms represent well the experimental adsorption data. The  
maximum adsorption capacity was found to be 4.21 mg g .  
Groundnut shell could be considered as potential low cost  
adsorbent for caffeine removal from aqueous solution. For future  
studies, the usability of groundnut shell for pharmaceutical  
products removal from real wastewater will be tested and as  
comparison, a fixed bed column will be employed to investigate  
the effect of reactor design.  
2
019.  
1
1
0. Liu Y.J, Liu H.S, Hu C.Y, Lo S.L., Simultaneous aqueous chlorination of  
amine-containing pharmaceuticals. Water Research, 2019.  
1. Fu, J., Lee, W.-N., Coleman, C., Nowack, K., Carter, J., Huang, C.-  
H. Removal of pharmaceuticals and personal care products by two-stage  
biofiltration for drinking water treatment. Science of The Total  
Environment, 2019, 664, 240248  
12. Couto C.F., Santos A.V., Amaral M.C.S., Lange L.C., de Andrade L.H.,  
Foureaux A.F.S., Fernandes B.S. Assessing potential of nanofiltration,  
reverse osmosis and membrane distillation drinking water treatment for  
pharmaceutically active compounds (PhACs) removal. Journal of Water  
Process Engineering, 2020, 33, 101029,  
-
1
Ethical issue  
13. López Zavala M.A., Vega D.A., Álvarez Vega J.M., Castillo Jerez O.F.,  
Cantú Hernández R.A, Electrochemical oxidation of acetaminophen and  
its transformation products in surface water: effect of pH and current  
density. Heliyon, 2020, 6 (2), e03394,  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission, manipulation  
1
4. Bunmahotama W., Lin T., Yang, X. Prediction of adsorption capacity for  
pharmaceuticals, personal care products and endocrine disrupting  
chemicals onto various adsorbent materials. Chemosphere, 2019, 124658.  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
15. Pan B.,Pan Bi, Zhang W., Zhang Q., Zhang Q., Zhang S. Adsorptive  
removal of phenol from aqueous phase by using a porous acrylic ester  
polymer. J. Hazard. Mater.2008, 157 (2-3), 293-299,  
1
6. N’diaye A.D., Bollahi M.A., Kankou M.S.A. Sorption of Paracetamol  
onto Groundnut Shell from aqueous solution. Journal Material of  
Environmental Science,2019, 10, 6, 553-562,  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
1
7. Ncibi M.C., Applicability of some statistical tools to predict optimum  
adsorption isotherm after linear and non-linear regression analysis, J.  
Hazard. Mater. 2008, 153, 207212.  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing.  
1
1
2
8. Malek A., Farooq S., Comparison of isotherm models for hydrocarbon  
adsorption on activated carbon, 1996, AIChE J. 42 (11), 31913201.  
9. Langmuir I., The constitution and fundamental properties of solids and  
liquids, J. Am. Chem. Soc. 1916, 38 (11), 22212295.  
0. Dubinin M.M., The potential theory of adsorption of gases and vapors for  
adsorbents with energetically non-uniform surface, Chem. Rev. 1960, 60,  
References  
1
2
.
.
Ghosh, M., Manoli, K., Shen, X., Wang, J., Ray, A.K. Solar photocatalytic  
degradation of caffeine with titanium dioxide and zinc oxide  
nanoparticles. J. Photochem. Photobiol. Chem. 2019, 377, 17.  
Alvarez, S., Ribeiro, R., Gomes, H., Sotelo, J., García, J., Synthesis of  
carbon xerogels and their application in adsorption studies of caffeine and  
diclofenac as emerging contaminants. Chem. Eng. Res. Des.2015, 95,  
2
35266.  
2
1. Ruthven D.M. Principles of Adsorption and Adsorption Processes, Wiley,  
New York, 1984.  
2
2. Machrouhi A., Farnane M., Elhalil A., Abdennouri M., Tounsadi H.,  
Barka N., Heavy metals biosorption by Thapsia transtagana stems  
powder: kinetics, equilibrium and thermodynamics, Moroccan Journal of  
Chemistry, 2019, 7, 1, 098-110.,  
2
29238.  
3
4
.
.
Anastopoulos, I., Pashalidis, I., Orfanos, A. G., Manariotis, I. D.,  
Tatarchuk, T., Sellaoui, L., … Núñez-Delgado, A. Removal of caffeine,  
nicotine and amoxicillin from (waste)waters by various adsorbents. A  
review. Journal of Environmental Management, 2020, 261, 110236  
N’diaye A.D., Kankou M.S.A, Valorization of Balanites aegyptiaca seeds  
from Mauritania: Modeling of adsorption isotherms of caffeine from  
aqueous solution. Journal of Environmental Treatment Techniques, 2019,  
2
2
2
2
2
2
3. Dhaouadi H., M’Henni F., Vat dye Sorption onto crude dehydrated  
sewage sludge, Journal of Hazardous Materials,2009, 164 (2-3), 448–  
4
58.  
4. Zakhama S., Dhaouadi H., M’Henni F., Nonlinear modelisation of heavy  
metal removal from aqueous solution using Ulva lactuca algae,  
Bioressource Technology, 2011,102, 786-796,  
5. Subramanyam B., Das A., Linearised and non-linearised isotherm models  
optimization analysis by error functions and statistical means, Journal of  
Environmental Health Science & Engineering, 2014, 12:92,  
7
, 3, 450-455  
5
6
.
.
N’diaye A.D, Kankou M.S.A, Sorption of caffeine onto low cost sorbent:  
Application of two and three-parameter isotherm models. Applied Journal  
of Environmental Engineering Science, 2019, 5, 3, 263-272.  
Varma K.S., Tayade R.J., Shah K.J., Joshi P.A., Shukla A.D., Gandhi  
V.G, Photocatalytic degradation of pharmaceutical and pesticide  
compounds (PPCs) using doped TiO nanomaterials: A review. Water-  
2
Energy Nexus, 2020.  
Wang Y., Dai X, He X., Chen L., Hou X., X. MIL-101(Cr)@GO for  
dispersive micro-solid-phase extraction of pharmaceutical residue in  
chicken breast used in microwave-assisted coupling with HPLCMS/MS  
detection. Journal of Pharmaceutical and Biomedical Analysis, 2017,  
6. Bekci Z., Seki Y., Yurdakoc M., Equilibrium studies for trimethoprim  
adsorption on montmorillonite KSF. Journal of Hazardous Materials,  
2
006, 133(1-3), 233242.  
7. Fukahor S., Fujiwara T., Ito R., Funamizu N., pH-Dependent adsorption  
of sulfa drugs on high silica zeolite: Modeling and kinetic study,  
Desalination, 2011, 275 (1-3), 237242.  
8. Baccar R., Sarrà M., Bouzid J., Feki M., Blánquez, P. Removal of  
pharmaceutical compounds by activated carbon prepared from  
agricultural by-product. Chemical Engineering Journal, 2012, 211-212,  
7
.
3
10317.  
1
45, 440446,  
1
194  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1191-1195  
2
9. Ferreira R.C., de Lima H.H.C., Cândido A.A., Couto Junior O.M., Arroyo  
P.A., de Carvalho K.Q., Gauze G.F., de Barros M.A.S.D., Adsorption of  
paracetamol using activated carbon of dende and babassu coconut  
mesocarp, Int. J. of Biol., Biomol., Agric., Food and Biotechnol. Eng.,  
2
015, 9,575-58 0.  
3
3
0. Miao M.S., Liu Q., Shu L., Wang Z., Liu Y.Z., Kong Q., Removal of  
cephalexin from effluent by activated carbon prepared from alligator  
weed: Kinetics, isotherms, and thermodynamic analyses, Process Safety  
and Environmental Protection, 2016, 104, 481489.  
1. Boudrahem N, Delpeux-Ouldriane S., Khenniche L., Boudrahem F.,  
Aissani-Benissad F., Gineys M., Single and mixture adsorption of  
clofibric acid, tetracycline and paracetamol onto Activated carbon  
developed from cotton cloth residue. Process Safety and Environmental  
Protection, 2017, 111, 544559.  
3
3
3
2. Beltrame, K.K., Cazetta, A.L., de Souza, P.S.C., Spessato, L., Silva, T.L.,  
Almeida, V.C., Adsorption of caffeine on mesoporous activated carbon  
fibers prepared from pineapple plant leaves. Ecotoxicol. Environ. Saf.  
2
018, 147, 64e71.  
3. Paredes-Laverde M., Silva-Agredo J., Torres-Palma R.A., Removal of  
norfloxacin in deionized, municipal water and urine using rice (Oryza  
sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents.  
Journal of Environmental Management, 2018, 213, 98108.  
4. Paredes-Laverde M., Salamanca M., Silva-Agredo J., Manrique- Losada  
L., Torres-Palma R.A., Selective removal of acetaminophen in urine with  
activated carbons from rice (Oryza sativa) and coffee (Coffea arabica)  
husk: Effect of activating agent, activation temperature and analysis of  
physical-chemical interactions. Journal of Environmental Chemical  
Engineering, 2019, 103318.  
3
5. N’diaye A.D., Kankou M.S.A. Modeling of adsorption isotherms of  
pharmaceutical products onto various adsorbents: A Short Review.  
Journal Material and Environmental Science, 2020, 11, 8, 1264-1276  
6. Dordio, A.V., Gonçalves, P., Texeira, D., Candeias, A.J., Castanheiro,  
J.E., Pinto, A.P., Carvalho, A.J.P., Pharmaceuticals sorption behaviour in  
granulated cork for the selection of a support matrix for a constructed  
wetlands system. Int. J. Environ. Anal. Chem. 2011, 91, 615-631.  
7. Ribeiro A.V.F.N., Belisário M., Galazzi R.M., Balthazar D.C., Godoi  
Pereir M., Ribeiro J.N., Evaluation of two bioadsorbents for removing  
paracetamol from aqueous media, Electronic Journal of Biotechnology,  
3
3
3
3
2
011, 14, 6,  
8. Villaescusa I., Fiol N., Poch J., Bianchi A., Bazzicalupi C., Mechanism of  
paracetamol removal by vegetable wastes: The contribution of π–π  
interactions, hydrogen bonding and hydrophobic effect, Desalination,  
2
011, 270, (13), 135 142,  
9. Mondal, S., Aikat, K., Halder, G. Biosorptive uptake of ibuprofen by  
chemically modified Parthenium hysterophorus derived biochar:  
equilibrium, kinetics, thermodynamics and modeling. Ecol. Eng.2016, 92,  
1
58172,  
4
4
0. Ferchichi M., Dhaouadi H., Sorption of paracetamol onto biomaterials,  
Water Science and Technology, 2016, 74, (1),287294,  
1. Ribeiro A.V.F.N., Da Silva A.R., Ca Cunha T.P., Dos Santos R.T.L., De  
Oliveira J.P., Pereira E.V., Licinio M.V.V.J., De Godoi Pereira M., Dos  
Santos A.V., Ribeiro J.N., Banana Peel for Acetylsalicylic Acid  
Retention. Journal of Environmental Protection, 2016, 7, 1850-1859,  
2. Portinho R., Zanella O., Féris L.A., Grape stalk application for caffeine  
removal through adsorption. Journal of Environmental Management;  
4
2
017, 202: 178187,  
1
195