Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1089-1092  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Optimisation of Heavy Metals Uptake from Leachate  
Using Red Seaweed Gracilaria changii  
1
*
1
1
Nithiya Arumugam , Shreeshivadasan Chelliapan , Sathiabama T. Thirugnana and Aida  
Batrisyia Jasni2  
1
Department of Engineering, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur,  
Malaysia  
2
School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia  
Received: 28/03/2020  
Accepted: 07/07/2020  
Published: 20/09/2020  
Abstract  
Heavy metal is one of the pollutants in landfill leachate besides organic and inorganic pollutants. The presence of heavy metal is alarming  
due to its harmful nature; makes it incompatible to be discharged into water bodies before treatments. There are many treatment techniques  
to remove heavy metals from wastewater, where some of them even involve the coupling of one or more techniques to facilitate and improve  
the removal efficiency. However, the adsorption using seaweed is one of the known techniques to eliminate heavy metals from wastewater  
efficiently. Therefore, this study introduced a new adsorbent for heavy metal adsorption: red seaweed Gracilari changii. The effect of  
operational parameters such as leachate pH (2-7), seaweed dosage (2-10 g), rpm (10-100), and contact time (10-60 min) on the optimum  
adsorption of Gracilaria changii was studied. At optimum pH (pH=5), seaweed dosage (10g), rpm (rpm=50) and contact time (30min),  
2
+
6+  
2+  
Gracilaria changii showed maximum metal ion removal of 45%, 35%, and 30% for Fe , Cr and Ni respectively. The adsorption was  
rapid and reached equilibrium after t=30min in general. This optimisation result can be used as a reference to study the effect of different  
dosages of the adsorbent towards the removal rate.  
Keywords: Seaweed, Adsorption, Leachate, Heavy metals, Adsorbent  
1
adopted for the treatment of leachate: biological, physical,  
1
Introduction  
chemical, and physico-chemical techniques. Nevertheless, the  
preference of a technique or coupling of techniques is solely based  
on the characteristics of leachate (13). Lately, the removal of  
heavy metals by adsorption method using various types of  
adsorbents received great interests, with seaweed being one of  
them. Seaweeds are macroalges and consists of 10,000 naturally  
existing species. These seaweeds can vary in size and typically  
grow up to 30 meters in length. Although seaweed has plant-like  
physical structure and components, they are not genuine vascular  
plants, but are referred as marine algae. Marine algae belongs to  
the Kingdom Protista group, which by default are neither plants  
nor animals.  
Leachate is the dark form of liquid generated via percolation  
of rainwater through dumping of solid wastes into landfills.  
Rainwater undergoes biochemical processes with wastes and also  
with the water contents of the waste itself (1). Random studies  
3
showed that 0.2m of leachate are generated from every one  
metric ton of municipal solid waste (2). The qualities and  
quantities of leachate vary from one site to another depending on  
factors: moisture content, landfill age, climate, site hydrology,  
and the degree of waste stabilisation (3).  
Leachates are a mixture of colour components, heavy metals,  
ammoniacal nitrogen, organic compounds, and inorganic  
compounds (4,5). Among these, heavy metals are the most toxic  
compounds and draw great attention due to their negative impact  
towards both living organisms and the environment as a whole  
There are three different groups of seaweeds and they are  
identified based on the colour of their thallus namely brown,  
green, and red algae. A number of studies show that different  
types of seaweeds have been used for the adsorption of heavy  
metals from wastewater. There are also vast studies on utilising  
red seaweeds as an adsorbent for removal of heavy metals.  
However, to date, there are no reported studies on Gracilaria  
changii specifically as an adsorbent for the purpose of wastewater  
treatment. Therefore, this study focused on determining the  
(
6). The presence of heavy metals in leachate are sourced from  
used batteries, electronic wastes, paint, construction materials,  
mines, fertilisers, and others (7,8) . The most commonly found  
heavy metals in leachate are Iron (Fe), Chromium (Cr), Arsenic  
As), Nickel (Ni), Lead (Pb), Copper (Cu), Cadmium (Cd), and  
Mercury (Hg); are threats to living organisms even in small  
amounts (912).  
(
2
+,  
6+  
2+  
optimal conditions for the removal of Fe Cr and Ni from  
In practice, different modes of treatment methods have been  
leachate using the biomass of Gracilaria changii.  
Corresponding author: Nithiya Arumugam, Department of Engineering, Razak Faculty of Technology and Informatics, Universiti  
Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia. Email: nithiya85.a@gmail.com.  
1
089  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1089-1092  
initial metal ion concentration of 20mg/L. It was visible that the  
removal percentage of all metal ions by Gracilaria changii  
increased with the increment of pH from 2-5 and was  
subsequently reduced as the pH increased further. This could be  
explained based on the functional groups of seaweed and the  
speciation of metal ions at varying pH levels. The cell wall of  
seaweed is made of polysaccharides, carboxyl, and sulphonate  
groups. These functional groups are negatively charged and at  
2
Materials and Methods  
2
.1 Leachate  
The leachate sample collection was done at Worldwide  
Landfill Sdn. Bhd., Jeram, Selangor. The raw leachate sample  
was collected and immediately transferred to laboratory in a  
sealed high-density polyethylene (HDPE) container and stored at  
4
C to reduce chemical and biological reactions (14).  
+
lower pH,, these groups are protonated with H . Therefore,  
2
.2 Metal Solution  
seaweed is unable to hold the positively charged metal ions. At  
The stock solutions of Fe (II), Cr(VI) and Ni (II) were prepared  
+
increased pH level of upto 5, the concentration of H were  
4 2  
from Iron (II) sulphate heptahydrate (FeSO .7H O), Potassium  
dichromate (K Cr ) and Nickel (II) nitrate hexahydrate  
Ni(NO .6H O) being dissolved in distilled water. During the  
course of the experiment, the preferred constant concentration of  
0mg/L for each metal ion solution was achieved by diluting the  
relatively lower and therefore, the metal ions were able to bind  
with the negatively charged surface of the seaweed (15). The  
removal percentage started to reduce at pH>5 and the metal  
precipitation (formation of metal hydroxide complexes) could be  
the reason behind this occurence (27). Therefore, the optimum pH  
for heavy metals adsorption using Gracilari Changii in this study  
was 5. A maximum of 10%, 5% and 5% of metal ions were  
2
2 7  
O
(
3
)
2
2
2
stock solution further with distilled water (15). The pH of the  
solutions was altered to the required level using 0.1 M NaOH and  
0
2 4  
.1 M H SO .  
2
+
6+  
2+  
removed for Fe , Cr , and Ni , respectively.  
2
.3 Preparation of Adsorbent  
The red seaweed was collected from a cultivation pond in  
Kedah. The harvested seaweed was transferred to the laboratory  
in a container filled with seawater. The red seaweed was cleaned  
and dried. The seaweed was firstly washed with sea water,  
followed with tap water and lastly with distilled water to eliminate  
epiphytes, debris, sand and salts (16,17). The cleaned seaweed  
was subsequently oven-dried at 40C (18) for 24 hr in order to  
preserve the phytochemical content of seaweed. The red seaweed  
was not chopped into smaller sizes prior to oven-drying to prevent  
significant loss of bioactive compounds (19). The dried seaweed  
was crushed using a laboratory blender and sieved using a sieve  
shaker to obtain sample sizes ranging from 150 to 300 µm (20–  
2
2).  
Figure 1: Effect of pH on removal percentage of metal ions  
2
.4 Optimization Study  
Batch adsorption experiments were conducted at room  
3
.2 Effect of seaweed dosage  
temperature using a jar test apparatus comprised of six rotor  
paddles connected to a speed controller to adjust the rotational  
speed of the rotor paddles. Glass beakers of 1 litre volume was  
filled with 100ml leachate and desired amounts of seaweed was  
added. The solution was stirred for different contact time. After  
the reaction, the solution was allowed to settle and collected for  
heavy metals analysis (23). The supernatant was filtered using a  
glass microfibre filter to detach the solid and liquid phases. The  
precipitant was analysed for residual heavy metals concentration  
in the leachate (24) using atomic absorption spectrometry (25).  
The similar method was used throughout the experiment to  
investigate the effect of different parameters: pH level, seaweed  
dosage, rpm, and contact time on the adsorption rate.  
Seaweed dosage is one of the fundamental parameters in  
determining the optimum uptake of heavy metals. Therefore, the  
effect of seaweed dosage was studied by varying composition.  
Figure 2 shows that metal ion removal is proportional to the  
increasing seaweed dosage. As the mass increased from 2g to 10g,  
the removal percentage increased as well (2830). As per the  
studied dosage range, 10g of seaweed is the optimum composition  
for maximum metal ion uptake for all three metals (31). Higher  
dosage offers higher surface area or greater active sites for  
binding of a constant metal ion concentration. Therefore, more  
metal ions bind on the surface of the seaweed and increased the  
removal rate (32). A maximum of 60%, 25% and 20% of metal  
2
+
6+  
2+  
ions were removed for Fe , Cr , and Ni , respectively.  
3
Results and Discussions  
3
.3 Effect of agitational speed  
Figure 3 illustrates the effect of agitation speed of the rotor  
3
.1 Effect of pH  
One of the major parameters in deciding the maximum  
towards the heavy metals uptake by Gracilari Changii. The effect  
was studied within the range of 10-100 rpm. The results showed  
that the maximum removal of heavy metal ions occurred at 50  
rpm. At lower agitation speed, the seaweed aggregated and did  
not spread within the liquid. Therefore, the active binding sites of  
the bottom layer were covered and not available for metal  
binding, while only the upper layer of the adsorbent was able to  
adsorb the metal ions. Thus, sufficient agitation speed is  
adsorption ability of an adsorbent is the pH of a leachate. It  
influences the solubility of metals, the surface charge of the  
adsorbent and the ionisation of the functional groups on the cell  
walls. Hence, the effect of the pH value of the leachate varied over  
a range of 2-7 on the removal of metal ions was conducted and  
the results are as shown in Figure 1 (26). The sample was  
collected at t=10min, with seaweed dosage of 2g and showed an  
1
090  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1089-1092  
necessary to ensure that every active sites were readily accessible  
and exposed for heavy metal bindings (33). However, the removal  
percentage decreased above 50rpm. This can be explained by the  
increase in desorption capacity of the adsorbent at higher agitation  
speed (34). A maximum of 60%, 25% and 20% of metal ions were  
of 20mg/L. The adsorption process was dependent on the pH of  
the solution and pH 5 is the optimum pH value for metal ion  
removal by Gracilaria changii. The adsorption process was rapid  
for the first 30 minutes and equilibrium was achieved at t=30min  
for all three metal ions studied.  
2
+
6+  
2+  
removed for Fe , Cr , and Ni , respectively.  
Figure 4: Effect of contact time on removal percentage of metal ions  
Figure 2: Effect of seaweed dosage on removal percentage of metal ions  
Due to seaweed aggregation at lower agitation while  
desorption occured at higher speed, the optimum rotational speed  
was identified at 50 rpm for maximum removal of metal ions.  
Lastly, seaweed dosage of 10g was opted for maximum metal ion  
uptake as more active sites were available for binding. Taking into  
consideration of the results obtained from this optimisation study  
for ion concentration of 20mg/L, it can be concluded that these  
parameters can be used to investigate the effect of varying metal  
ions concentrations on the adsorption performance of Gracilaria  
changii. These optimum conditions show that Gracilaria changii  
can adsorb heavy metals and the performance can be improved in  
further investigations.  
Acknowledgment  
The authors would like to thank and extend their greatest  
appreciation to the Ministry of Education, Malaysia for funding  
this study under the Research University Grant (RUG) Vote  
Number: R. Q.K130000.2656.15J80. This work was extensively  
supported by Universiti Teknologi Malaysia, Kuala Lumpur by  
providing the laboratory facilities.  
Figure 3: Effect of rotor’s rotation on removal percentage of metal ions  
3
.4 Efffect of contact time  
Figure 4 shows the efficiency of the seaweed adsorbent in  
adsorbing metal ions from the leachate with different contact  
time. In general, the adsorption increases with increased contact  
time for the first 10 to 30 min, and then the rate becomes constant  
at t=40-60 min. The decrease in adsorption indicates that the  
seaweed surface has reached a saturation level where all the active  
sites are not available for further bindings of metal ions (20). The  
different metal ions did not significantly affect the performance  
of the adsorbent, as the the removal of all of the metal ions  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
the submitted work is original and has not been published  
elsewhere in any language.  
2
+
increased with increased time. The maximum removal of Fe ,  
6
+
2+  
Cr and Ni was achieved at t=30min. No significant effect in  
removal was observed with further increase in contact time  
(
35,36). A maximum of 62.5%, 29.3% and 30% of metal ions  
Competing interests  
2+ 6+ 2+  
were removed for Fe , Cr , and Ni , respectively.  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
4
Conclusions  
This paper studied the optimum conditions for Gracilaria  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analysis and manuscript writing.  
2
+
changii as a potential adsorbent in removing metal ions (Fe ,  
6
+
2+  
Cr and Ni ) from landfill leachate. The optimisation of four  
different factors (pH, seaweed dosage, rpm and contact time) on  
adsorption rate was conducted at constant metal ion concentration  
1
091  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1089-1092  
2
2
1. Verma A, Kumar S, Kumar S. Biosorption of lead ions from the  
aqueous solution by Sargassum filipendula: Equilibrium and kinetic  
studies. J Environ Chem Eng. 2016;4:458799.  
2. Poo K-M, Son E-B, Chang J-S, Ren X, Choi YJ, Chae K-J. biochars  
derived from wasted marine macro-algae (Saccharina japonica and  
Sargassum fusiforme) and their potential for heavy metal removal in  
aqueous solution. J Environ Manage. 2018;206:36472.  
3. Nouha K, Kumar RS, Tyagi RD. Heavy metals removal from  
wastewater using extracellular polymeric substances produced by  
cloacibacterium normanense in wastewater sludge supplemented  
with crude glycerol and study of extracellular polymeric substances  
extraction by different methods. Bioresour Technol. 2016;212:120–  
References  
1
.
Li Y-L, Wang J, Yue Z-B, Tao W, Yang H-B, Zhou Y-F, Chen T-H.  
Simultaneous chemical oxygen demand removal, methane  
production and heavy metal precipitation in the biological treatment  
of landfill leachate using acid mine drainage as sulfate resource. J  
Biosci Bioeng. 2017;124(1):715.  
2
3
.
.
Kurniawan TA, Lo W. Removal of refractory compounds from  
2
stabilized landfill leachate using an integrated H  
granular activated carbon (GAC) adsorption treatment. Water Res.  
009;43(16):407991.  
2 2  
O oxidation and  
2
Adhikari B, Dahal KR, Khanal SN. A review of factors affecting the  
composition of municipal solid waste landfill leachate. Int J Eng Sci  
Innov Technol. 2014;3(5):27381.  
9
.
2
2
2
4. Sivakumar D. Hexavalent chromium removal in a tannery industry  
wastewater using rice husk silica. Glob J Environ Sci Manag.  
4
5
.
.
Patel IA, Desai HH. Ammonium removal from landfill leachate by  
chemical precipitation. Int J Innov Res Dev. 2014;3(7):11626.  
A D, Oka M, Fujii Y, Soda S, Ishigaki T, Machimura T, Ike M.  
Removal of heavy metals from synthetic landfill leachate in lab-scale  
vertical flow constructed wetlands. Sci Total Environ. 2017;584–  
2
015;1(1):2740.  
5. Saravanan A, Brindha V, Manimekalai R, Krishnan S. An evaluation  
of chromium and zinc biosorption by a seaweed (Sargassum sp.)  
under optimized conditions. Indian J Sci Technol. 2009;2(1):536.  
6. Saravanan A, Kumar PS, Preetha B. Optimization of process  
parameters for the removal of chromium (VI) and nickel (II) from  
aqueous solutions by mixed biosorbents ( custard apple seeds and  
Aspergillus niger ) using response surface methodology. 2015;(July  
5
85:74250.  
6
.
Adamu CI, Nganje TN, Edet A. Heavy metal contamination and  
health risk assessment associated with abandoned barite mines in  
Cross River State, Southeastern Nigeria. Environ Nanotechnology,  
Monit Manag. 2015;3:1021.  
2
015).  
7
8
9
.
.
.
Aderemi AO, Oriaku A V., Adewumi GA, Otitoloju AA. Assessment  
of groundwater contamination by leachate near a municipal solid  
waste landfill. African J Environ Sci Technol. 2011;5(11):93340.  
Gutterres M, Mella B. CHAPTER 16: Chromium in tannery  
wastewater. In: Heavy metals in water: Presence, removal and safety.  
The Royal Society of Chemistry; 2015. p. 31544.  
Islam MS, Ahmed MK, Raknuzzaman M, Mamun MH-A-, Islam  
MK. Heavy metal pollution in surface water and sediment: A  
preliminary assessment of an urban river in a developing country.  
Ecol Indic. 2015;48:28291.  
2
2
2
3
7. Patel GG, Doshi H V, Thakur MC. Biosorption and equilibrium study  
of copper by marine seaweeds from North West Coast of India.  
2
016;10(7):5464.  
8. Williams CJ, Edyvean RGJ. Optimization of Metal adsorption by  
seaweeds and seaweed derivatives. Process Saf Environ Prot.  
1
997;75(1):1926.  
9. Ata A, Nalcaci OO, Ovez B. Macro algae Gracilaria verrucosa as a  
biosorbent: study of sorption mechanisms. Algal Res.  
012;1(2):194204.  
A
2
0. Kalyani S, Rao PS, Krishnaiah A. Removal of Nickel (II) from  
aqueous solutions using marine macroalgae as the sorbing biomass.  
Chemosphere. 2004;57(9):12259.  
1. Ibrahim WM. Biosorption of heavy metal ions from aqueous solution  
by red macroalgae. J Hazard Mater. 2011;192(3):182735.  
2. Cheng-Guang J, Ya-Ping Z, He W, Guang-Nan OU, Qi-Ming L, Jin-  
Mei L. Rapid biosorption and reduction removal of Cr(VI) from  
1
1
1
0. Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC. Chapter 1:  
Contamination of heavy metals in aquatic media: Transport, toxicity  
and technologies for remediation. In: Heavy metals in water:  
Presence, removal and safety. 2014. p. 124.  
1. Tsuji JS, Perez V, Garry MR, Alexander DD. Association of low-  
level arsenic exposure in drinking water with cardiovascular disease:  
A systematic review and risk assessment. Toxicology. 2014;323:78–  
3
3
aqueous solution by dried seaweeds.  
014;21(7):28019.  
J Cent South Univ.  
9
4.  
2
2. Izah SC, Srivastav AL. Level of arsenic in potable water sources in  
Nigeria and their potential health impacts: A review. J Environ Treat  
Tech. 2015;3(1):1524.  
3
3. Jayakumar R, Rajasimman M, Karthikeyan C. Optimization,  
equilibrium, kinetic, thermodynamic and desorption studies on the  
sorption of Cu(II) from an aqueous solution using marine green algae:  
Halimeda gracilis. Vol. 121, Ecotoxicology and Environmental  
Safety. 2015, 199210.  
4. Aregawi BH, Mengistie AA. Removal of Ni (II) from aqueous  
solution using leaf, bark and seed Moringa stenopetala adsorbents.  
Bull Chem Soc Ethiop. 2013;27(1):3547.  
5. Ullah I, Nadeem R, Iqbal M, Manzoor Q. Biosorption of Chromium  
onto native and immobilized sugarcane bagasse waste biomass. Ecol  
Eng. 2013;60:99107.  
6. Belattmania Z, Atouani S El, Kaidi S, Bentiss F, Tahiri S, Reani A,  
Sabour, B. Protonated biomass of the brown seaweed Cystoseira  
tamariscifolia: A potential biosorbent for toxic chromium ions  
removal. Res J Environ Sci. 2018;12(3):10613.  
1
1
3. Kamaruddin MA, Yusoff MS, Aziz HA, Hung Y-T. Sustainable  
treatment of landfill leachate. Appl Water Sci. 2015;5(2):11326.  
4. Aziz SQ, Aziz HA, Bashir MJK, Mojiri A. Assessment of various  
tropical municipal landfill leachate characteristics and treatment  
opportunities. Glob NEST J. 2015;17(3):43950.  
3
3
3
1
1
1
1
1
2
5. Praveen RS, Vijayaraghavan K. Optimization of Cu(II), Ni(II), Cd(II)  
and Pb(II) biosorption by red marine alga Kappaphycus alvarezii.  
Desalin Water Treat. 2014;55(7):181624.  
6. Chan PT, Matanjun P, Yasir SM, Tan TS. Antioxidant and  
hypolipidaemic properties of red seaweed, Gracilaria changii. J Appl  
Phycol. 2014;26(2):98797.  
7. Lakshmi DS, Trivedi N, Reddy CRK. Synthesis and characterization  
of seaweed cellulose derived carboxymethyl cellulose. Carbohydr  
Polym. 2017;157:160410.  
8. Hong IK, Jeon H, Lee SB. Comparison of red, brown and green  
seaweeds on enzymatic saccharification process. J Ind Eng Chem.  
2
014;20(5):268791.  
9. Ling ALM, Yasir S, Matanjun P, Bakar MFA. Effect of different  
drying techniques on the phytochemical content and antioxidant  
activity of Kappaphycus alvarezii. J Appl Phycol. 2015;27:171723.  
0. Rahman MS, Sathasivam K V. Heavy metal adsorption onto  
Kappaphycus sp. from aqueous solutions: The use of error functions  
for validation of isotherm and kinetics models. Biomed Res Int.  
2
015;2015(Article ID 126298):113.  
1
092