Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 971-977  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Potential Use of Fruit Seeds and Plant Leaves as  
Coagulation Agent in Water Treatment  
Khalida Muda*, Nur Shahidah Aftar Ali, Ummu Nusaibah Abdullah, Ahmad Bazli Sahir  
Department of Water and Environmental, School of Civil Engineering, Universiti Teknologi Malaysia, 81310 Johor Bharu, Johor, Malaysia  
Received: 19/02/2020  
Accepted: 16/06/2020  
Published: 20/09/2020  
Abstract  
The treatment of turbid water by coagulation-flocculation was found to be the most common and cost-effective method. Over the years,  
chemical coagulants have been widely applied to enhance the coagulation process. However, the utilisation of chemical coagulants exhibits  
several drawbacks, including generation of voluminous sludge and being non-biodegradable as well as toxic compounds to aquatic life. Due  
to global concerns over the harmful effects, the application of natural coagulants is a promising solution. Therefore, this study was conducted  
to investigate the potential of plant-based natural coagulants to replace chemical coagulants for water treatment. Fruit seeds (Carica papaya,  
Nephelium mutabile, and Euphoria malaiense seeds) and plant leaves (Pandanus, Centella asiatica, and Cymbopogon citratus leaves) were  
selected as natural coagulants in this study. A series of jar tests were performed using raw water from a water treatment plant. The effects of  
pH and coagulant dosage were evaluated based on the turbidity removal and coagulation activity. Of all the examined plants, the Carica  
papaya seeds appeared to be the best coagulant for water treatment. An optimum dose of 130 mg/L of this coagulant resulted in a 95.5%  
turbidity removal and 94% coagulation activity, at optimum pH 7.5. Overall, this study reveals the potential use of fruit seeds and plant leaves  
as coagulation agents in the water treatment process.  
Keywords: Natural Coagulants, Turbidity, Coagulation Activity, Carica papaya seeds, Water treatment  
Introduction1  
Water is essential to all living organisms as it is the most  
generation of large volumes of sludge, are non-biodegradable,  
1
and cause detrimental effects to human health and aquatic life (2,  
). The generation of voluminous sludge which is non-  
6
fundamental nutrient to life. Safe and readily available water is  
crucial for human health to avoid various diseases due to the  
presence of harmful bacteria or chemicals in water. However,  
lack of access to clean water has become one of the world’s  
biggest problems, especially in developing countries. According  
to Vaithiyanathan et.al (1), India is suffering from water crisis  
which mainly due to improper wastewater and solid waste  
management, where the population only able to access 4% of  
usable water sources. Thus, effective water treatment is required  
to remove undesirable compounds and contaminants so that the  
water is safe to use for different purposes. A common way to treat  
turbid water is by using coagulation. Coagulation is a physical-  
chemical process for water treatment which is typically applied  
prior to the sedimentation and filtration processes. The  
application of coagulants in the coagulation-flocculation process  
is necessary as they are able to remove high suspended solids and  
colloidal particles in the water, thus enhancing the quality of  
treated water. The common chemical-based coagulants used in  
water and wastewater treatment are aluminium sulphate, ferric  
sulphate and iron (III) chloride (2-4). Karbassi and Pazoki (5)  
noted that addition of PAC could remove 99% of turbidity in  
petrochemical wastewater. Despite their efficiency, these  
chemical coagulants suffer from several drawbacks such as the  
biodegradable has become a major problem when chemical  
coagulants are used in water and wastewater treatment. Therefore,  
it is essential to replace chemical coagulants with a more  
sustainable approach to counteract the drawbacks.  
Recently, investigations on the usage of natural coagulants in  
water and wastewater treatment have caught the attention of many  
researchers. Natural coagulants exhibit many advantages when  
compared to the application of chemical coagulants in many  
aspects. They are highly biodegradable (4), non-corrosive(7),  
generate a lower amount of sludge (8), environmentally friendly,  
and cheap (7). Moreover, they are less likely to produce treated  
water with high pH level. Several studies have demonstrated that  
natural coagulants extracted from plants, animals and  
microorganisms such as chitosan, Moringa oleifera, Quercus  
robur acorn, Cicer arietinum, banana pith, Jatropha curcas seeds,  
rice starch, and dragon fruit foliage have excellent efficiency in  
removing high turbidity in water and wastewater treatment (9-16).  
Jatropha curcas seeds, dragon fruit foliage and Sterculia  
foetida seeds achieved high turbidity removals of 99%, 99.2%,  
and 97%, respectively (9, 15, 17). The application of Cicer  
arietinum showed high turbidity and suspended solid removals of  
8
6% and 87%, respectively (14). Meanwhile, the addition of  
orange peel as a natural coagulant was able to remove 96% of  
Corresponding author: Khalida Muda, Department of Water and Environmental, School of Civil Engineering, Universiti Teknologi  
Malaysia, 81310 Johor Bharu, Johor, Malaysia. E-mail: Khalida Muda. Email: khalida@utm.my.  
9
71  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 971-977  
turbidity (18). Furthermore, the addition of natural coagulants  
extracted from nature can reduce costs and produce high quality  
treated water. The application of natural coagulants could  
increase the formation of flocs, thus improving the removal of  
suspended particles in water during the coagulation process.  
Although natural coagulants have many advantages, their  
application as coagulation agents has not been entirely explored  
in water treatment.  
promote particle collision in the water and further facilitate the  
particle aggregation to form flocs (20). After slow mixing, the  
flocs were then left to settle for 30 min. Residual turbidity was  
measured as -  . The same jar test was carried out without  
푓푐  
coagulants and the residual turbidity was measured as - .  
Coagulation activity was calculated as:  
Coagulation activity (%): [ ( Tfb - Tfc ) / Tfb ] x 100  
(1)  
In this study, selected natural coagulants extracted from the  
seeds and leaves of plants: Carica papaya seeds, Nephelium  
mutabile seeds, Euphoria malaiense, Pandanus leaves, Centella  
asiatica leaves, and Cymbopogon citratus leaves have been  
utilised for water treatment purposes. Unnisa and Bi (19) studied  
the application of Carica papaya seeds as a natural coagulant to  
remove turbidity and the results showed that Carica papaya were  
able to remove 100% of water turbidity. However, Nephelium  
mutabile seeds, Euphoria malaiense seeds, Pandanus leaves,  
Centella asiatica leaves and Cymbopogon citratus leaves have  
not been explored as much. Thus, this study aims to investigate  
the coagulation potentials of these natural coagulants compared  
to chemical coagulants for the treatment of turbid water.  
2
.4 Analytical Methods  
A pH meter and nephelometer were used to measure the pH  
and turbidity of water samples. To determine the optimum  
condition, the pH of water sample was kept constant at 7.5, while  
natural coagulants varied between 10 mg/L to 130 mg/L, in order  
to obtain the optimum dosage. The pH value was varied between  
2
to 12 with a constant value of optimised dosage, to determine  
the effects of pH on treating water. All tests in this study were  
conducted according to the standard methods of water and  
wastewater treatment (21).  
3
3
Result and Discussions  
.1 Physical Properties of Natural Coagulants  
Table 1 shows the physical properties of the fruit seed and plant  
2
Materials and Method  
2
.1 Materials  
leaf-based natural coagulants. Carica papaya seeds had the  
highest initial weight of 333g, while the Cymbopogon citratus  
leaves had the lowest initial weight of 74g as shown in Table 1.  
After undergo the drying and grinding process, the highest yield  
weights were shown by the Nephelium mutabile seeds with 240  
g, followed by 201 g for the Euphoria malaiense seeds, 55 g for  
the Carica papaya seeds, 14 g for the Cymbopogon citratus  
leaves, 13 g for the Pandanus leaves, and 9 g for the Centella  
asiatica leaves.  
Among the natural coagulants, the Nephelium mutabile seeds  
had the lowest moisture content of 20.5 % and this contributed to  
a greater yield. In contrast, the Centella asiatica leaves had the  
highest moisture content at 89.5 % and resulted in the lowest  
yield. Table 1 clearly shows that that moisture content plays an  
important role in determining the yield. Thus, it can be concluded  
that the Nephelium mutabile seeds as natural coagulants are  
efficient in terms of yield properties.  
The water samples were collected from an inlet point at the  
Sultan Ismail Water Treatment Plant (WTP), located near  
Universiti Teknologi Malaysia, Johor. Fruit seeds and plant  
leaves: Carica papaya seeds, Nephelium mutabile seeds,  
Euphoria malaiense seeds, Pandanus leaves, Centella asiatica  
leaves and Cymbopogon citratus leaves were collected from the  
surrounding neighbourhood and local market.  
2
.2 Preparation of natural coagulants  
After collecting the materials, the whole seeds of Carica  
papaya, Nephelium mutabile and Euphoria malaiense were dried  
in an oven at a temperature between 103°C to 105°C for 24 hours.  
After drying, they were ground into a fine powder using a grinder.  
Meanwhile, the fresh Pandanus, Centella asiatica and  
Cymbopogon citratus leaves were first washed using tap water,  
chopped and oven dried for 24 hours at a temperature between  
1
03°C to 105°C. The dried leaves then were crushed into a fine  
powder using a mortar pestle. The powder obtained from both  
fruit seeds and plant leaves were sieved with a mesh size of  
Table 1: Physical Properties of Natural Coagulants  
Initial  
Weight Weight  
Dry  
Moisture  
Content  
(%)  
Yield  
%)  
0
.4mm and mixed with three different solutions, including  
Materials  
(
deionised water, sodium hydroxide, NaOH and sodium chloride,  
NaCl. A 10 mg sample of powder from the fruit seeds and plant  
leaves were weighed and suspended in 200 mL of each solution.  
The solution was vigorously mixed for 10 min using a mechanical  
stirrer to extract the coagulation active component, and then  
filtered. The filtered solutions, called crude extracts, were kept in  
a refrigerator at 4°C. The crude extracts then can be used as a  
coagulant for water treatment without any further preparation.  
(g)  
(g)  
55  
Carica papaya seeds  
Nephelium mutabile  
seeds  
333  
16.5  
79.5  
83.5  
302  
240  
201  
20.5  
38.7  
Euphoria malaiense  
Euphoria malaiense seeds  
Pandanus leaves  
Centella asiatica leaves  
Cymbopogon citratus  
leaves  
328  
61.3  
77  
86  
13  
9
16.9  
10.5  
81.0  
89.5  
7
4
14  
18.9  
83.1  
2
.3 Coagulation Test  
This study used the jar test to determine the coagulation  
activity of each type of seeds and leaves. Raw turbid water (500  
mL) was filled into six beakers and 5 mL of the natural coagulants  
were added to each beaker. The beaker was rapidly mixed at 200  
rpm for 1 minute before slow mixing was applied for about 15  
minutes at 60 rpm. The purpose of rapid mixing was to properly  
disperse the coagulant, while a slow speed mixing was used to  
3
.2 Effects of Solvents on Natural Coagulants  
Deionised water, sodium chloride (NaCI) and sodium  
hydroxide (NaOH) were tested in the study to obtain the best  
solvent to extract natural coagulants. The best solvent was chosen  
based on the highest removal performance achieved by the natural  
9
72  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 971-977  
coagulants. Fig.1(a) and Fig.1(b) show the performance of natural  
coagulants in the deionised water. Based on Figure 1(a), the  
Nephelium mutabile seeds had the highest turbidity removal of  
coagulants when sodium chloride, NaCI was added as the solvent.  
The NaCI solution achieved optimum concentration at 2.0 M as  
shown in Figure 2(a). At the concentration of 2.0 M, the Pandanus  
leaves had the highest turbidity removal of 59.2%. This was  
followed by the Cymbopogon citratus leaves, Centella asiatica  
leaves, Nephelium mutabile seeds, Carica papaya seeds and  
Euphoria malaiense seeds with removal rates of 59.1%, 55.9%,  
34.6%, 31.8%, and 28.6%, respectively. For coagulation activity,  
based on Figure 2(b), the Pandanus leaves showed the greatest  
activity at 43.1%, followed by the Cymbopogon citratus leaves,  
Centella asiatica leaves, Nephelium mutabile seeds, Carica  
papaya seeds, and Euphoria malaiense seeds with coagulation  
activities of 40%, 38.6%, 20.8%, 18.5%, and 18.5%, respectively.  
From the results, it is clearly seen that all the natural coagulants  
were unable to achieve high removal performance and  
coagulation activity in the NaCl solution. This means that the  
NaCI solution is also not suitable to be used as a solvent in water  
treatment. Figure 3(a) and Figure 3(b) show the performance of  
natural coagulants in a sodium hydroxide, NaOH solution.  
3
1.5% in deionised water compared to the Carica papaya seeds  
(
(
31.3%), Euphoria malaiense seeds (30.1%), Pandanus leaves  
11.6%), Centella asiatica leaves (9.9%), and Cymbopogon  
citratus leaves (9.4%). Figure 1(b) also shows that the Nephelium  
mutabile seeds had the highest coagulation activity among the  
natural coagulants at 10.5%. The coagulation activity for the  
Carica papaya seeds, Euphoria malaiense seeds, Pandanus  
leaves, Centella asiatica leaves and Cymbopogon citratus leaves  
were 10%, 8.7%, 6.8%, 4.6%, and 4%, respectively. However,  
based on the results displayed in both figures, all the natural  
coagulants show a low performance in turbidity removal and very  
low coagulation activity when deionised water was used as the  
solvent. Therefore, it can be concluded that deionised water is not  
suitable to be used as a solvent due to its low capability to extract  
selected fruit seeds and plant leaves compared to NaOH and  
NaCI.  
Figure 2(a) and Figure 2(b) show the performance of natural  
Carica Papaya seeds  
Euphoria Malaiense seeds  
Centella Asiatica leaves  
Nephelium Mutabile seeds  
Pandanus leaves  
Carica Papaya seeds  
Euphoria Malaiense seeds  
Centella Asiatica leaves  
Nephelium Mutabile seeds  
Pandanus leaves  
Cymbopogon Citratus leaves  
6
6
5
5
4
4
3
3
2
2
5
0
5
0
5
0
5
0
5
0
45  
40  
3
3
2
2
1
5
0
5
0
5
10  
5
0
.1  
0.2  
0.5  
1
2
0.1  
0.2  
0.5  
1
2
Concentration of NaCI (M)  
Concentration of NaCI (M)  
(a)  
(b)  
Figure 1: (a) Turbidity removal and (b) Coagulation activity of natural coagulants using deionised water  
3
5
1
2
0
8
6
4
2
0
30  
25  
20  
15  
10  
5
0
1
Carica  
Nephelium  
Euphoria  
Malaiense  
seeds  
Pandanus  
leaves  
Centella Cymbopogon  
Carica  
Nephelium  
Euphoria  
Malaiense  
seeds  
Pandanus  
leaves  
Centella Cymbopogon  
Papaya seeds Mutabile  
Asiatica  
Citratus  
Papaya seeds Mutabile  
seeds  
Asiatica  
leaves  
Citratus  
leaves  
seeds  
leaves  
leaves  
Natural Coagulants  
a)  
Natural Coagulants  
(
(b)  
Figure 2: (a) Turbidity Removal and (b) Coagulation Activity of natural coagulants using NaCI solution  
9
73  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 971-977  
Carica Papaya seeds  
Euphoria Malaiense seeds  
Centella Asiatica leaves  
Nephelium Mutabile seeds  
Pandanus leaves  
Carica Papaya seeds  
Euphoria Malaiense seeds  
Centella Asiatica leaves  
Nephelium Mutabile seeds  
Pandanus leaves  
Cymbopogon Citratus leaves  
1
00  
100  
9
8
7
6
5
40  
30  
20  
0
0
0
0
0
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
1
0
0
0
.1  
0.2  
0.5  
1
2
0
.1  
0.2  
0.5  
1
2
Concentration of NaOH (M)  
Concentration of NaOH (M)  
(a)  
(b)  
Figure 3: (a) Turbidity Removal and (b) Coagulation Activity of natural coagulants using NaOH solution  
The optimum concentration obtained by the NaOH solution  
was similar to NaCI at 2.0 M.Based on Figure 3(a), among all the  
natural coagulants, the Carica papaya seeds had the highest  
turbidity removal of 94.5% Meanwhile, the turbidity removal  
achieved by the Cymbopogon citratus leaves, Pandanus leaves,  
Euphoria malaiense seeds, Nephelium mutabile seeds, and  
Centella asiatica leaves were 90.2%, 87.3%, 86.2%, 84.7%, and  
an increment in the dosage. In contrast, it is observed that a high  
coagulant dosage has a slightly adverse effect towards removal  
performance. In the case of the Euphoria malaiense seeds, the  
removal performance decreased from 91.7% to 90.4% as the  
dosage increased from 70 to 90 mg/L. The performance of natural  
coagulants shown in Figure 4(b) are associated with the  
performance shown in Figure 4(a). It is clearly seen that the  
Carica papaya seeds has a higher coagulation activity of 95.4%  
while the Centella asiatica leaves has the lowest coagulation  
activity of 89%.  
8
1.7%, respectively. The results in Figure 3(a) show similar  
trends with Figure 3(b), where the Carica papaya seeds also had  
the highest coagulation activity of 92.6%, followed by the  
Cymbopogon citratus leaves, Pandanus leaves, Euphoria  
malaiense seeds, Nephelium mutabile seeds, and Centella asiatica  
leaves with coagulation activities of 88.9%, 84.7%, 83%, 78.9%,  
and 74.6%, respectively. All the natural coagulants in the NaOH  
solution show high performance when compared to the other  
solutions of NaCI and deionised water. This is due to the high  
efficiency of the NaOH solution in extracting more coagulant  
agents from these plant-based natural coagulants, which resulted  
in a high coagulation activity, thus leading to a higher turbidity  
removal. Therefore, it can be concluded that the NaOH solution  
is the best solvent required to extract natural coagulants in water  
treatment.  
3.5 Effect of pH on Natural Coagulants  
The pH is another important factor for coagulation efficiency.  
During the coagulation process, the surface charge of coagulants  
may be affected by the pH (22). Coagulants with a low surface  
charge might cause the slow growth of flocs particle, thus leading  
to low removal performance in water treatment. Therefore, it is  
crucial to conduct jar tests to determine the optimum pH in  
treating turbid water. Figure 5(a) shows the effect of varying pH  
on turbidity removal by the natural coagulants while Figure 5(b)  
shows the pattern of coagulation activity occurring during the  
experimental work at various pH values. The pH values varied  
from 2, 4, 7.5, 10, to 12, at constant dosage (130 mg/L). Based on  
the figures, the best pH value to remove turbidity was at pH 7.5,  
while the lowest percentage removal of turbidity was at pH 12.  
All the natural coagulants showed removal trends where the  
percentage of removal increased from pH 2 and rapidly decreased  
after pH 7.5. Based on Figure 5(a), at optimum pH 7.5, the Carica  
papaya seeds contributed the highest turbidity removal of 95.6%,  
followed by the Nephelium mutabile seeds, Cymbopogon citratus  
leaves, Euphoria malaiense seeds, Pandanus leaves and Centella  
asiatica leaves with removal rates of 94.1%, 93%, 91.3%, 89.2%,  
and 87%, respectively. Figure 5(b) demonstrates that the  
coagulation activities of all natural coagulants showed positive  
effects when the pH value is increased. It is noticeable that most  
coagulation occurred at pH 7.5, compared to other pH value. The  
highest coagulation activity in Figure 5(b) is also shown by the  
Carica papaya seeds with a value of 96.7%. In contrast, the  
Centella asiatica leaves had the lowest coagulation activity of  
3
.4 Effect of Dosage on Natural Coagulants  
Coagulation efficiency can be determined by considering  
several factors, including coagulation dosage (22). To achieve  
excellent results in water treatment, it is important to determine  
the optimum conditions during the coagulation process. This is  
because a high coagulation dosage may inhibit the high removal  
performance of coagulants in water treatment (19). Figure 4(a)  
and Figure 4(b) show the performance of each natural coagulant,  
under various dosages. The pH was kept constant at 7.5.  
Based on Figure 4(a), the 130mg/L dosage was selected as the  
optimum coagulant dosage as it showed the highest turbidity  
removal. At the optimum dosage, Carica papaya seeds had the  
highest turbidity removal of 95.5%, while the Cymbopogon  
citratus leaves, Euphoria malaiense seeds, Nephelium mutabile  
seeds, Pandanus leaves and Centella asiatica leaves had turbidity  
removals of 93.4%, 93%, 92%, 90.5%, and 90.2%, respectively.  
It is clearly shown in Figure 4(a) that the coagulant dosage  
significantly affects the turbidity removal efficiencies. The  
removal performance for all the natural coagulants increase with  
8
6.1%. Of all the pH values investigated, pH 7.5 was the optimum  
for all the natural coagulants as both results showed the highest  
turbidity removal and coagulation activity  
9
74  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 971-977  
Carica Papaya seeds  
Euphoria Malaiense seeds  
Centella Asiatica leaves  
Nephelium Mutabile seeds  
Pandanus leaves  
Cymbopogon Citratus leaves  
Carica Papaya seeds  
Euphoria Malaiense seeds  
Centella Asiatica leaves  
Nephelium Mutabile seeds  
Pandanus leaves  
Cymbopogon Citratus leaves  
9
9
9
9
9
8
8
8
8
8
8
6
4
2
0
8
6
4
2
0
9
9
9
9
9
88  
86  
84  
82  
80  
8
6
4
2
0
1
0
30  
50  
Dosage (mg/L)  
a)  
70  
90  
110  
130  
10  
30  
50  
70  
90  
110  
130  
Dosage (mg/L)  
(
(b)  
Figure 4: Effect of various coagulant dosage on (a) Turbidity Removal and (b) Coagulation Activity of different natural coagulants  
Carica Papaya seeds  
Euphoria Malaiense seeds  
Centella Asiatica leaves  
Nephelium Mutabile seeds  
Pandanus leaves  
Cymbopogon Citratus leaves  
Carica Papaya seeds  
Euphoria Malaiense seeds  
Centella Asiatica leaves  
Nephelium Mutabile seeds  
Pandanus leaves  
Cymbopogon Citratus leaves  
100  
1
00  
90  
80  
70  
60  
50  
9
8
7
6
5
0
0
0
0
0
2
4
7.5  
pH Value  
(b)  
10  
12  
2
4
7.5  
pH Value  
10  
12  
(a)  
Figure 5: Effect of various pH on (a) Turbidity Removal and (b) Coagulation Activity of different natural coagulants  
1
00  
1
00  
9
0
0
0
0
0
8
0
8
7
6
5
60  
40  
20  
0
Carica papaya seeds  
(
Alum  
Carica papaya seeds  
Alum  
Materials  
Materials  
a)  
(b)  
Figure 6: Comparison performance of (a) Turbidity Removal and (b) Coagulation Activity between Carica papaya seeds and Alum  
3
.6 Potential Use of Natural Coagulant in Water Treatment  
This study further compared the performance of a natural  
removal and coagulation activity. Figure 6(a) and Figure 6(b)  
show the performance comparison between natural coagulant  
(Carica papaya seeds) and chemical coagulant (alum). The test  
was carried out at optimum conditions (coagulation dosage of 130  
mg/L and pH 7.5). The results showed that the natural coagulant  
acts as a better coagulant agent compared to alum.  
coagulants with a chemical coagulant. The potential use of natural  
coagulants in water treatment can be determined through this  
comparison. In the present study, the Carica papaya seeds was  
selected as the best coagulant as it produced the highest turbidity  
9
75  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 971-977  
Based on Figure 6(a), the Carica papaya seeds managed to  
remove almost 95.5% of turbidity, compared to alum which could  
only remove water turbidity by up to 73%. Based on Figure 3(b),  
the coagulation activity of alum was only 20.8%, lower than the  
Carica papaya seeds which exhibited a high coagulation activity  
of 94%. Thus, based on the results, it can be proven that Carica  
papaya seeds (natural coagulant) has a tremendous potential to  
treat polluted water and is superior to alum (chemical coagulant).  
Brinjal (Solanummelongena l. var. pruthvi). Journal of  
Environmental Treatment Techniques. 2016;4(2):52-7.  
Patel H, Vashi R. Comparison of naturally prepared coagulants for  
removal of COD and color from textile wastewater. Global NEST  
Journal. 2013;15(4):522-8.  
2
3
.
.
Saharudin NFA, Nithyanandam R. Wastewater Treatment by using  
Natural Coagulant. 2nd eureca 2014. 2013;4:213-7.  
4. Camacho FP, Sousa VS, Bergamasco R, Teixeira MR. The use of  
Moringa oleifera as a natural coagulant in surface water treatment.  
Chem Eng J. 2017;313:226-37.  
5
.
Karbassi A, Pazoki M. Optimization of coagulation/flocculation for  
treatment of wastewater. Journal of Environmental Treatment  
Techniques. 2015;3(2):170-4.  
4
Conclusions  
In terms of yield properties, the Nephelium mutabile seeds are  
sufficient to be used as natural coagulants. This is due to the  
Nephelium mutabile seeds having the lowest moisture content of  
6. Shak KPY, Wu TY. Coagulationflocculation treatment of high-  
strength agro-industrial wastewater using natural Cassia obtusifolia  
seed gum: treatment efficiencies and flocs characterization. Chem  
Eng J. 2014;256:293-305.  
2
0.5% which resulted in a greater yield. All the natural coagulants  
react the best in a sodium hydroxide solution (NaOH) compared  
to deionised water and sodium chloride solution (NaCI). The  
NaOH solution achieved the optimum concentration at 2 M which  
contributed to higher turbidity removal and coagulation activity  
in the Carica papaya seeds at 94.5% and 92.6%, respectively. At  
optimum condition (130 mg/L dosage and pH 7.5), the Carica  
papaya seeds appeared to be the best coagulant with the highest  
turbidity removal of 95.6% and coagulation activity of 94%. This  
study also proved that natural coagulants have a higher efficiency  
in treating turbid water compared to chemical coagulants. At  
optimum condition, the Carica papaya seeds contributed to  
excellent turbidity removal of 95.6% and coagulation activity of  
7
.
Choy SY, Prasad KMN, Wu TY, Raghunandan ME, Ramanan RN.  
Utilization of plant-based natural coagulants as future alternatives  
towards sustainable water clarification. Journal of environmental  
sciences. 2014;26(11):2178-89.  
8. Talnikar T. Natural coagulant for wastewater treatment: Review.  
Pravara Journal of Science and Technology. 2017:38-42.  
9. Abidin ZZ, Shamsudin NSM, Madehi N, Sobri S. Optimisation of a  
method to extract the active coagulant agent from Jatropha curcas  
seeds for use in turbidity removal. Industrial Crops and Products.  
2
013;41:319-23.  
1
0. Al-Gheethi A, Mohamed R, Wurochekke A, Nurulainee N, Rahayu  
JM, Hashim MA, editors. Efficiency of moringa oleifera seeds for  
treatment of laundry wastewater. MATEC Web of Conferences;  
2017: EDP Sciences.  
9
4%, while, alum only achieved 73% and 20.8% of turbidity  
removal and coagulation activity, respectively. Overall, fruit seed  
and plant leaf-based natural coagulants have a high potential and  
could be commercialised as coagulants to replace chemical  
coagulants in water treatment.  
11. Antov MG, Šćiban MB, Prodanović JM, Kukić DV, Vasić VM,  
Đorđević TR, et al. Common oak (Quercus robur) acorn as a source  
of natural coagulants for water turbidity removal. Industrial Crops  
and Products. 2018;117:340-6.  
1
2. Choy SY, Prasad KN, Wu TY, Raghunandan ME, Ramanan RN.  
Performance of conventional starches as natural coagulants for  
turbidity removal. Ecological engineering. 2016;94:352-64.  
Acknowledgment  
This research was financially supported by Research  
University Grant of Universiti Teknologi Malaysia (GUP-UTM)  
under (Grant Project No: 18H96).  
13. Kakoi B, Kaluli JW, Ndiba P, Thiong’o G. Banana pith as a natural  
coagulant for polluted river water. Ecological engineering.  
2
016;95:699-705.  
1
4. Lek BLC, Peter AP, Chong KHQ, Ragu P, Sethu V, Selvarajoo A, et  
al. Treatment of palm oil mill effluent (POME) using chickpea (Cicer  
arietinum) as a natural coagulant and flocculant: Evaluation, process  
optimization and characterization of chickpea powder. Journal of  
environmental chemical engineering. 2018;6(5):6243-55.  
Ethical issue  
Authors are aware of all the publication ethics and adhere to  
the publishing requirement. The manuscript is an original work  
and not under consideration for publication elsewhere and has not  
been published elsewhere in the same form, in English or in any  
other language. The manuscript does not involve any studies  
related to human participants or animals performed by any of the  
authors.  
15. Som AM, Wahab AFA. Performance Study of Dragon Fruit Foliage  
as a Plant-based Coagulant for Treatment of Palm Oil Mill Effluent  
from Three-phase Decanters. BioResources. 2018;13(2):4290-300.  
1
6. Torres K, Álvarez-Hornos FJ, San-Valero P, Gabaldón C, Marzal P.  
Granulation and microbial community dynamics in the chitosan-  
supplemented anaerobic treatment of wastewater polluted with  
organic solvents. Water research. 2018;130:376-87.  
Competing interests  
The authors declare that there is no conflict of interest that  
could have appeared to influence the work reported in the paper.  
17. Patidara K, Roya R, Kumara S, Nirmalaa G, Murugesanb T.  
Experimental investigation of Sterculia foetida and Moringa oleifera  
as a coagulant for water and wastewater treatment. Desalination And  
Water Treatment. 2018;122:254-9.  
1
8. Anju S, Mophin-Kani K. Exploring the use of orange peel and neem  
leaf powder as alternative coagulant in treatment of dairy wastewater.  
IJSER. 2016;7(4):238-44.  
Authors’ contribution  
All authors have contributed in writing, gathering  
experimental data and analysis. All the authors have worked  
together to complete the research and mutually agree to submit  
the paper for publication.  
19. Unnisa SA, Bi SZ. Carica papaya seeds effectiveness as coagulant  
and solar disinfection in removal of turbidity and coliforms. Applied  
Water Science. 2018;8(6):149.  
2
0. Zhang Z, Dan L, Dandan H, Duo L, Xiaojing R, Cheng Y, Et Al.  
Effects Of Slow-Mixing On The Coagulation Performance Of  
Polyaluminum Chloride (PACI). Chinese Journal Of Chemical  
Engineering. 2013;21(3):318-23.  
References  
1
.
Vaithiyanathan T, Soundari M, Sundaramoorthy P. Sugar Mill  
Effluent Induced Changes in Germination and Biochemical of Hybrid  
9
76  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 971-977  
2
2
1. APHA A. WPCF (2005) Standard methods for the examination of  
water and wastewater. USA: Washington DC, USA. 2005.  
2. Saritha V, Srinivas N, Srikanth Vuppala NV. Analysis and  
optimization of coagulation and flocculation process. Applied Water  
Science. 2017;7(1):451-60.  
9
77