Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1220-1231  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/8(3)1231  
RTD Modeling of a Non-Ideal Coiled-Tube  
Reactor through Experimental Investigation for  
Pulse Input Using Methylene Blue Dye  
1
1
2*  
1
1
Avdesh Singh Pundir *, Kailash Singh , Varshika Singhal , Mayank Pandey , Garvit Gupta ,  
1
1*  
1
Moh. Rohaan , Sunil Rajoriya and Girish Tyagi  
1
Department of Chemical Engineering, MIET, Meerut, U.P-250005  
2
Department of Chemical Engineering, MNIT, Jaipur, Rajasthan-302017  
Received: 01/07/2020  
Accepted: 07/08/2020  
Published: 20/09/2020  
Abstract  
This paper focuses on the grasp of a deep understanding of flow behavior in a coiled tube reactor through Residence Time  
Distribution (RTD) studies. The reactors, in general, are classified ideally: mixed and plug-flow patterns. Unfortunately, in the real  
world, it has been observed that they show very different behavior from that expected. Thus, the characterization of the nonideal coiled  
tube reactor is needed to carry out. The calculations were carried out in the Matlab for distribution of residence time of the coiled tube  
reactor that is used in the Chemical Reaction Engineering Laboratory at MIET College. Pulse input tests were used significantly to  
analyzed the flow behavior using methylene blue (MB) tracer. A significant disparity in RTD curves in the presence of the secondary  
flow was examined and data were recorded. Finally, a suitable mathematical model was selected from the Tank in Series (TIS) and Axial  
Dispersion Models (ADMs) based on residual error and was used to validate these outcomes. The deconvoluted of the signal was used  
to get Cin for the verification of the pulse input behavior. The results were compared with the experimental data that concluded the  
modeling of the reactor is in good agreement.  
Keywords: Pulse input, Methylene blue, RTD, Coiled tube reactor, Non-ideal  
Introduction1  
modified with time, therefore, producing a frequency-response  
1
layout for the system. Each approach can be modified into the  
other two as per our convenience. However, practically, it is a  
good deal to handle a less complicated approach to monitoring  
a tracer response that approximates a step-change or a pulse  
enter due to measurement complexity related to sinusoidal  
variations, besides, to consume much greater time and want for  
a unique measuring device (3).  
The applications of continuous processing in the chemical  
industry have been increasing day by day. There are many  
causes why a chemical product manufacturer may choose to run  
chemical reactions in continuous mode instead of batch. The  
main causes for choosing continuous instead of batch reaction  
system are rapid kinetics, exothermic reaction, hazardous  
chemicals, high temperatures, and pressures. In general, a  
reactor used in chemical industries has non-ideal behavior.  
Therefore, it’s important to know the real behavior of the  
reactor through modeling and simulation in practice. To  
simulate a real reactor, it’s necessary to estimate RTD. RTD  
describes how much time a particle spends inside the reactor  
For an ideal reactor, the flow and mixing conditions are  
needed to be exactly known, which allows us to develop the  
theoretically mathematical model equation (1). However, in  
reality, for built reactors, these complex characteristics much  
deviate to some extent from ideal behavior due to various  
possible reasons such as a consequence of a short-circuiting,  
absence of turbulence, macroscopic internal currents, and  
stagnant zones (2). In an actual system, the velocity distribution  
profile leads to  
a residence time distribution (RTD).  
Experimental determination of RTD is carried out via  
measuring the outlet response of an inert tracer which injected  
into the flow stream to be study and so-called stimulus-  
response technique. In general, tracers are normally a soluble  
dye, acid, or color compound that can be effortlessly detected  
the concentration at the exit of a reactor with the assistance of  
an online or manually measuring device. The applied  
techniques are all primarily based on the measurement of some  
properties at the output flow of a reactor based on regarded  
modifications to the input flow which may additionally consist  
of the following strategies for making use of the tracer to a  
system (a) a step enter method, in which the regarded input  
concentration is modified from one regular stage to some other  
regular level;(b) a pulse enter method, in which a pretty small  
recognized quantity of tracer is injected into the feed circulate  
in the negligible feasible time; and (c) a sinusoidal enter  
method, in which the frequency of the sinusoidal variant is  
(
4). For a better understanding of flow reactors, two different  
ideal reactor models i.e. Continuous Stirred Tank Reactor  
CSTR) and Plug Flow Reactor (PFR) are used at the industry  
(
level. An Ideal CSTR assumes perfect mixing, while an ideal  
PFR assumes no mixing. No real reactor has consisted  
accurately the characteristics of either of the two ideal reactors,  
in general. Many researchers have shown that a real reactor can  
*
Corresponding author: (a and b) Avdesh Singh Pundir and Sunil Rajoriya, Department of Chemical Engineering, MIET, Meerut,  
U.P-250005. Emails: avdesh.pundir@miet.ac.in and sunil.rajoriya@miet.ac.in (c) Kailash Singh, Department of Chemical Engineering,  
MNIT, Jaipur, Rajasthan-302017. E-mail: ksingh.mnit@gmail.com  
1
220  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1220-1231  
be modeled as reactor data tank-in-series (TIS) and axial  
dispersion model (ADM) which are widely used (5). In many  
practical situations, the fluid in the reactor is neither well mixed  
nor plug flow. Therefore, there is a need for time to model a  
real reactor and it can be possible in several ways. The RTD  
describes us how long the various reacting fluid elements have  
been retained inside the reactor, however, it does not convey  
any information regarding the exchange of matter among the  
fluid elements. The mixing of different reacting species is one  
of the main factors responsible for controlling the behavior of  
chemical reactors. For the different order reactions system,  
more especially for the first-order system, the knowledge of the  
time with which each molecule remains in the reactor is  
required to predict the conversion of a reactant. Therefore, once  
the RTD is determined, it is quite easy to predict the reaction  
conversion that will be achieved in a real reactor with the  
known value of the specific reaction rate for the first-order  
reaction. For reactions other than the first-order only  
knowledge of RTD is not adequate to predict conversion. In  
such cases, in addition to RTD, the degree of mixing of  
molecules must be known (6). In this study, no reaction mixture  
has been considered while an investigation of flow behavior has  
been carried out using a methylene blue dye as a tracer for pulse  
input.  
rate of water can be adjusted by operating the provided needle  
valve and measured with the help of a rotameter. The  
compressed air is used for the circulation of water. The reactor  
is a helical coil tube type made up of stainless-steel pipe. The  
methylene blue dye solution enters at the lower end coming out  
of the top of the coil from where samples are collected for  
analysis of outcomes. To investigate the flow behavior by using  
the RTD characteristics, a simple arrangement is made  
available to inject MB as a tracer into the lower end of the  
reactor, using a syringe, manually. Pressure regulator &  
pressure gauge are fitted in the compressed airline for ease of  
varying the water flow rate. The coiled tubular flow reactor  
consists of 60.96 cm length of the tube and 12.33 mm inner  
diameter provided with one inlet/outlet at one end opposite to  
each other and inclined at 90˚ with the axis of the tube. The  
diameter of the pipe before the inlet point of the reactor is 10  
mm and through which a pulse input is given. The volume of  
-
4
3
the reactor is 2.911x10 m . The coiled tube reactor is kept in  
an isothermal rectangular tank fitted with a temperature sensor.  
The temperature of the stirred water bath tank is kept constant  
with the help of a PID controller and uniform by stirring action.  
3
Effect of shape of the coiled tube reactor  
The coiled1tube reactor consists of two main flows: a  
The main aim of this study is to develop a reliable model  
for a continuous reactor, especially for a coiled-tube reactor  
which is mostly used in many chemical and allied industries. A  
model is to develop for the flow of Newtonian fluid (because  
mostly organic solvents may have similar properties to water)  
in a coiled-tube reactor. This model is used to define the design  
rules for the reactor. The model describes the RTD as a function  
of the rheological behavior of the system and operational  
parameters for fixed tube dimensions. The first emphasis lies  
on determining the suitable model for a coiled tube reactor from  
experimental data and validation of the assumption by  
primary flow occurring along the axial direction of the fluid  
motion and a secondary flow acting perpendicularly to this due  
to centrifugal force. By the secondary flows, drag effects in the  
proximity of wall surfaces come in the picture (7). The  
secondary flow in helical pipes was firstly investigated by Dean  
(8). He used the dimensionless group to characterize the flow  
behavior inside the coiled-tube reactor, normally called Dean  
number, De:  
푅ꢀ  
휌푢푑푡  
퐷푒 = √  
=
푐  
(1)  
determining the dispersion coefficient,  
D
Axial  
.
During  
experimentation, it is normally assumed that the input tracer  
concentration has perfect pulse shape, and then a suitable  
analytical expression is normally used without verifying the  
pulse input shape. That is why a different way for the  
calculation is presented, not only taking the moments but the  
whole distribution into account. The geometry configuration of  
the coiled tube reactor introduces a secondary motion which  
ultimately affects the dispersion. To accomplish this, the  
solutions of the three models are fitted to the measured RTD  
data. At first, a one-parametric tank in a series model is used  
due to its simple nature without taking into account complex  
phenomena such as bypass or channeling. Second dispersion  
models have been applied to solve the dispersion convection  
equations and fitted to the measured RTD data by using the  
least-squares method. At last, by using the deconvolution  
technique, a validation of the pulse input shape has been carried  
out along with an optimization scheme for an overdetermined  
system. All calculations were carried out in Matlab. This study  
has been carried out and presented in such a manner so that it  
can be more accessible to many postgraduate and research  
students who are working presently in this field. The prime  
objective of the present study is to determine a suitable model  
that predicts the output in a known manner from data gathered  
in an undergraduate laboratory through a lot of experiments.  
This study adds “off the shelves” method to the chemical  
engineering discipline.  
where  is the ratio of coil-to-tube diameter.  and  are the  
density and dynamic viscosity of the fluid and  is the mean  
axial velocity, respectively. For a better understanding of the  
physical meaning of Dean number, 퐷푒, it can be re-written in  
terms of the forces which come in the picture are inertia,  
centrifugal acceleration, and viscous forces.  
ꢇ(ꢈꢀ푛ꢉ푟푖ꢊ푢푔푎푙 ꢊ표푟ꢈꢀ) ×(푖푛ꢀ푟ꢉ푖 ꢊ표푟ꢈꢀ)  
퐷푒 훼 푓(  
)
(2)  
(푣푖푠ꢈ표푢푠 ꢊ표푟ꢈꢀ)  
Under the condition of low values of Dean numbers (퐷푒 ≪  
1
), viscous forces are dominant and the secondary flow is  
approximately absent (9). Conversely, with the increment in  
퐷푒, centrifugal and inertial forces overcome against drag which  
ultimately leading to the formation of secondary flow.  
Therefore, the Dean number is more informative than  
Reynold's number to describe the flow behavior in a  
curved/helically coiled-tube reactor. There are many analytical  
solutions available for the equation which describes the flow  
for incompressible laminar flow and lower values of curvatures  
radius (high ). However, the nondimensional solution  
provided by analytical depends heavily on 퐷푒. The action of  
centrifugal force due to the curvature of the reactor tube  
develops two opposite-rotating vortices, which supports  
secondary mixing. The centrifugal force pushes hard on the  
fluid elements which are moving in and around the center of  
the tube, and from the fluid mechanics' theory, it is clear that  
the axial velocity is maximum at the center point of the tube.  
The central region's fast-moving fluid is forced to move  
outward and it is constantly replaced by the fluid near the wall,  
so there is some sort of inter-transfer movement of inner and  
2
Experimental setup  
The experimental setup consists of two feed tanks and one  
tank is used through which water is fed to the reactor. The flow  
1
221  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1220-1231  
outer fluid elements. Due to that reason, the position of  
maximum axial velocity is off-centered and moves toward the  
outer wall.  
( )  
function:  퐸 ꢋ ꢌꢋ = ꢍ. Under the normalization condition,  
0
the shaded area under the residence time density function is  
unity. It means that the fraction of fluid elements remains into  
the reactor for time limits between 0 and ∞ is 1. There are two  
important type reactors which normally encounter in chemical  
industries which are the plug flow and the mixed flow  
(continuously stirred tank reactor, CSTR) reactors. In the case  
of an ideal plug flow reactor, the RTD is a delta function that is  
centered at the point of reactor space-time  and under ideal  
condition, it is assumed that there is no distribution of residence  
times, every fluid element lives for the same amount of time 휏  
inside the reactor.  
4
Results and discussion  
There are many approaches available to model a real non-  
ideal reactor but two models have been significantly in use.  
These two models have one unknown parameter. One  
parameter model is also known as the Tank-In-Series (TIS)  
model and Axial Dispersion Model (ADM). There are two most  
common injection methods available: the first one is being  
called pulse input (mathematically, called “Dirac delta  
function” in case of ideal input) and the second one is called  
step input. In this study, the pulse input injection method has  
been used. Figure1 shows the actual experimental setup used in  
this study.  
  = 훿(ꢋ − 휏)  
( )  
(3)  
The spent period called macroscopic residence time  
normally depends on the reactor geometry and the operating  
conditions. For a tubular reactor with constant cross-section:  
4
.1 Measurement of the RTD  
The main aim of this study is to introduce the reader to the  
analysis of the coiled tube chemical reactor. In it, reactions with  
complex kinetics can be carried out. It is normally work in  
unusual condition, such as unsteady-state operation. The  
휏 =  
(4)  
̇
where  and  are the volume and length of the reactor,  
respectively, is the volumetric flow rate and is the averaged  
fluid velocity. To calculate the space-time for any kind of  
reactor, the knowledge of the reactor volume and the fluid flow  
rate is a must.  
The major flow pattern in RTD theory other than a plug  
flow reactor is a CSTR. Each element of fluid at the inlet is  
instantaneously and perfectly mixed with the solution already  
present in the reactor. It can be easily shown that the RTD for  
a CSTR is the exponential function (12):  
mathematical analysis is  
a
necessary tool for the  
̇
characterization of flow and kinetic models. A software tool is  
also necessary to solve a complex problem in the design of a  
coiled tube reactor (10). In the last four decades, many  
researchers have published literature but out of them, the  
detailed review has been published by Nauman (11) along with  
the introduction of the development of the RTD theory. He  
adopted both the experimental as well as the modeling  
techniques and many applied applications. The RTD is defined  
as the product of function () and t such that as 퐸(ꢋ)ꢌ. E(t)  
represents the fraction of fluid elements whose residence time  
in the reactor lies in the time range d. It is called the residence  
time density function. Alternatively, the fraction of fluid  
ꢑ푡  
1
(ꢋ) = ꢐ  
(5)  
1 2  
elements residing in the vessel between time limits  and  is  
The RTD of a real reactor can be approached to the  
behavior of these ideal reactors and the extent of the deviation  
must be investigated by using well established RTD studies.  
There are many experiments possible which permit the RTD of  
a real reactor to be derived.  
ꢉ2  
given by 1 퐸(ꢋ) ꢌꢋ . From the other point of view, the fraction  
of fluid element with age lessor than  can be represented by  
퐸(ꢋ) ꢌꢋ. As the nature of being a probability distribution  
0
function, () function can be presented as the normalization  
Stirrer  
Coiled Tube Reactor  
Injector  
Dye Solution  
Outlet  
Heater  
Water Inlet  
Cout  
Stirred Tank Heater  
Cin  
Product Tank  
Time  
Time  
Figure 1: Schematic representation of the RTD experimental setup with a pulse input  
1
222  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1220-1231  
In this study, only the simplest ones are introduced which  
doesn't demand any special skill or much chemical and  
sophisticated equipment for injection. The experimental  
measurement of the RTD is carried out by injecting a tracer,  
which is methylene blue (MB) in this study, into the coiled-tube  
reactor at a fixed time. This MB is an inert chemical. The MB  
concentration at the outlets of the reactor is measured by the  
colorimeter with the progress of time. The necessary condition  
for the selection of a trace is that it must be inert, soluble in the  
reacting mixture, and easily detectable. Besides, it should not  
have any interaction with the walls of the reactor so that it can  
be used to reflect, as best as possible, the real behavior of the  
reacting materials which are flowing through the reactor. Table  
at  
a
predefined time and then measuring the tracer  
concentration, C, (= Cout) in the effluent stream with the  
progress of time. In a pulse experiment, however, the uniform  
distribution of the MB dye is not practically possible which  
emphasizes the investigation of deconvolution study. The  
measured concentration of the MB at the outlet plotted against  
the time which is called C-curve and from this C-curve, E-curve  
was produced. The E-curve gives the “fraction” of the volume  
element exiting the system at a particular time. The E-curve can  
also be produced as a normalized distribution which means that  
the total area under the curve is unity. From the above-  
discussed theory, the E-curve can be determined:  
퐶(ꢉ)  
1
represents the values of the process parameters used and  
퐸(ꢋ) = ꢘ  
(6)  
퐶푑ꢉ  
evaluated in this study.  
Once the values of () are known, the mean residence time  
Table 1: Various parameters used in this study  
can be calculated as ꢋ  
̅
= ∫0 퐸(ꢋ)ꢌ This is called the first  
moment of the distribution. The mean residence time ꢋ  
̅
is equal  
to the space-time only under the ideal flow behavior condition.  
It is also useful to calculate the variance of the distribution,  
which is the second moment about the mean:  
2
푚  
6.47E-10 (m /sec)  
τ
21.83 (sec)  
430.26  
2 = ∫ (ꢋ − ꢋ  
)2퐸(ꢋ)ꢌ.  
(7)  
̅
3
0
950 (kg/m )  
NRe  
Dꢓ  
λ
0.6096 (m)  
49.44  
117.62  
The calibration experiments were carried out on the UV-  
VIS detection system and presented in figure 2. The fitted  
calibration equation was used to estimate the concentration of  
the MB dye at the reactor outlet. Figure 3 depicts the outlet  
concentration measured with the progress of time. The  
evaluated cross ponding E and F curves from figure 3 have been  
shown by figures 4 and 5 along with its dimensionless forms.  
These figures show the smooth curve as expected.  
퐿/ꢌꢉ  
ꢔ푒ꢕ  
13.38  
2
10.01  
DAxial  
u
0.0017 (m /sec)  
600 (ml)  
22.08(sec)  
0.2025  
0.0279 (m/sec)  
87.42  
̅
σ
퐵ꢖ  
dt  
0.01233 (m)  
4
.2 C, E and F curves  
The RTD is determined experimentally by injecting a small  
amount of MB dye, called a tracer, into the coiled tube reactor  
Figure 2 Calibration and residual error curves for concentration measurement  
1
223  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1220-1231  
Figure 3: Concentration at the outlet of the coiled tube reactor  
(a)  
(b)  
Figure 4: E curves of the coiled tube reactor with time (a) and without time dimension (b)  
1
224  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1220-1231  
(a)  
(b)  
Figure 5: F curves of the coiled tube reactor with time (a) and without time dimension (b)  
̅ꢟ  
)퐸(ꢋ)ꢌꢋ =  
2
ꢙ = ∫ (ꢋ − ꢋ  
̅
(9)  
0
4
.3 Tank in series model (TIS)  
In this approach, we study the RTD of a coiled tube reactor  
It is clear from figure 7 and 8, as we increase the number  
of tanks, the error gets reduce but after n = 6, the value of error  
gets an increase. Therefore, the best-fitted value for the TIS  
model is n = 6. But from figure 7, it is also clear that this value  
has a large error which is not acceptable for the real system.  
to determine the number of CSTRs in series that will represent  
approximately the same RTD behavior as of the coiled tube  
reactor. We started the investigation with two CSTRs in series  
expression for the expression of the RTD, and then generalize  
it for “n” reactors connected in series. In this way, it is obtained  
an equation that allows us to calculate the number of tanks that  
best correlates the RTD data of the coiled tube reactor(13).  
4
.4 Axial dispersion model (ADM)  
In this study, the simplest model was to describe flow  
ꢚꢑꢛ  
푛ꢜ1!  ꢚ  
inside the coiled reactor which consists of both the convection  
and the diffusion terms which are most important of the axial  
dispersion model as reported by many researchers (1517). The  
model is represented by the following equation:  
ꢓꢞp(− )  
ꢝ  
퐶푆푇푅푠  
=
(8)  
i
Here t = t/n, where t in the numerator represents the total  
volume of all reactors divided by the volumetric flow rate.  
Figure 6 shows the actual approach of the TIS model. Figure 7  
shows the RTD mapping for different CSTR numbers in series.  
As n increases, the behavior is closer to plug flow behavior.  
The number of reactors in series can be calculated from the  
dimensionless variance (14):  
휕퐶  
휕ꢉ  
휕 퐶  
휕푥ꢟ  
휕퐶  
휕푥  
=
푙  
− ꢆ  
(10)  
where , the concentration of a tracer, is a function of time and  
the axial coordinate of the system x, Axial is the axial  
dispersion coefficient and  is a constant mean axial velocity,  
which does not vary with x. The model described a one-  
1
225  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1220-1231  
dimensional dispersion process of a plug-flow reactor. Here, it  
is assumed that the axial dispersion coefficient is independent  
of the axial position as well as the tracer concentration. It  
describes the rate of axial dispersion inside the reactor. To  
make the model more approachable from the numerical  
solution point of view, we have converted the model in a non-  
dimensional form (18).  
model which is generally known as the Peclet number, ꢔ푒퐿 =  
ꢆ퐿/Aial. However, the literature shows different definitions of  
this parameter under different conditions which differ in the  
way of representing the characteristic length and the diffusion  
coefficient (molecular or axial diffusion coefficient). The  
analytical solutions available are different when subject to  
different boundary conditions (1921). The changing  
dispersion parameter due to the reactor geometry and operating  
conditions can be estimated by comparing the RTD  
experimental data with the analytical solution available.  
휕퐶  
휕휃  
1
휕 퐶  
휕퐶  
푧  
=
(11)  
푃ꢀ휕푧ꢟ  
푢ꢕ  
with  =  =  and z = x/, where  shows the length of the  
reactor. It is clear that this model is a single parameter-based  
Coiled Tube Reactor  
A Small Segment of a Coiled Tube Reactor  
Cout  
Cin  
Series of Stirred Tank Heater  
Figure 6: Schematic diagram for the tank in series model (TIS)  
Figure 7: RTD mapping of the tank in series (TIS) model with the experimental data  
1
226  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1220-1231  
Figure 8: RTD mapping error of the tank in series model with the experimental data  
Once we knew that unknown parameter then one can define  
the extent of hydrodynamic dispersion inside the reactor using  
that parameter value. To do so it is more convenient to work  
stage which consists both of diffusion as well as convective  
mechanism. For the coiled tube reactor, there is no straight  
forward relation available for the applicability of the model.  
The residual error of the fitting may be used for validation  
purposes. It is reported that for Dean number, De < 0.5,  
applicability validation relation for straight tube can be used  
with dimensionless groups. The inverse of ꢔ푒 is the vessel  
dispersion number, N . This is a measure of the spread of tracer  
L
in the whole reactor and is so defined:  
(
23). But in this study, Dean number, De, has a value of  
1
ꢤꢥꢝꢦꢧ  
푢ꢕ  
ꢨꢩꢚꢪꢫ푐푡ꢝꢩꢚ  
ꢬꢝꢭꢭꢮꢯꢝꢩꢚ  
117.61. However, for crosschecking purposes, we have applied  
that relation too. The analytical solutions provide by equations  
푁 =  
=
= ꢕ  
(12)  
푃ꢀꢡ  
ꢤꢥꢝꢦꢧ  
(
L
13 & 14) depend on the vessel dispersion number N which is  
The experimental RTD values were compared with the  
obtained analytical solution of the axial dispersion model (22),  
not known before fitting of the experimental data. Therefore,  
both solutions need to be applied to find a suitable model. To  
check the applicability of the axial dispersion model, the  
following relation has been used.  
which holds in this study (퐵ꢖ = 0.20, /ꢌ  
= 49.44) . Levenspiel  
(17) suggested the analytical solution for small deviations from  
plug-flow (푁  
conditions as (21)  
> 0.01) under open-open ends boundary  
̅
6
 = 푡  
>
(17)  
/ꢂꢲ  
ꢵꢫ  
(ꢕꢜ푢)ꢟ  
) for large dispersion  
4ꢂꢤꢥꢝꢦꢉ  
1
퐸 푀ꢖꢌ푒ꢰ ꢍ =  
ꢓꢞp(−  
valid condition:  <  < ꢱ8 ꢷ 푁푅ꢀ < ꢍꢶꢶꢶ and the mean  
residence time of the vessel,  = ꢆ/퐿.Our study parameters  
ꢇ4휋ꢤꢥꢝꢦꢉ  
̅
number, N  
L
> 0.01  
(13)  
come under this valid range. The geometry of the coiled tube  
reactor is responsible for the development of two major  
mechanisms: the first one is secondary flow and the second one  
is interchanging velocity between adjacent fluid layers. The  
development of these mechanisms can be verified by Dean  
number, De. Dean's number expresses the magnitude of the  
developed secondary flow. If De < 1.5, it can be assumed that  
the secondary flow is absent while 1.5 < De < 3, fully  
developed secondary flow can be assumed. Therefore, the  
secondary flow comes in the picture in this study. For  
3  
(ꢕꢜ푢)ꢟ  
퐸 푀ꢖꢌ푒ꢰ ꢱ = ꢁ4  
ꢓꢞp(−  
) for small  
휋ꢂꢤꢥꢝꢦꢧꢕ  
4ꢂꢤꢥꢝꢦꢧ ⁄  
dispersion number, N  
L
< 0.01  
(14)  
(15)  
푢푑푡  
Bodenstein number is,  = ꢲ  
where is the length of the reactor, the cross-section average  
velocity and Aial the axial dispersion coefficient, which need  
be calculated from the Taylor expression for dispersion (5):  
methylene blue dye in water, molecular diffusivity goes around  
2
6
.74±1.32×10-6 cm /sec. In general, the liquid diffusivity has  
푢 푑ꢟ  
exponent in the range of -6. In equations 13 and 14, the only  
unknown parameter is the axial diffusion. The length of the  
coiled tube reactor was measured and the mean internal  
 = 퐷 + 1  
(16)  
92 ꢂꢲ  
if Bo < 10, diffusion dominates over convection, the second  
term on the right-hand side of the above equation can be  
omitted. But for Bo > 100, the first term can be neglected. This  
criterion seems not to fit well in our study. It seems from the  
experimental evidence that this study comes in an intermediate  
velocity was calculated as  =  ̇/  with ̇ the volumetric flow  
rate and the cross-section area of the coiled tube reactor. The  
unknown axial dispersion coefficient was estimated using the  
least-squares minimization technique.  
1
227  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1220-1231  
Figure 9: Fitting of Model 1 and Model 2 to the experimental data.  
Figure 10: Models ’error with respect to the experimental data  
Figure 9 depicts the output of the Model1 and Model 2  
with time. It is clear that Model 1 is more reliable and seems  
good to fit in comparison to Model 2. The same conclusion  
can also be drawn from figure 10.  
If the input and impulse responses of a system are Cin[o] and  
E[n], respectively, then the output Cout[o] of the system is given  
by convolution operation (24).  
[ꢍ × ꢖ] = ꢠ [ꢍ × ꢻ] ∗ 퐸[ꢻ × ꢖ] = ∑ ꢠ[ꢍ ×  
푖푛  
ꢜ∞  
4
.5 Convolution and deconvolution  
ꢻ]퐸[ꢻ × ꢖ]  
(18)  
The convolution integral is an important property to  
investigate RTD data. From our previous experience about  
carrying out the RTD experiments, the major challenge is  
generally related to the injection of the tracer. In addition, the  
injection point of MB dye may be located at a fixed distance  
from the inlet boundary of the vessel, the shape of the MB dye  
stimulus produced by the dye injector change as it moves  
towards the vessel entrance. As a result, the RTD curve cannot  
always be derived directly from the experimental measurement  
The convolution implemented between the discrete-time  
signals is usually called a convolution sum. If Cin[m] is m  
points sequence and E[n] is an n points sequence then Cout[o]  
will be (m+n-1) points sequence. Deconvolution operation is  
performed by the reversed operation of the convolution (25). It  
is used to separate the mixed signals. This is an important part  
of this study. To the best of authors ‘knowledge, no such study  
over the coiled tube reactor has been reported so far. For  
illustration purposes, a simple representation has been shown  
in figure 11. In this study, Cout is the only measurable. Different  
samples were taken at the outlet point of the coiled tube reactor  
and the corresponding concentrations, Cout, were measured  
using a colorimeter. Using Cout, EExp was calculated both in the  
time domain and in the dimensionless form.  
of the transient concentration in the effluent stream, ꢖꢆꢋ  
.
However, if one knows ꢺꢸ, by detecting it as a function of time  
at the inlet, the convolution integral method allows the  
extracting of the RTD of the coiled tube reactor. This  
methodology is called deconvolution, being one of the factors  
of the convolution product. The convolution operation is used  
to get the output response of a linear and time-invariant system.  
1
228  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1220-1231  
Convolution  
Cin  
Cout  
E
Deconvolution  
Time  
Time  
Figure 11: Convolution and deconvolution of the concentration signals  
Figure 12: Optimization function values with respect to the number of iterations  
Figure 13: Deconvolution signal Cin from E and Cout signals  
The concentration of tracer is in mg/l at the outlet of a  
calculated RTD signals. In this study as shown in figure 11, the  
reactor distribution is EExp and the signal output is Cout, and we  
need to deconvolute both signals to get Cin (26):  
continuous system. The deconvolution theorem has been  
applied to a de-combination of the RTD and Cout of the coiled  
tube reactor. In general, to calculate the signal exit of a reactor  
is known along with calculated RTD when the input signal is  
unknown. The major changeling in such a study is associated  
with the sampling of the output signals and the corresponding  
 = ∑ 퐸  
⊗ ꢠ푛  
(19)  
0
ꢼ푋푃  
1
229  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1220-1231  
It is noted that the deconvolution of the two signals is not  
possible if each signal has a different sampling increment  
of figures, competing interests, and compliance with policies  
on research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
interval. For deconvolution purpose, EExp = [E1,  
has n = 17 values and Cout = [Cout1,  
E
2,  
E
3 ,…..  
E
17  
]
C
out2,  
C
out3 ,…..  
C
out22] has o  
=
22 values.  
Symbols used  
표푢ꢉ1  
표푢ꢉ2  
1  
2  
.
.
Cout (=  
1  … ꢶ  
tracer outlet, inlet concentrations  
[mg L1]  
C), Cin  
퐸 퐸 … ꢶ  
2
1
.
.
.
= ꣃ  
.
(20)  
.
d
t
[m]  
[m s ]  
[]  
[]  
[s]  
diameter of the reactor  
axial dispersion coefficient  
residence time distribution (RTD)  
dimensionless RTD  
ꢶ … 퐸17 표×푚  
2  
표푢ꢉ×1  
푖푛5×1  
DAxial  
E
휃  
For simplification point of view, it can be written in the  
following matrix form  
EExp  
experimental RTD  
cumulative distribution function  
(CDF)  
F
= 퐸  
⊗ ꢠ  
푖푛푚×1  
(21)  
표푢ꢉ표×1  
ꢼ푋푃표×푚  
휃  
L
[]  
[m]  
[]  
dimensionless CDF  
length of the reactor  
Reynolds number  
where EExp being the “matrix convolution,” with values of E in  
the form of columns. The computation was done using a simple  
Matlab script. In Matlab, the sizing of the sample plays an  
important role. Here, ‘o’ represents the number of rows of the  
N
Re  
time of measurement  
t
[]  
1
Cout vector,.i.e. o = m+n-1, where ‘n’ and ‘m’ represent the  
u
Bo  
De  
Pe  
o
m
n
[m s ]  
[]  
[]  
[]  
[]  
average tracer speed  
Bodenstein number  
Dean number  
number of columns of EExp and Cin vectors, respectively. The  
calculations of the time vector associated with Cin were  
evaluated using cross ponding time vector of Cout and EExp. As  
we can see, we have m = 5 unknowns and o = 22 equations, so  
the system is overdetermined and it has multiple solutions. For  
calculating the Cin curve, it is necessary to do the optimization  
by minimizing an objective function (O.F.) in the form of the  
sum of squared residuals between the Cout curve which is  
known and the product [EExpCin]:  
L
Peclet number  
length of Cout column vector  
length of Cin column vector  
length of EExp column vector  
vessel dispersion number  
molecular diffusivity  
mean residence time  
[]  
[]  
N
D
L
[]  
2  
[m s ]  
1  
m
̅
[ s ]  
×  ꢠ푖푛푚×1)2  
(22)  
푂ꣅ = ∑( ꢠ  
표푢ꢉ표×1  
Greek letters  
[]  
dimensionless time vector  
-
3
[kg m ] density  
[]  
[s]  
Figure 12 represents the objective function values with  
respect to the number of iterations. The function value falls  
sharply after 20 iterations and continuously decreases with the  
number of iterations. The system calculation gets converged  
after 620 iterations and function obtains a minimum value of  
length to coil diameter ratio  
residence time of coiled tube reactor  
Competing interests  
The authors declare that no conflict of interest would  
prejudice the impartiality of this scientific work.  
0
.000732. Figure 13 shows the evaluated deconvolution signals  
from E and Cout signals.  
Authors’ contribution  
All authors of this study have a complete contribution to  
data collection, data analyses, and manuscript writing.  
5
Conclusions  
The study of the distribution of the residence time in a  
reactor helps to characterize the mixing phenomena and  
internal transport in the reactor. The comparison between the  
theoretically computed and experimentally determined RTD  
was guided us to develop a realistic mathematical model of the  
reactor understudy. Different mathematical models were tested  
to determine the performance of the coiled tube reactor. TIS  
model was tested first and n = 6 tanks found to be reasonable  
but it had shown the large deviation from the experimental data.  
Therefore, axial dispersion models were fitted. Two models  
were tested which are valid only for open-open boundary  
conditions. Model1 was more realistic to the experimental data  
and had fewer errors. In all the methods of testing and  
validation used, the results agree well. To validate the perfect  
pulse assumption, deconvolution of outlet concentration and  
exit age distribution signals was carried out. The evaluated inlet  
concentration seems to fit well with assumed assumptions.  
References  
1
.
Rajamanickam A, Balu K. Design and development of  
a
mathematical model for a static mixer. Iran J Chem Chem Eng.  
016;35(1):10916.  
2
2
.
Bérard A, Blais B, Patience GS. Experimental methods in chemical  
engineering: Residence time distributionRTD. Can J Chem Eng.  
2020;98(4):84867.  
3. Ejim LN, Yerdelen S, McGlone T, Onyemelukwe I, Johnston B,  
Florence AJ, et al. A factorial approach to understanding the effect  
of inner geometry of baffled mesoscale tubes on solids suspension  
and axial dispersion in continuous, oscillatory liquid-solid plug  
flows. Chem Eng J. 2017;308:66982.  
4
.
Jokiel M, Wagner LM, Mansour M, Kaiser NM, Zähringer K,  
Janiga G, et al. Measurement and simulation of mass transfer and  
back mixing behavior in a gas-liquid helically coiled tubular  
reactor. Chem Eng Sci. 2017;170:41021.  
5
6
.
.
Gargiulo L, Gavriilidis A, Mazzei L. Experimental  
characterization of axial dispersion in coiled flow inverters. Diss.,  
UCL (University College London). 2017.  
Ethical issue  
Authors are aware of and comply with, best practices in  
publication ethics specifically with regard to authorship  
Miložič N, Lubej M, Novak U, Žnidaršič-Plazl P, Plazl I.  
Evaluation of Diffusion Coefficient Determination using  
Microfluidic Device. Chem Biochem Eng Q. 2014;28(2):21523.  
a
(avoidance of guest authorship), dual submission, manipulation  
1
230  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1220-1231  
7
.
Taylor G. Dispersion of soluble matter in solvent flowing slowly  
through a tube. In: Proceedings of the Royal Society of London  
Series A Mathematical and Physical Sciences. 1953. p. 186203.  
Dean WR. Note on the Motion of_Fluid in a Curved Pipe. London,  
Edinburgh, Dublin Philos Mag J Sci. 1927;4(20):20823.  
residence times. Chem Eng Sci. 1995;50(24):385566.  
17. Levenspiel O, Smith WK. Notes on the diffusion-type model for  
the longitudinal mixing of fluids in flow. Chem Eng Sci. 1957;6(4–  
5):22735.  
18. Janssen LAM. Axial dispersion in laminar flow through coiled  
tubes. Chem Eng Sci. 1976;31(3):2158.  
8
9
.
.
Bogatykh I, Osterland T. Characterization of Residence Time  
Distribution in a Plug Flow Reactor. Chemie-Ingenieur-Technik.  
19. Ananthakrishnan V, Gill WN, Barduhn AJ. Laminar dispersion in  
capillaries. AIChE J. 1965;11(6):106372.  
2
019;91(5):16.  
1
0. Mejri S, Binous H, Mahgoub K, Bellagi A. A model parameter  
estimation method using Mathematica© applied to transient  
chemical engineering processes. Comput Appl Eng Educ.  
20. Gill WN. Laminar Dispersion. A1ChE J. 1966;12(5):90615.  
21. Levenspiel. Chemical Reaction Engineering. 3rd ed. John Wiley  
and Sons; 1999.  
2
018;26(5):140521.  
22. Vishwakarma V, Schubert M, Hampel U. Development of a  
Refined RTD-Based Efficiency Prediction Model for Cross-Flow  
Trays. Ind Eng Chem Res. 2019;58(8):325868.  
1
1
1. Nauman EB. The residence time distribution for laminar flow in  
helically coiled tubes. Chem Eng Sci. 1977;32(3):28793.  
2. Toson P, Doshi P, Jajcevic D. Explicit residence time distribution  
of a generalized cascade of continuous stirred tank reactors for a  
description of short recirculation time (bypassing). Processes.  
23. Tijssen R. Axial dispersion and flow phenomena in helically coiled  
tubular reactors for flow analysis and chromatography. Anal Chim  
Acta. 1980;114:7189.  
2
019;7(9):113.  
24. Said IA, Taha M., Alexander V, Usman S, Al-Dahhan MH. Axial  
dispersion and mixing of coolant gas within a separate-effect  
prismatic modular reactor. Nucl Energy Technol. 2018;4(3):167–  
78.  
1
1
1
3. Lopes JM, Lemos F, Pinheiro C, Ramôa Ribeiro F, Magalhães FD,  
Mendes A, et al. Teaching residence time distributions in the  
laboratory. Int J Eng Educ. 2002;18(6):67481.  
4. Menon SH, Madhu G, Mathew J. Modeling residence time  
distribution (RTD) behavior in a packed-bed electrochemical  
reactor (PBER). Int J Chem Eng. 2019;2019.  
5. Aris R. On the dispersion of a solute in a fluid flowing through a  
tube. In: Proceedings of the Royal Society of London Series A  
Mathematical and Physical SciencesMathematical and Physical  
Sciences. 1956. p. 6777.  
25. Haseidl F, König P, Hinrichsen O. Single-Phase Flow Residence-  
Time Distributions in a Rotor-Stator Spinning Disc Reactor. Chem  
Eng Technol. 2016;39(12):243543.  
26. Wojewódka P, Aranowski R, Jungnickel C. Residence time  
distribution in rapid multiphase reactors. J Ind Eng Chem.  
2019;69:3708.  
1
6. Danckwerts P V. Continuous flow systems. Distribution of  
1
231