2020, Volume 8, Issue 3, Pages: 1054-1059  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Removal of Fluoride Ions from Drinking Water by  
Activated Alumina and Activated Charcoal  
1
2
3
Habiba Lebrahimi *, Mohammed Fekhaoui , Abdelkabir Bellaouchou .  
1
Department of Zoology and Animal Ecology, Laboratory of Zoology, Scientific Institute, Mohamed V University, Avenue Ibn Battouta, Agdal,  
1
0090, Rabat, Morocco  
Department of Toxicology, National Institute of Hygiene, 27, Avenue Ibn Batouta, 769 Agdal, Rabat, Morocco  
Department of Chemistry, Faculty of Sciences Rabat, Mohamed V University, 4 Avenue Ibn Battouta, 1014 Agdal, Rabat, Morocco  
2
3
Abstract  
The pollution of drinking waters by ions fluorides caused by industrial and natural activities, causes major problems for human  
health, what imposes to think seriously of the treatment of these waters. Experiments are carried out in the laboratory to remove fluoride  
ions in water, based on the adsorption process by activated alumina and activated carbon with a change in different parameters  
influencing the retention rate such as pH, amount of adsorbent and contact time. Good defluoridation requires a contact time between  
3
0 min and 60 min with a retention rate of 53.51% and 67% for activated alumina, 50.27% and 56.35% for activated carbon. The  
retention rate for 3g adsorbent is 56% for activated alumina and 18.91% for activated carbon, this value increases with increasing  
adsorbent quantity for acid pH. According to these experiments the retention rate of fluoride ions by activated alumina is higher than  
that of activated carbon, which makes activated alumina treatment the most responsive for the removal of fluoride ions in water. in this  
work they try to find an appropriate method to eliminate the excess of ions fluorides in underground water after a study made on these  
ions in waters of the region of Khouribga in Morocco as phosphaté region the presence of ions of which results points out fluoride with  
a broad broadcasting of the illness of fluorosis to the population. According to tries made in the laboratory one there found that alumina  
speeded up and activated charcoal is very efficient for this action.  
Keywords: Fluoride, Activated alumina, Activated carbon, Water treatment, Defluoridation, Adsorption  
is based on the adsorption technique on activated carbon and  
1
Introduction1  
alumina, which are the most responsive, effective, very simple  
and do not require much maintenance. Both elements are the  
most used industrially because of their excellent  
decontamination properties against the majority of pollutants.  
Considerable efforts are made to ensure a better protection of  
the environment of water resources. Scientific research is  
increasingly oriented towards the selection of the most effective  
means of depollution. Several methods of treatment of water  
containing fluorine, mainly adsorption by activated alumina  
and activated carbon, have given their effectiveness in  
removing fluoride ions dissolved in water [7]. This process is  
well suited to the elimination of fluoride ions with a need to  
control the ions but the pH of the treated water need to be  
control. The adsorption capacity depends on the specific  
surface of the material, the nature of the adsorbent, and the  
contact time. For our study one there chosen the treatment by  
the adsorption by alumina speeded up and activated charcoal  
seen that their fastness and their effectiveness according to  
results found without forgotten availability of this two  
Fluoride (F-) contamination in groundwater has been  
recognized as one of the serious problems worldwide. Fluoride  
is classified as one of the contaminants of water for human  
consumption by the World Health Organization (WHO), in  
addition to arsenic and nitrate, which cause large-scale health  
problems [1]. The fluorine as most part of the chemical  
elements (iron, manganese ...) effects of which their excess in  
Drinking Water causes failure for water and environment [2].  
The quality of waters of drink is an obligation for everybody  
what obliges a strict treatment [3]. the classical techniques used  
for the treatment of waters of drinks are several categories  
among which in most cases the adsorption with activated  
charcoal, alumina speeded up and loam, the techniques of haste,  
physicochemical techniques (separation on membrane,  
oxidation  
/ discount) and other biological techniques  
(biosorption, phytoextraction) [4]. The pollutions of  
underground waters of the region of Khouribga are a strict  
problem, because it causes an endemic illness to the population,  
what makes think seriously of the treatment of waters intended  
for human consumption. Everything results acquired from the  
physicochemical analyses of underground water of the region  
of khouribga are has norm except the content of fluorine which  
was superior has norm in several wells of the region. [5].  
The removal of fluoride ions from groundwater is done by  
several techniques which differ from each other depending on  
the removal percentage (efficiency) and treatment cost.  
adsorbants in Morocco as developing country [8]. The  
objective of fluoride removal meant the treatment of  
contaminated water in order to bring down fluoride  
concentration to acceptable limits. The defluoridation  
techniques are generally classified into 2 classes, specifically  
membrane and surface assimilation techniques. No study was  
made in this sense in Morocco contrary has the ladder  
international or they find many people work on this problem,  
According to several studies [6], among these techniques, one  
Corresponding author: Habiba Lebrahimi, Department of Zoology and Animal Ecology, Laboratory of Zoology, Scientific Institute,  
Mohamed V University, Avenue Ibn Battouta, Agdal, 10090, Rabat, Morocco, +212762567494, zaidhabibalebrahimi@gmail.com.  
1
054  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1054-1059  
the treatment of waters of which becomes an obligation in our  
seen country has consumption there.  
2
Materials and methods  
2
.1 Generality  
The adsorption of a substance by a solid is the more or less  
irreversibly binding of the solute molecules in contact with the  
surface of this solid without any chemical reaction between  
them. This is a rapid phenomenon that results in a balance  
between the substance adsorbed and the substance remaining in  
solution. Balance depends on the concentration of the solute  
and the surface of the adsorbent body. There are two types of  
adsorption:  
Physical adsorption: reversible, which does not modify the  
chemical identity of the adsorbed molecules.  
Chemical adsorption: irreversible, characterized by  
chemical bonds between the adsorbate and specific adsorption  
sites. This process is well adapted to the specific elimination of  
fluorides but requires controlling the pH of the medium. The  
adsorption capacity depends on the specific surface of the  
material, the contact time, the pH and the initial fluoride  
concentration. [9].  
Water defluoridation studies using several adsorbents such  
as aluminium hydroxide, activated carbon, and apatite and  
activated alumina have been carried out with encouraging  
results. [10]. For our study we used both activated alumina and  
activated charcoal because of their efficiency in the treatment  
as well as their cost and availability.  
2 3  
Activated alumina (Al O or aluminium oxide): To make  
two adsorbents assets an elimination of the molecules of water  
was made by calcination has a temperature of 500 °. the  
technology used for the elimination of ions fluorides dissolved  
in waters of drink consists has percale some water to charge in  
fluorine on a bed of alumina speeded up allowing the retention  
of these ions, the most answering of which he is and assures a  
specific elimination of ions fluoride has strong  
concentration.[11]. The presence of fluoride ions with high  
levels in groundwater intended for human consumption  
requires serious efforts to treat them. In fact there are several  
treatment processes. Principle of adsorption: The principle of  
adsorption treatment is to fix the pollutants on an absorbent  
material. It is a separation process i.e. a simple transfer of mass  
from the liquid phase to the solid phase by fixing on their  
surface certain molecules, macromolecules and ions or certain  
gases.  
2
.2 Analytical method:  
For our work, experiments were made in the laboratory for  
Figure 1: Elimination of fluorine by activated alumina / activated  
charcoal  
the elimination of fluoride ions in the ground water by  
adsorption processes through two products: activated carbon  
and activated alumina (Al2O3 aluminium oxide). A solution  
prepared by dissolving 150 mg of sodium fluoride NaF. Dried  
in the oven for 3 hours, cooled in a desiccator in one liter of  
distilled water, and kept in a plastic bottle. All experiments  
were performed at ambient temperature of 27.1°C ± 2°C. Batch  
sorption tests were performed to determine the effect of control  
of related different parameters such as pH, contact time and  
adsorbent quantity. (Figure 1).  
The water samples taken were treated with activated carbon  
and activated alumina (Al O aluminium oxide) after they are  
2 3  
activated at 500°C. The experimental protocol is to pass the  
sample through two columns each one containing one of the  
absorbents, by three batches depending on the pH, the quantity  
of the absorbent, and the contact time.  
1
st batch: to know the effect of the pH, the quantity of the  
adsorbent 3g is fixed, the contact time is the time of the  
filtration of a fixed volume of 50 ml of the prepared solution,  
and the pH of 5 and 8 is changed, the pH is adjusted by HCl  
(0.5 M) or NaOH (0.5M).  
1
055  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1054-1059  
Figure 2: Flow chart of the working methodology  
>
>
PO43->F->SO3->Fe(CN)64->CrO42->SO42->Fe(CN)53-  
Cr2O72->I->Br->Cl->NO3->MnO4->ClO4-> S2-. It is  
apparent that activated alumina adsorptive force for phosphate  
anion is stronger than other anions, such as SO42- and Cl-, so  
activated alumina adsorb phosphate anion in predominance.  
[12].  
3
Results and discussion  
3
.1 Contact time  
Contact time adsorption tests for activated alumina and  
activated carbon show that the removal rate increases with  
increasing time until a given point in time when a constant  
value approaches that indicates the equilibrium point between  
treated water and adsorbent. According to this experience, the  
fluoride ion removal treatment procedure goes through three  
phases: The 1st was before 30 min of contact where the  
retention rate is relatively fast, 53.51% for activated alumina  
and 50.27% for activated charcoal, this speed due to the affinity  
of the adsorbent surface and the force of entrainment and  
Figure 3: Measure of F- by the electrode specific  
nd  
diffusion in the porous medium. The 2 is between 30 min and  
6
0 min which consist of the migration of fluoride ions to the  
2
rd batch: to study the contact time effect, the experiments  
internal pores of the adsorbent, leading to high levels of  
fluoride retention rate, recording 67% for activated alumina and  
5
were performed by varying the contact time by 30, 60 and 120  
and passing a 50 ml volume of the prepared solution over two  
g columns of activated carbon and activated alumina for a pH  
rd  
6.35% for activated carbon. The 3 phase when we exceed 60  
3
min the retention rate is almost constant, reaching 69.46% for  
activated alumina and 58.78% for activated carbon (Figure 4  
and Figure. 5). According to these results they point out that the  
percentage of the elimination of ions fluoride on alumina  
speeded up and activated charcoal augments fast with the  
increase of the time of contact especially for the first 60  
minutes, of which beyond they note that the percentage of  
elimination gone towards stability for two adsorbents seen the  
occupation of the harbours of fixing of ions, therefore they can  
fix the time of contact has 60 minutes until 90 minutes, what  
points out that the time of contact has an effect on the  
elimination of ions fluorides. The results found are in  
agreement with those of BEN NASR et al 2014. Found for this  
work concerning the elimination of fluoride ions by the  
different treatment processes, also with the results found by fan  
et al, which fixes the time necessary for a good retention of  
these ions of less than 60 min.  
of 6.1.  
3
rd batch: this is to study the effect of the quantity of  
adsorbents on the rate of elimination of fluoride ions in water,  
whose experiments are done with different quantities of 3g, 6g  
and 9g, using the same volume of 50 ml of the initial solution  
for a fixed pH 6.1 (Figure 2). The determination of fluoride ions  
is done before and after treatment with the specific electrode  
and the rate of elimination of fluoride ions is calculated by the  
following equation: (Figure 3).  
R : (Ci-Ce / Ci)× 100  
where, R is the removal efficiency of fluorinated compounds  
(%), Ci is the initial concentration (mg/l) and Ce is the  
equilibrium concentration (mg/l) [6]. The order of activated  
alumina adsorptive force for anion in water is followed: OH-  
1
056  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1054-1059  
Figure 4: Retention rate % (activated alumina)  
Figure 5: Retention rate % (activated charcoal)  
Figure 6: Retention rate % (activated alumina)  
Figure 7: Retention rate % (activated carbon)  
3
.2 Effect of quantity of adsorbent  
Tests of fluoride ions adsorption in water were carried out  
The pH of the prepared water is 6.1, and in order to know  
the effect of pH on the retention rate of fluoride ions, the pH is  
adjusted by adding HCL 0.1 so that it becomes acid (pH 5) and  
NaOH so that it becomes basic (pH 11).  
by varying the quantity of adsorbent by 3g, 6g and 9g which  
influences the retention rate according to the graphs below  
(
Figure. 6 and Figure. 7). The results show that the retention rate  
increases with raising the amounts of adsorbent from 56% to  
3.37% for activated alumina and from 18% to 32.83% for  
The results found after the determination of fluoride ions in  
these waters for both cases, show that the retention rate in the  
acid medium (pH=5) is 75.67% for activated alumina and  
48.35% for activated carbon. However in the basic medium  
(pH=8) we obtained a retention rate of 47.3% for activated  
alumina and 41.35% for activated carbon (Figure. 8 and Figure.  
9). Hence it appears that the pH of the medium considerably  
influences the rate of fluoride retention in water. These results  
are almost compatible with those found by Anis Ben nasr 2014  
[6]. These results watch that the percentage of elimination of  
ions fluoride for a sour water is superior that a basic water for  
alumina speeded up and the opposite for activated charcoal  
what points out that the percentage of fixing varies according  
to nature da pH, they conclude therefore that the pH influences  
fluorides in general on the elimination of ions according to the  
chosen adsorbent.  
7
activated carbon in the case of 6g of the absorbent. Whereas,  
when the amount of absorbent is increased from 3g to 9g, we  
obtained a retention rate of 82.7% and 45.67% respectively for  
activated alumina and activated carbon (Figure. 6 and Figure. 7).  
These found results watch which the percentage of elimination  
of ions fluorides augments with the increase of the quantity of  
adsorbent at the same time activated charcoal is for alumina  
speeded up or, what points out that for a strong elimination of  
these ions needs an important quantity of adsorbents. This  
indicates that the rate of elimination of fluoride ions increases  
with increasing adsorption surface. This is in agreement with  
the results a obtained by BEN NASR et al 2014, who found a  
retention rates of 96% and 89% in the case of absorbent’s  
amounts of less than or equal to 15g/l-1.  
3
.3 pH effect  
1
057  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1054-1059  
fluorosis caused in general by the consumption of waters rich  
in fluorine, with which elimination of these ions become an  
obligation, alumina speeded up and activated charcoal is the  
most appropriate seen their effectiveness, their weak-willed  
person expenses and their availability in our country especially  
the region of khouribga. The quality of waters in the Khouribga  
region is characterized by high levels of fluoride causing,  
among others, dental fluorosis to the population of this region,  
what requires tries to eliminate this excess of these fluoride  
ions. The treatment of contaminated groundwater by fluoride is  
made by several techniques, the adsorption, one among them,  
is efficient and cost effective. In our case we have chosen the  
treatment by two chemical elements, namely activated charcoal  
and alumina speeded up to treat waters, which are most adapted  
and economic. The obtained results show that the best rate of  
retention has been recorded in the case of activated alumina  
comparatively to activated carbon. Moreover we found that the  
elimination of ions fluorides is influenced by different  
parameters, especially the pH, time of contact and the quantity  
of used adsorbent. Finally the acquired results show that the  
adsorption on speeded up alumina and activated charcoal can  
constitute an efficient technique for the elimination of the  
fluorine.  
Figure 8: Retention rate % (activated alumina)  
Aknowledgment  
I thank all personnel of the laboratory of hydrology have  
the institute of hygiene of Rabat Morocco for their support, also  
everything the persons that helped us has accomplish this  
publication.  
Ethical issue  
They confirm that our publication is original.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Figure 9: Retention rate % (activated carbon)  
Authors’ contribution  
Other results found by Srimurali et al 2008. [7] and  
Bersillon et al 2006. [12, 13, 15] Suggest that the elimination  
of ions fluoride is quick if we leave 10 min of contact between  
alumina speeded up and the contaminated water. In the case of  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
References  
6
0 min, the rate of fluorine retention becomes almost constant,  
1. Diawara CK, Essi-Tome H, Lhassani A, Pontie M, Buisson H.  
Filtrations membranaires et qualité de l’eau de Boisson en Afrique:  
Cas du fluor au Sénégal.  
with a pH between 2 and 6.5, reaching the maximum of  
retention. However when the pH exceeds 6.5, the rate of  
fluorine retention starts to decrease [10; 9]. In addition  
Karthikeyan and al. [9] found that the elimination of ions  
fluorides is influenced by three parameters, especially the pH,  
time of contact and the quantity of used adsorbent. In fact it is  
needed at least 20min of contact, 3g of the adsorbent for a pH  
of 7 to eliminate a given quantity of fluorine dissolved in water.  
2
. Milke J, Gałczyńska M, Wróbel J. The Importance of Biological and  
Ecological Properties of Phragmites Australis (Cav.) Trin. Ex  
Steud., in Phytoremendiation of Aquatic EcosystemsThe  
Review. Water. 2020 Jun;12(6):1770.  
3
. Majlesi M, Hashempour Y. Removal of 4-chlorophenol from  
aqueous solution by granular activated carbon/nanoscale zero  
valent iron based on Response Surface Modeling. Archives of  
Environmental Protection. 2017 Dec 1;43(4):13-25.  
[16]. Several works made to treat waters rich in fluorine such  
as that of Mr Menakstti. and al who results that alumina  
speeded up and activated charcoal among adsorbents the most  
efficient for this elimination, according to three mailmen pH,  
time of contact and the quantity of the used adsorbent. [9] also  
the study of Mwangi. and al who says that according to even  
mailmen among whom optimum of pH and time of contacts  
was found is 4,0 with a time of 20min and the concentration of  
retention is of 60mg / l [17].  
4. Lenoble V. Elimination de l'Arsenic pour la production d'eau  
potable: oxydation chimique et adsorption sur des substrats solides  
innovants (Doctoral dissertation).  
5
. Lenoble V. Elimination de l'Arsenic pour la production d'eau  
potable: oxydation chimique et adsorption sur des substrats solides  
innovants (Doctoral dissertation).  
6
. Lebrahimi H, Fekhaoui M, Bellaouchou A. Determination of the  
fluoride ions in the groundwater in the region of khouribga  
(Morocco). Journal of Materials and Environmental Sciences;  
2
018. 9, p. 161-171.  
7
. Nasr AB, Walha K, Puel F, Mangin D, Amar RB, Charcosset C.  
Precipitation and adsorption during fluoride removal from water  
by calcite in the presence of acetic acid. Desalination and Water  
Treatment. 2014 Mar 21;52(10-12):2231-40.  
4
Conclusions  
As much as our country 'Morocco ' among phosphates  
countries, and most known by the illness of especially dental  
1
058  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1054-1059  
8
. Srimurali M, Karthikeyan J. Activated alumina: defluoridation of  
water and household applicationa study. InTwelfth International  
Water Technology Conference, IWTC12, Alexandria, Egypt 2008  
18. Pont M, Schrotter J.C, Lhassani A, Diawara C.K. L’actualité  
chimique ; 2006.  
(
pp. 153-164).  
9
1
1
. Belmehdi N. Elimination du phosphore sous la forme des phosphates  
par adsorption sur la diatomite brute et diatomite modifiée au fer-  
FHMD. 2014.  
Authors Profiles  
Habiba LEBRAHIMI, PhD in the scientific  
institute of Rabat, Morocco. Master sciences  
0. Karthikeyan G, Apparao B V and Meenakshi India S. 2nd  
International Workshop on Fluorosis Prevention and  
Defluoridation of Water; 2006  
1. Djilani C, Zaghdoudi R, BOUCHEKIMA FD, Djazi F, GHOMARI  
FN, KOUACHE B, AROUS A, CHERCHALI S, Ider A, Abid A,  
Zouhri A. Adsorption des composés organiques volatils chlorés par  
l’alumine et le charbon actif. Revue des Energies Renouvelables.  
and techniques  
quality " in the faculty of sciences and  
techniques of Benimellal, Morocco.  
" management of food  
Licence sciences and techniques " protection  
of environment" in the faculty of sciences  
2
012;15(3):407-15.  
1
1
2. Singh J, Singh P, Singh A. Fluoride ions vs removal technologies:  
a study. Arabian Journal of Chemistry. 2016 Nov 1;9(6):815-24.  
3. Tripathy SS, Bersillon JL, Gopal K. Removal of fluoride from  
drinking water by adsorption onto alum-impregnated activated  
alumina. Separation and purification technology. 2006 Jul  
Mohammed Fekhaoui, Manager of the  
Institute Sientifique, Mohamed university,  
Rabat. doctorate of EtatDomaine of  
environmental étudesScience in mohamed v  
university beating and university Claude  
1
5;50(3):310-7.  
Lyons.  
E-mail:  
1
1
4. Maheshwari RC. Fluoride in drinking water and its removal.  
Journal of Hazardous materials. 2006 Sep 1;137(1):456-63.  
5. Mohapatra M, Anand S, Mishra BK, Giles DE, Singh P. Review of  
fluoride removal from drinking water. Journal of environmental  
management. 2009 Oct 1;91(1):67-77.  
6. Haghighat A, Hadi Dehghani M, Nasseri S, Mahvi AH, Nooshin R.  
Indian Journal of Science and Technology; 2012. p. 0974- 6846.  
7. Karthikeyan G, Apparao B V, Meenakshi India S. 2nd International  
Mohammed Fekhaoui, Manager of the  
Institute Sientifique, Mohamed university,  
Rabat. doctorate of EtatDomaine of  
environmental étudesScience in mohamed v  
university beating and university Claude  
1
1
Lyons.  
E-mail:  
Workshop on Fluorosis Prevention and  
Water; 2006.  
Defluoridation of  
1
059