Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1151-1156  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Research of the Drinking Water Quality in Wells and  
Fountains of Villages in Gjakova Municipality in  
Kosovo  
1*  
1
1
1
1
Sadija Kadriu , Milaim Sadiku , Mensur Kelmendi , Bleona Tahiraj , Mehush Aliu , Arbër  
1
2
Hyseni , Agron Shala  
1
Department of Technology, University of Mitrovica, “Isa Boletini”, Mitrovicë, Kosova  
Hydro-meteorological Institute of Kosova, Rruga Lidhja e Pejës 47, 10000, Prishtinë, Kosova  
2
Received: 03/07/2020  
Accepted: 13/07/2020  
Published: 20/09/2020  
Abstract  
It is known that the issue of obtaining sufficient drinking water, this vital element without which there can be no life on earth, as in the  
past also today is and remains a serious concern for humanity in general. Therefore, the purpose of this paper is to study the drinking water  
quality in villages Hereç, Gërçinë and Damjan in Gjakova Municipality. Water was tested for organoleptic, physico-chemical, and  
microbiological parameters, and sensory methods and analytical techniques, classical and instrumental ones were aplied. The results of the  
analysis are compared with the standard values of the EU Directive 98/83 on the quality of water for human consumption. The obtained  
results prove that the drinking water is contaminated with Mn, with 0.059mg / l in the villages Herec, in Gercine 0.052mg / l and in Damjan  
with a concentration of 0.07mg / l. Meanwhile, we have encountered microbial contamination in two sampling sites in Gercine and in one  
sampling site in Damjan. Therefore, the evidence for the presence of Mn and microbial contamination, justify the aim of this work.  
Keywords: Drinking waters, Gjakova villages, Analysis, Contamination, Manganese, Microbial contamination  
Introduction1  
groundwater source since they are easily accessible and usually  
1
provide clean drinking water (3). Dug wells are distributed all  
over the rural and semi urban areas, mostly as private wells  
associated with single family homesteads (4). Gjakova with its  
surrounding, our object of study, is located between geographic  
latitude 42022’ and geographic longitude 20026’, on the left shore  
of Erenik River, east of Çabrat Plateau, on both sides of Krena  
River, at an average altitude of 365 m. The average temperature  
in July is 21.50C, and in January -90C. Summer months are dry,  
and winters are wet. The average precipitation is 959.3 mm (5).  
The physico-chemical quality of drinking water is also based on  
hydrogeological criteria. These criteria relate to the type of water  
layer feeding, the composition and structure of the terrain, the  
level of protection of the water layer etc (6).  
The issue of acquiring sufficient drinking water in many  
settlements in Kosovo, as in many other countries in the world,  
has been and remains the basic problem for organizing the life  
quality in the geographical space where humans wish to construct  
and organize their settlements. In this context, springs were  
largely responsible for determining the sites of ancient  
settlements (1). Water is the main natural resource and essential  
human need without which life on earth is unthinkable. Water is  
a major natural source and basic human need for life. In recent  
decades, groundwater has become an essential resource due to its  
purity and availability (2).  
Lack of sufficient drinking water, both in the past and now,  
often, not only it has caused major demographic movements  
around the world, but there have also been cases of sporadic  
conflicts and major wars for controlling and owning sufficient  
water resources. Even today, in many Kosovo settlements, lack of  
water has created new demographic realities, as with the increase  
of population, insufficient water reservoirs have affected the  
population movement from one settlement to another, i.e. from  
Hasi region to Gjilan area, as well as in many other areas in  
Kosovo lacking water. Yet, springs are still an important  
World Health Organization (WHO) 1993 documented that  
8
0% of pathogenic diseases in human beings are caused by  
contaminated water and the valuation of water quality in  
developing countries has become a critical problem in last few  
years (7). The purpose of this study is to assess the water quality  
in villages Hereç, Gërçinë and Damjan of Gjakova Municipality,  
based on the physico-chemical and microbiological parameters,  
which justifies the drinking water quality.  
Corresponding author: Sadija Kadriu, University of  
Mitrovica,“Isa Boletini”; Email: sadija.kadriu@umib.net.  
1
151  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1151-1156  
chlorides were used to determine the physico-chemical  
parameters. The table results show the standard methods applied  
for the analysis of each parameter (Tables 2, 3 and 4). The  
microbiological analysis, determining the general number of live  
bacteria with PCA, was performed pursuant to the EN ISO  
2
Material and methods  
Samples for analysis were taken in three different villages of  
Gjakova Municipality, in December 2019, the analyzed water was  
taken from springs and wells in these villages and the analyses  
were done at the K.R.U. “Gjakova” JSC filtering station labs. The  
sampling points and labeling of drinking water samples from  
wells and springs together with the geographical coordinates of  
the water samples for analyses are presented in Table 1, whereas  
the geographic position of sample points (monitoring network) is  
presented in Figure 1.  
6
222:1999 standard (12).  
3 Results and discussions  
During the experimenting part, the organoleptic, physico-  
chemical, and microbiological parameters of water from springs  
and wells in Hereç, Gërçinë and Damjan villages in Gjakova  
Municipality was determined. In total 12 samples of drinking  
water from wells and springs in these villages were taken. The  
results of the organoleptic, physico-chemical, and  
microbiological parameters are presented in Tables 2, 3 and 4,  
whereas, the microbiological parameters in Table 5.  
Table 1: Sampling location, geographic code, and  
coordinates  
Location Sample  
Geographic coordinates  
Altitude  
(m)  
Location  
Hereç  
code  
code  
Latitude Longitude  
1
1
1
1
2
2
2
2
3
3
3
3
1k  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
ͦ
ͦ
ͦ
ͦ
ͦ
ͦ
ͦ
ͦ
ͦ
ͦ
ͦ
ͦ
28’27” N  
20  
ͦ
21’43” E  
21’32” E  
2k  
3p  
4p  
1k  
2k  
3p  
4p  
1k  
2k  
3p  
4p  
27’ 54” N 20  
28’ 27” N 20  
27’ 54” N 20  
17’ 49” N 20  
17’ 47” N 20  
17’ 46” N 20  
17’ 48” N 20  
17’ 40” N 20  
17’ 58” N 20  
17’ 57” N 20  
17’ 57" N 20  
ͦ
1
508  
508  
346  
ͦ
ͦ
ͦ
ͦ
ͦ
ͦ
ͦ
ͦ
ͦ
Table 2: Analysis results of organoleptic and physico-chemical  
parameters of the water in village Hereç  
Gërçinë  
2
Water analysis results: Hereç  
Sample code  
Analysis date: 07/12/2019  
Direc.  
Damjan 3  
Standard  
method  
Parameters  
Unit 98/83/E 1-1k 1-2k 1-3p 1-4p  
C
ͦ
Explanation: samples marked with k are taken from springs, whereas,  
samples marked with p are taken from wells.  
Sensory  
method  
Sensory  
method  
Sensory  
method  
ISO  
Color  
-
-
-
None None None None None  
None None None None None  
None None None None None  
Smell  
Taste  
Temperature  
Turbidity  
Free chloride Cl  
pH  
0C 8-12  
NTU 0-1  
9
8
9
10  
1
0523:2012  
ISO  
0.76 0.13 0.10 0.31  
7
027:1999  
ISO  
2
mg/l 0.2-0.5 0.01 0.01 0.02 0.01  
6.5-9.5 7.0 6.9 6.6 6.6  
7
3931:2000  
ISO  
-
1
0523:2008  
KMnO  
expenditure  
4
ISO  
8467:1993  
ISO  
mg/l 0-8  
µS/c  
1.40 1.40 1.24 1.88  
Conductivity  
2500 324 319 133 358  
7
888:1985  
m
ISO  
Hardness  
dH 30  
11.2 11.48 4.48 9.1  
10.95 10.56 8.58 11.54  
8.32 7.98 7.02 7.45  
30.26 25.05 15.03 30.46  
0,010 0.05 0.05 0.05  
0,003 0,002 0,002 0,010  
0.05 0.04 0.05 0.07  
0,028 0,022 0,022 0,059  
0.09 0.11 0.10 0.14  
6
059:1984  
ISO  
-
Cl chlorides  
mg/l 250  
mg/l >5  
mg/l 200  
mg/l 0.5  
mg/l 0.5  
mg/l 0.2  
mg/l 0.05  
mg/l 3.0  
9
297:1989  
ISO  
Figure 1: Monitoring network  
Dissolved O  
2
5
814:2012  
ISO  
Sampling is of special importance because it is causally  
related with the accuracy of the final results, therefore extra care  
should be taken while sampling. The mode of sampling, the  
amount of sample taken and the mode of transport and the  
maximum time that the sample can stay before chemical analysis  
is conducted, have been made in accordance with the method’s  
ISO 5667: 1,3,11 (8-10). Their conservation was done in  
compliance with the conservation procedure of the American  
Public Health Association, 2005 (11).  
Ca  
6
059:1984  
ISO  
71505:1986  
ISO  
NH  
3
NO -  
2
6
777:1984  
ISO  
Fe  
6
333:1986  
ISO  
6333:1986  
EN ISO  
Mn  
3-  
4
PO  
6
878:2004  
During this research, the sensory method was applied to  
determine the organoleptic parameters such as: smell, taste, and  
color. Whereas, at the analysis lab the electrochemical method -  
pH value, electrical conductivity and dissolved O ; nephelometric  
2
method - turbidity; spectrophotometric method - ammonia,  
nitrites, nitrates and Al; and volumetric (titrimetric) method -  
The results show the quality of drinking water in villages  
Hereç, Gërçinë and Damjan. The assessment of the water quality  
was performed based on referring values of Directive 98/83/EC  
13) on the quality of water intended for human consumption,  
which is in correlation with Administrative Instruction 12/2016  
(
4
KMnO expenditure, water hardness, free chlorine, Cl- and Ca  
1
152  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1151-1156  
of Kosovo (14) and WHO standards (15) on the quality of  
drinking water. In relation to the organoleptic and physico-  
chemical aspect, color, smell, and taste result with satisfactory  
levels pursuant to Directive 98/83/EC, excluding sample 3-4p,  
which contained a metallic smell and taste.  
Table 4: Analysis results of organoleptic and physico-chemical  
parameters of the water in village Damjan  
Water analysis results: Damjan  
Sample code  
Analysis date: 07/12/2019  
Standard  
method  
Direc.  
98/83/EC  
Table 3: Analysis results of organoleptic and physico-chemical  
parameters of the water in village Gërçinë.  
Parameters  
Unit  
3-1k 3-2k 3-3p 3-4p  
Water analysis results: Gërçinë  
Sample code  
Analysis date: 07/12/2019  
Color  
Smell  
Taste  
Sensory method -  
Sensory method -  
None  
None  
None  
8-12  
None None None None  
None None None Metallic  
None None None None  
Sensory method -  
Standard  
method  
Direc.  
98/83/EC  
Parameters  
Unit  
2-1k 2-2k 2-3p 2-4p  
0
Temperature ISO 10523:2012 C  
9
9
10  
0.62 0.89 0.11 1.43  
ISO 73931:2000mg/l 0.2-0.5 0.3 0.3 0.05 0.06  
ISO 10523:2008- 6.5-9.5 7.4 7.3 6.9 6.2  
ISO 8467:1993 mg/l 0-8  
9
Sensory  
method  
Sensory  
method  
Sensory  
method  
ISO  
Color  
-
None  
None  
None  
8-12  
None None None None  
None None None None  
None None None None  
Turbidity  
ISO 7027:1999 NTU 0-1  
Free chloride  
Cl2  
Smell  
-
Taste  
-
pH  
0C  
9
9
10  
10  
KMnO  
expenditure  
4
Temperature  
Turbidity  
1.28 1.42 1.29 1.92  
399 406 327 262  
11.88 11.02 9.52 5.60  
10.63 10.58 11.34 17.72  
7.82 7.90 6.44 6.80  
58.11 54.20 44.08 23.04  
0,010 0,010 0.09 0,015  
0,004 0,004 0,003 0,005  
0.05 0.05 0.05 0.06  
0,047 0,032 0,010 0.07  
0.05 0.05 0.12 0.26  
1
0523:2012  
ISO 7027:1999NTU 0-1  
0.71 0.79 0.80 0.1  
Conductivity ISO 7888:1985 µS/cm2500  
Free chloride ISO  
mg/l 0.2-0.5 0.32 0.31 0.02 0.04  
Hardness  
ISO 6059:1984 dH 30  
Cl  
2
73931:2000  
ISO  
-
pH  
-
6.5-9.5 7.6  
7.3  
1.12 1.18 1.68 1.12  
197 203 820 763  
6.3 7.2 19.1 18.3  
7.0  
7.1  
Cl chlorides ISO 9297:1989 mg/l 250  
1
0523:2008  
KMnO  
expenditure  
4
ISO 8467:1993mg/l 0-8  
Dissolved O  
2
ISO 5814:2012 mg/l >5  
ISO 6059:1984 mg/l 200  
ISO 71505:1986mg/l 0.5  
ISO 6777:1984 mg/l 0.5  
ISO 6333:1986 mg/l 0.2  
ISO 6333:1986 mg/l 0.05  
Conductivity ISO 7888:1985µS/cm 2500  
Ca  
Hardness  
ISO 6059:1984 dH 30  
NH  
3
-
NO -  
Cl chlorides ISO 9297:1989mg/l 250  
8.50 9.10 76.57 50.33  
8.71 8.32 5.32 6.02  
28.05 29.10 156.3 101.2  
0.30 0.40 0.03 0.04  
0.12 0.13 0.01 0.01  
0.05 0.06 0.18 0.17  
0.02 0.02 0,052 0.02  
0.05 0.05 0.06 0.06  
2
Dissolved O  
2
ISO 5814:2012mg/l >5  
ISO 6059:1984mg/l 200  
Fe  
Ca  
Mn  
ISO  
EN ISO  
PO 3-  
mg/l 3.0  
6878:2004  
NH  
NO  
Fe  
3
mg/l 0.5  
4
7
1505:1986  
-
2
ISO 6777:1984mg/l 0.5  
ISO 6333:1986mg/l 0.2  
ISO 6333:1986mg/l 0.05  
Table 5: Microbiological analysis results of water in villages  
Hereç, Gërçinë and Damjan.  
Mn  
otal number of living bacteria in 1ml at  
Sample  
37°C, cfu/ml according to ISO  
6222:1999  
Presence/absence of coliforms  
EN ISO  
PO 3  
-
mg/l 3.0  
4
6
878:2004  
1
1
1
-1k  
-2k  
-3p  
1.1x102  
90  
Negative  
Negative  
Negative  
Negative  
Negative  
Negative  
Positive  
Positive  
Negative  
Negative  
Negative  
Positive  
When the pH is acidic and below pH 6.5, water can have a  
bitter, metallic taste. When the pH is more basic than pH 8.5, then  
water can have a slippery feel and soda taste (16), it also causes  
the reduction of the efficiency of hypochlorite treatment for the  
drinking water disinfection (17). pH levels let us understand that  
all values were within the permitted limits, although the water in  
village Hereç was more acidic, especially in wells with variations  
from 6.6 to 7, whereas, in village Damjan, in sample point 3-4p it  
resulted in 6.2 (presented in Figure 2). One of the important  
characteristics of the water system is temperature, because it  
impacts strongly in the content of the dissolved oxygen, in the  
activity of the water biotic and the speed of many chemical  
reactions (18). In all analyzed samples the temperature followed  
3.8x102  
3.5x102  
60  
1-4p  
2
2
2
-1k  
-2k  
-3p  
80  
6.5x102  
7.1x102  
80  
2-4p  
3
3
-1k  
-2k  
70  
3-3p  
-4p  
6.8x102  
0
by permitted values at a relation of 8-10 C.  
1x103  
3
1
153  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1151-1156  
bone structure, heart function, muscle contraction, nerve impulse  
transmission and blood clotting, while calcium deficiency can  
cause osteoporosis (22). In all the analyzed samples ammonia  
pH-Direc. 98/83  
pH  
Turbidity  
pH-Direc. 98/83  
Turbidity-Direc. 98/83  
3
(NH ) followed the permitted values pursuant to EU standards  
+
1998). Ammonia (NH  
(
4
), in the environment originates from  
1
0
9
8
7
6
5
4
3
2
1
0
metabolic, agricultural, and industrial processes and from  
disinfection with chloramines. Ammonia in drinking-water is not  
of immediate health relevance, and therefore no health-based  
guideline value is proposed (25).  
In the analyzed samples in this paper the maximum value of  
-
nitrites (NO  
2
) at 0.13 mg/l was encountered at sample point 2-2k,  
which is within the acceptable limits. Nitrites are present in  
groundwater due to the spread of bacteria from faecal  
contamination, agricultural production, poor sewage network,  
presence of animal stalls near water well (26). The concentration  
of iron (Fe) in water samples of Gërçinë village, at sample point  
1
2
3
4
2
-3p results at 0.18mg/l, and at point 2-4p at 0.17mg/l thus getting  
Sampling Point  
close to the permitted limits at 0.2mg/l. Iron is essential element  
for good health because it transports oxygen in blood. The  
shortage of iron causes disease called anaemia and prolonged  
consumption of drinking water with high concentration of iron  
may lead to liver disease called as haermosiderosis (27).  
Manganese usually occurs together with iron and is widely  
distributed in soil, sedimentary rocks, and water. Manganese is an  
element essential to the proper functioning of both humans and  
animals, as it is required for the functioning of many cellular  
enzymes (28). In comparison to Fe, the concentration of  
manganese (Mn) in the analyzed waters of these villages results  
to be present above the referring values. While the referring value  
for manganese is 0.05 mg/l, in Hereç village sample point 1-4p  
the referring value for this metal is exceeded at 0.059 mg/l; in  
Gërçinë village sample point 2-3p at 0.052 mg/l and in Damjan  
village sample point 3-4p has a more significant excess at 0.07  
mg/l (presented in Figure 3).  
Figure 2: Turbidity and pH  
With the exception of the sample 3-4p, where an increased  
value than the allowable level of 1.43 NTU was encountered,  
turbulence in other sampling sites resulted within the reference  
values. In general, the water of wells had lower turbidity than  
springs (presented in Figure 2). The situation with the free  
2
chlorine (Cl ) in village Hereç results with low levels, both in  
spring water and in wells, because the water there is not treated  
with chlorine. Whereas, in Gërçinë and Damjan the amount of  
free chlorine results to be compatible with the referring values,  
because in comparison to well waters, the water in these springs  
is monitored by K.R.U. “Gjakova”, namely it is treated with  
chlorine. Chlorine is not dangerous to humans in low  
concentration levels but, in high concentration levels it causes  
cardiovascular problems and it gives a bitter taste to the water  
4
(19). KMnO expenditure has been in correlation with the values  
foreseen pursuant to Directive 98/83/EC. Electrical conductivity  
reflects the ability of an aqueous to conduct electrical current that  
depends on the presence and total concentration of ions, their  
mobility and valance and on the temperature (20). In relation to  
conductivity, the samples have shown relatively low levels,  
excluding the water from wells in Gërçinë village, where it has  
resulted with higher levels at the value of 820µS/cm at sample  
point 2-3p, but without exceeding the referring values.  
The water hardness usually goes in correlation with  
conductivity, therefore, the hardness as also resulted with a  
presence of higher values in the wells of village Gërçinë, but in  
compliance with the referring values. Hardness varies  
substantially with the presence of limestone and dolomite in the  
local geology (21). There are data that drinking hard water has a  
positive effect on cardiovascular diseases (22). Chlorides (Cl-) in  
water samples were within the permitted values pursuant to EU  
standards (1998). Chloride, Cl- occurs naturally in fresh,  
estuarine, or salt water from dissolution of rocks and minerals. In  
freshwater, its concentration is commonly less than 10 mg/l (23).  
Dissolved oxygen (DO) in our research results within  
referring values. DO is the most important water quality variable  
determining the health status of an aquatic ecosystem (24). Even  
the presence of calcium (Ca) results within the referring values.  
Calcium is an essential element for our organism and our needs  
for it are 0.7 up to 2 g/per day. Calcium plays important roles in  
Gërçinë  
Hereç  
Direc. 98/83  
Damjan  
0.08  
0
.07  
0.07  
0.06  
0.05  
0.04  
0.06  
0.05  
0.04  
0.03  
0.03  
.02  
0.02  
0
0.01  
0.01  
0
0
1
2
3
4
Sampling Point  
Figure 3: Mn concentration  
The presence of phosphates (PO  
4
3-) in the analyzed samples  
of water varied between 0.05-0.26 mg/l, namely they are within  
the permitted values. According to McCutheon et al, higher  
concentration of phosphate in water than 0.1 mg/L is an indication  
of pollution (29). In the microbiological sense the water of  
Gërçinë village wells, in sample points 2-3p and 2-4p, and in  
1
154  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1151-1156  
Damjan sample point 3-4p, have shown unsatisfactory results,  
because there is microbiological pollution, as we have also  
encountered the presence of coliforms. Therefore, drinking water  
can be contaminated with these pathogenic bacteria and this is an  
issue of great concern (7). In our opinion, this is a result of the  
failure to observe protective sanitary measures, because in the  
vicinity of water wells were animal stables, poor sewerage  
networks, toilets, etc. According to Conboy & Goss the well type,  
depth and the grounds hydrological group have proven to be  
important in determining the bacterial pollution (30).  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing  
4
Conclusions  
During the research work in this paper samples were taken  
References  
from three different villages: Hereç, Gërçinë and Damjan  
Gjakova Municipality. We have analyzed the organoleptic,  
physico-chemical, and microbiological parameters. After the  
analyses we have compared the results with the permitted values  
pursuant to Directive 98/83/EC and we have reached the  
following conclusions:  
1
Meuli C, Wehrle K. Spring Catchment. Manuals on Drinking Water  
Supply. Swiss Centre for Development Cooperation in Technology  
and Management (SKAT). St Gallen. Switzerland. 2001;4:1-57.  
2 Verma A, Thakur B, Katiyar S, Singh D, Rai M. Evaluation of ground  
water quality in Lucknow, Uttar Pradesh using remote sensing and  
geographic information systems (GIS). International Journal of Water  
Resources and Environmental Engineering. 2013 Feb 28;5(2):67-76.  
The water in two wells in village Damjan is not suitable for  
consumption, because sample 3- 4p shows high manganese levels  
as well as high NTU values and as such they cause  
microbiological pollution, which is also proven by the  
microbiological analysis. The microbiological analysis has  
yielded positive results on the presence of coliforms and the  
presence of the later shows the potential presence of pathogenic  
organisms, which is why the water is considered unsuitable for  
drinking. We have a similar situation with samples 2-3p and 2-4p  
of the water from the well in Gërçinë village, wherein we noticed  
microbial pollution, whereas, sample 2-3p in addition to the  
microbial pollution also shows manganese presence above the  
permitted levels. Also, in village Hereç, in sample point 1-4p we  
have encountered the excess of referring manganese values. In  
relation to the other water samples, they are all at satisfactory  
levels as they are within the permitted limits pursuant to Directive  
3
Smet J, van Wijk Ch. Spring Water Tapping - Chapter 8. Small  
Community Water Supplies: Technology, people and partnership.  
International Water and Sanitation Centre (IRC). 2002;8:151-167.  
Villholth KG, Rajasooriyar LD. Groundwater Resources and  
Management Challenges in Sri Lanka an Overview. Water  
Resources Management. 2010; 24(8):1489-1513  
4
5 Gjeografia e Gjakovës. Portali i Komunës së Gjakovës.2015 Nov 15.  
https://gjakovaportal.com/al/qyteti/ArtMID/517/ArticleID/995644/  
Gjeografia-e-Gjakov235s.  
6
Fawell J, Nieuwenhuijsen J.M. Contaminants in drinking water:  
Environmental pollution and health. British Medical Bulletin.2003  
Dec;68(1):199-208  
Cabral J.P. Bacterial Pathogens and Water. International Journal of  
Environmental Research and Public Health. 2010;7(10):3657-3703  
7
8 ISO 5667-1:2006. Water quality -Sampling - Part 1:Guidance on the  
design of sampling programmes and sampling techniques. Edition:2.  
2006 Dec.  
9
1
1
ISO 5667-3:2012.Water quality -- Sampling -- Part 3: Preservation and  
handling of water samples. Edition:4. 2012 Nov.  
0 ISO 5667-11:2009.Water quality -- Sampling -- Part 11: Guidance on  
sampling of groundwaters. Edition:2. 2009 Apr.  
9
8/83/EC. Based on this conclusion we recommend that both  
wells in Gërçinë village and the well with the code 3-4p in  
Damjan village are disinfected and in the meantime the  
inhabitants are instructed to not use the water for drinking.  
Therefore, it is up to the responsible institutions in the future to  
search for the causes of manganese and coliform bacteria  
pollution, in order to undertake the preventive measures for their  
rehabilitation and repairing.  
1 APHA, AWWA,WEF. Standard Methods for the Examination of  
st  
Water and Wastewater. 21 Edition. American Public Health  
Association/American Water Works Association/Water Environment  
Federation. Washington DC. 2005.  
12 ISO 6222:1999. Water quality - Enumeration of culturable micro-  
organisms - Colony count by inoculation in a nutrient agar culture  
medium. Edition:2. 1999 May  
Aknowledgment  
1
3 EU's drinking water standards. Council Directive 98/83/EC on the  
quality of water intended for human consumption.Adopted by the  
Council.1998 Nov 3.  
First of all, I would like to thank the inhabitants of villages  
Hereç, Gërçinë and Damjan of Gjakova Municipality, who  
showed understanding during the sample collection process from  
their wells. I also wish to extend my thanks to the regional  
waterworks K.R.U. “Gjakova” staff as well as “Mikrolab” testing  
laboratory personnel who worked diligently and with the utmost  
care while analyzing the samples sent by me. A special thanks  
also goes to your editorial office staff for providing this  
cooperation opportunity to publish this paper.  
14 Udhëzimi Administrativ Nr.16/2012 për cilësinë e ujit për konsum nga  
njeriu të Kosovës. Qeveria e Republikës së Kosovës.2012 Dec 24.  
th  
1
1
5 WHO. Guidelines for Drinking-water Quality. 4 ed, Geneva.World  
Health Organization/ ISBN 978 92 4 154815 1. 2011.  
6 Burlingame GA, Dietrich AM, Whelton AJ. Understanding the basics  
of tap water taste. Journal American Water Works Association. 2007  
may; 99(5):100-111.  
1
1
7 World Health Organization.Sodium in Drinking-water. Background  
document for development of WHO. Guidelines for Drinking-water  
Quality.2003.  
8 Çullaj A, Duka S, Pjeshkazi L. Vlerësimi kimiko-limnologjik i cilësisë  
së ujit të bovillës fokusuar në përdorimin për ujë të pijshëm.  
Limnological Study Bovilla. Albania. 2009; 47-92  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
1
155  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1151-1156  
1
2
2
9 Terrence T, John F, Shoichi K, Darryl J, Stephen A, Philip C. Chemical  
safety of drinking water: Assessing priorities for risk management.  
World Health Organ. Geneva. 2007.  
0 Eaton A, Clesceri L, Greenberg A, Franson MA. Standard methods for  
th  
the examination of water and wastewater. 20 ed. American Pablic  
Health Association. Washington, DC. 1998.  
1 Combs GF. Geological impacts on nutrition- Chapter 7, in: Essentials  
of Medical Geology, by O Selenius. BJ Alloway, JA Centeno, RB  
Finkleman R, Fuge U, Lindh P, P Smedley (Eds.). London: Elsevier  
Academic Press. 2005.  
2
2
2
2 WHO. Calcium and Magnesium in Drinking-water. Public health  
significance. NLM classification: QV276. Geneva. 2009.  
3 Van der Leeden F, Troise FL, Todd DK. The Water Encyclopedia 2  
nd  
ed.CRC Press. Chelsea, Michigan, U.s.a. 1990.  
4 Badran MI. Dissolved oxygen, Chlorophyll a and Nutrients: Seasonal  
Cycles in Waters of the Gulf of Aquaba, Red Sea. Aquatic Ecosystem  
Health & Management. 2001; 4(2):139-150.  
2
2
5 ATSDR (Agency for Toxic Substances and Disease Registry). Toxic  
Substances Portal- Ammonia. Public Health Statement. Atlanta.  
Georgia. 2004 Sep.  
6 Kelmendi M, Kadriju S, Sadiku M, Aliu M, Sadriu E, Hyseni S.  
Assessment of drinking water quality of Kopiliq village in Skenderaj,  
Kosovo. Journal of water and land development. 2018 Nov;39(X-  
XII): 61-65.  
2
2
7 McDermid JM, Lönnerdal B. Iron. Advances snd Nutrion. 2012 Jul;  
3
(4):532-533..  
8 ATSDR (Agency for Toxic Substances and Disease Registry). Toxic  
Substances Portal- Manganese. Public Health Statement.Atlanta.  
Georgia. 2015 sep. .  
2
3
9 MacCutheon SC, Martin JL, Barnwell Jr TO. Water Quality.  
Handbook of hydrology.Part 2 Hydrologic Transport Chapter 11.  
McGraw-Hill c. New York. 1993.  
0 Conboy MJ, Goss MJ. "Natural protection of groundwater against  
bacteria of fecal origin." Journal of Contaminant Hydrology. 2000  
Apr;43(1):1-24.  
1
156