Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1107-1111  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JEET/8(3)1111  
Self-Stratifying Particulate Coating for Robust  
Superhydrophobic and Latex-Repellent Surface  
1,3,*  
Sulaiman Hajeesaeh , Sobiroh Kariyo , Nantakan Muensit , Chalongrat Daengngam  
1
,2,3  
2
1,3  
1Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand  
Department of Research and Development, Faculty of Science and Technology, Fatoni University, Pattani 94160, Thailand  
2
3
Center of Excellence in Nanotechnology for Energy, Prince of Songkla University, Songkhla 90112, Thailand  
Received: 19/05/2020  
Accepted: 08/07/2020  
Published: 20/09/2020  
Abstract  
A technique for preparing superhydrophobic and natural latex-repellent surface requires at least two fabrication components: surface  
roughness, and surface layer with low free energy. Here, multiscale surface roughness in micro-/nanoscales with low surface energy can be  
simultaneously achieved through the deposition of fluoroalkyl-functionalized silica aggregates. However, the mechanical durability of such  
film remains problematic. Therefore, third component such as polymer binder was incorporated carefully to improve adhesion between film-  
substrate interface without deteriorating surface roughness and surface energy. In this work, we employed self-stratifying coating technique  
to induce vertical phase separation between particles and polymer during film drying, such that the silica aggregates densely accumulated on  
the top surface, while polymer binder concentrated near the film bottom. The governing transports during film stratification process involve  
diffusion and convection driven by evaporation. Thus, this research focused on the effect of drying temperature and evaporation rate on the  
anti-wetting performance of the coating. The results showed that the liquid-repellent properties of the surface improve with increasing drying  
temperature, indicating the convection-dominated transport that induced substantial particle trap at the film surface. With polymer binder  
added, the coatings still showed decent superhydrophobic and natural latex-repellent properties with maximum contact angles 166.4°±0.6°  
and 157.5°±0.5°, as well as minimum sliding angles 2.7°±0.3° and 2.9°±0.2° for water and natural latex respectively. Also, AFM result  
revealed that significant surface roughness of 581 ± 18 nm was still achievable even at high blending mass ratio of polymer binder up to half  
of the silica weight.  
Keywords: Superhydrophobic, Natural latex-repellent surface, Multiscale roughness, Self-stratifying coating  
1
mechanical durability remains a major drawback for real uses.  
1
Introduction  
Also, it is quite  
a contradiction to expect non-sticky  
It is well known that the extreme liquid-repellent properties of  
functionalized particles to adhere tightly on a substrate. The  
strategy to improve the adhesion between superhydrophobic film  
and substrate requires addition of fluoro-containing polymer  
binder, which allows good dispersion of fluoroalkyl  
functionalized silica nanoparticles into the polymer matrix.  
Nonetheless, it remains quite complicated to maintain the surface  
roughness and the topmost functional groups of final film, as  
polymer binder tends to swamp the surface.  
Therefore, an asymmetric particle distribution induced by self-  
stratification during film drying is introduced, in order to produce  
spatially controlled polymer blending, which does not destroy  
superhydrophobic features (4). As particulate coating dries,  
diffusion and convection transports determine the final particle  
distribution inside the film. Particles tend to accumulate more on  
coating surface when the convection dominates, i.e. high  
evaporation rate, so higher surface roughness can be expected. On  
the other hand, if the diffusion dominates, particles and polymer  
surface are the synergistic effect of surface morphology and  
chemical compositions (1). Surface free energy of coating films  
can be lowered by mean of surface functionalization with  
hydrophobic molecules, and the hydrophobicity can be further  
enhanced by surface asperities to reach superhydrophobic state.  
Therefore, both surface topographical roughness and the outmost  
functional groups play a crucial role in producing such superior  
liquid-repellent properties. Furthermore, surface roughness in  
multiple length scale has been proven as the key to achieve more  
stable Cassie-Baxter non-wetting state (2). In our previous  
research, we also demonstrated that tipple-scale surface  
roughness, obtained from silica aggregates functionalized with  
fluoroalkylsilane molecules, were superiorto from stableextreme  
anti-wetting surface that can repel water or even highly adhesive  
liquid like concentrated natural latex (3). As the film was mainly  
composed of functionalized nanoparticles, however, its poor  
Corresponding author: Chalongrat Daengngam, (a) Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla  
0112, Thailand. (b) Center of Excellence in Nanotechnology for Energy, Prince of Songkla University, Songkhla 90112, Thailand. E-mail:  
chalongrat.d@psu.ac.th.  
9
1107  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1107-1111  
will blend uniformly causing smoother surface, unfavorable for  
superhydrophobic properties.  
The coating solution was applied on a glass slide substrate by  
simple drop-casting technique and allowed to dry at different  
evaporation temperatures. During film drying, self-stratification  
of the silica particles and fluorinated polymer binder are  
investigated. The effect of evaporation temperature on stratified  
particulate coating and the resulting liquid-repellent properties  
were examined.  
To accomplish the aforesaid idea of stratified drying, a 1D  
vertical model of particle transport in film during drying  
formation, developed by Routh and Russel, was considered (5). It  
can be used to predict skin formation occurring for non-uniform  
vertical drying combined with wet sintering (6, 7). This model  
approach can be employed to determine whether the particle  
transport is controlled by diffusion or convection through the  
dimensionless Peclet number , which is defined by the following  
expression  
2
Experimental  
2
.1 Formulation of latex-repellent coating  
Fumed silica nanoparticles with primary particle size in a  
range of 5-25 nm were chemically modified to alter their surface  
from hydrophilic silanol groups (SiOH) to hydrophobic  
fluoroalkyl groups (CF ) by stirring them with 0.2 ml of  
3
퐸퐻0  
=  
,
(1)  
0  
perfluorooctyltriethoxysilane molecules in a mixture of xylenes  
for 70-75 h at room temperature. The silica content in the mixed  
solvent was 5 %w/v. Then, polymer binder poly(vinylidene  
fluoride-co-hexafluoro propylene) (PVDF-HFP) was dissolved  
in acetone for 0.5 h at room temperatureand added into the silica  
solution for 2.5 %w/v amount. The coating solution was stirred  
further for 0.5 h to attain homogeneous formulation.  
where  is the Peclet number.  is the film evaporation rate  
measured from the speed of the descendingsurface.  is the film  
0
initial thickness, and  is the diffusion coefficient of particle,  
0
which is related to the particle size described by the Stokes-  
Einstein equation,  
푘푇  
2
.2 Measurement of solvent evaporation rates  
퐷 =  
0
(2)  
6
휋휂푅  
The evaporation rate of the solvent was measured by mean  
E
of film surface descending rate in unit of mm/s by using an  
ultrasonic sensor for thin film measurement system. The  
evolution of drying film thickness can be tracked in real time  
inside a temperature-controlled chamber, in order to study the  
effect of drying temperature as shown in Figure 2.  
where 푘푇 the thermal energy,  is the viscosity of solvent, and 푅  
is the particle effective radius. Equation (1) and (2) infer that  
stratified drying may be achieved for evaporation-dominated  
coating process (high ). The particles consolidation front forms  
at the airsolutioninterface and grows maximumpacking fraction  
near the surface top. On the other hand, when diffusion dominates  
LinkControl adapter  
(
low ) particles concentration are predicted to remain dispersed  
uniformly in the film throughout the coating thickness as it dries  
10).  
As described in Figure 1, smaller particles with  < 1  
undergo faster Brownian motion as “kicked” by the solvent  
molecules, and thus they are able to escape from the descending  
surface into the bulk film solution during evaporation. On the  
(
Ultrasonic  
sensor  
Computer  
other hand, the larger particles with  > 1 experience much  
slower Brownian motion unable to escape away from the  
descending surface. Thus, comparatively heavy particles tend to  
accumulate and form skin layer at the film surface.  
Thermostat  
Figure 2: Measurement of film evaporation rates using ultrasonic sensor  
2
.3. Contact angles and sliding measurements  
An optical contact angle (CA) measurement system  
Figure.1: Schematic diagram shows drying steps of particulate coating,  
beginning with uniform distribution of particles at the initial time (a).  
Then evaporation starts and brings particles toward, where larger silica  
particles are trapped at the surface, while the smaller polymer binder  
molecules can diffuse away (b). This results in high concentration of silica  
particles at the film surface, and the polymer binder submerges down to  
bottom (c)  
(Dataphysics OCA-15EC) was employed to measure static  
contact angles and droplet sliding angles (SA). CA measurement  
was performed using probe liquids of water, and 35% natural  
latex with droplet size 2 µL placed at multiple locations on a  
film surface.  
In this study, low surface energy silica particles with  
(silica) > 1 was obtained by particle functionalization with  
fluoroalkylsilane compound, and they was blended with smaller  
2
.4. Morphology characterizations  
The surface roughness of the film was studied using an atomic  
force microscope (AFM) and scanning electron microscope  
fluorinated polymer binder nanoparticles with  (polymer) < 1.  
1108  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1107-1111  
(
SEM), focusing on the effect of the blended polymer binder on  
and smaller SA are observed for both water and natural latex  
droplets.  
the multiscale roughness.  
The detail of the CA and SA of the samples coated with  
different drying temperature is presented in Table 1. The  
superhydrophobic and latex-repellent properties of the coatings  
improve with faster evaporation rate. The maximum CA is  
166.±0.6° and 157.5°±0.5°, as well as the minimum sliding  
angles 2.7°±0.3° and 2.9°±0.2° obtained for water and natural  
latex respectively.  
2
Result and discussion  
The effect of evaporation temperature on the microstructure  
development of a drying particulate coating was investigated  
from 1D model of diffusion and convection transport during  
solvent evaporation. The evaporation rate  was determined from  
the vertical decrement of film height per unit time, and the values  
of  from different drying temperatures are shown in Figure 3a.  
For all cases of drying temperatures, it can be found that the  
evaporation rate was fast at the initial drying time as the acetone  
Table 1: The CA and RA of water and latex  
Water  
Natural latex  
Drying  
(
with low boiling point) predominantly evaporates out of the film.  
temp  
Upon this fast drying, the film surface moved rapidly toward the  
substrate, causing high rate of convection transport dominated at  
the beginning, which resulted in the trapping of large silica  
particles at the surface.  
o
CA (°)  
SA (°)  
CA (°)  
SA (°)  
(
C)  
30  
156.1±0.1  
160.3±0.4  
4.2±0.2  
2.9±0.4  
150.9±0.3  
153.7±0.3  
4.7±0.2  
3.9±0.3  
40  
50  
166.4±0.6  
2.7±0.3  
157.5±0.5  
2.9±0.2  
AFM images for surface topography of the coated film were  
o
obtained in non-contact mode and the surface profiles of 40 C  
coating condition are presented in Figure. 4. It can be observed  
for the substantial surface roughness, randomly distributed  
throughout the studiedarea, which is a desiredpropertiesrequired  
for Cassie-Baxter anti-wetting state. The quantitative analysis of  
surface RMS roughness was determined as 581±18 nm, which is  
much larger than the size of the primary silica particles. This  
result infers that the surface roughness was essentially composed  
of a larger particle aggregates that diffused slowly and trapped at  
the surface during the early stage of the film drying.  
Figure 3: The evaporation rate (a) and the resulting CA and SA values  
o
(b) of film dried at temperatures  
Figure 4: AFM images of film surface structure with 40 C drying rate  
o
After ~50 s of film drying process, the evaporation rates  
slowed down as the acetone depleted. At this stage, the  
evaporation rate was controlled by xylene (with high boiling  
point). This particularlyslow evaporation rate near the end of film  
drying process is actually needed for good coalescence of the  
polymer binder to prevent film cracking.  
It can also be found that higher drying temperature, in general,  
is associated with more rapid evaporation rate. Once the solvent  
completely evaporated, highly dense silicaparticledistributionon  
the surface can be achieved with the polymer binder located near  
the substrate interface. The results in Figure 3b show that better  
liquid-repellent properties were obtained for the coated film with  
higher drying temperature (faster evaporation rate), as larger CA  
The film surface morphology of 40 C coating condition was  
further studied using SEM imaging technique, and it clearly  
revealed hierarchically structured roughness as shown in Figure  
5. The overall variation of surface heights was observed at  
microscale level, featuredwith numerous nanograins produced by  
the aggregate of primary silica nanoparticles. This multiscale  
roughness also renderedsmall hole size of less than 1 µm that can  
trap countless air pockets on the surface, resulting in a reduction  
of direct contact between liquid and film surface. This minimizes  
liquid-film adhesion that corresponds to very low SA values of  
o
less than 5 for both water and natural latex. The SEM cross-  
section also reveals highly porous structure at the surface  
produced by silica aggregates, whereas the denser film structure  
1109  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1107-1111  
can be found below which contains higher ratio of polymer binder  
that improve the adhesion of the film with substrate. The coated  
surface exhibitsdecent liquid-repellentproperties even for highly  
adhesive liquid like natural latex. Figure 6 shows the dynamic  
wetting properties of water and natural latex droplets sliding on  
coated surfaces. As revealed by the selected sequential movie  
frames, it can be observed that the fluid moves easily out of the  
coated surface without any residual liquid left behind. Moreover,  
recent studies confirmed that the air pockets underneath the  
droplets can cause liquid slippery; thus, the liquid flows virtually  
over a layer of air-solid composite, which significantly reduces  
surface friction (11). This could find great potential applications  
in collection and transportation of natural latex liquid with  
minimum waste and cleaning cost due to adhesion.  
can be clearly seen high degree of surface roughness from AFM  
and SEM even for the film that was incorporated with significant  
amount of polymer binder. Moreover, the coated surface also  
shows good superhydrophobic and latex-repellentpropertieswith  
high CA and low SA. It is expected that this simple single-step  
coating technique may possibly open a new way to improve the  
mechanical durability of superhydrophobic and latex-repellent  
surfaces for practical applications.  
(a)  
(
b)  
Figure 6: Selected movie frames display the flow of water (a), and latex  
droplets (b) out of coated surface without leaving any residue  
Aknowledgment  
The authors gratefully acknowledge the Center of Excellence  
in Nanotechnology for Energy (CENE), the Department of  
Physic, Faculty Science, Prince of Songkla University and the  
Department of Research and Development, Faculty of Science  
and Technology, Fatoni University for providing the facilities of  
laboratory. The financial support from PSU-Ph.D. Scholarship  
and Research Grant for Thesis, by Graduate School, Prince of  
Songkla University.  
o
Figure 5: SEM images of stratifying film dried at 40 C at top view (a) and  
cross section (b)  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
4
Conclusion  
In summary, we have successfully fabricated extreme anti-  
wetting surface using a solution of surface functionalized silica  
aggregates blended with PVDF-HFP polymer binder to improve  
film mechanical durability. During film drying, self-stratification  
was employed to facilitate vertical phase separation between the  
silica particles and the polymer binder. The wetting-resistant  
performance of the resulting films, dried with different  
evaporation rates controlled by varied temperatures, was studied.  
It was found that liquid-repellent properties significantly  
improved with increasing coating temperature i.e. at high  
evaporation rate. This suggests that silica particles were trapped  
more at the surface when the convection transport dominated. It  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
1110  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1107-1111  
Authors’ contribution  
S. Hajeesaeh and S. Kariy were responsible for data  
collection, data analyses and manuscript writing. C. Daengnam  
and N. Muensit initiated experimental design, performed data  
analysis and edited manuscript.  
References  
1
. Arcos D, Fal-Miyar V, Ruiz-Hernández E, Garcia-Hernández M, Ruiz-  
González ML, González-Calbet J, et al. Supramolecular mechanisms  
in the synthesis of mesoporous magnetic nanospheres for  
hyperthermia. Journal of Materials Chemistry. 2012;22(1):64-72.  
2
3
.
Nosonovsky M. Multiscale Roughness and Stability of  
Superhydrophobic Biomimetic Interfaces. Langmuir.  
007;23(6):3157-61.  
2
. Chunglok A, Muensit N, Daengngam C. Extreme Wetting-Resistant  
Multiscale Nano-/Microstructured Surfaces for Viscoelastic Liquid  
Repellence. J Nanomater. 2016;2016:13.  
4
5
. Routh AF. Drying of thin colloidal films. Reports on Progress in  
Physics. 2013;76(4):046603.  
. Trueman RE, Lago Domingues E, Emmett SN, Murray MW, Routh AF.  
Auto-stratification in drying colloidal dispersions: A diffusive model.  
2
012;377(1):207-12.  
6
7
. Routh AF, Russel WB. Deformation Mechanisms during Latex Film  
Formation:ꢀ Experimental Evidence. Industrial  
& Engineering  
Chemistry Research. 2001;40(20):4302-8.  
.
Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W.  
Superhydrophobicity in perfection: the outstanding properties of the  
lotus leaf. Beilstein journal of nanotechnology. 2011;2:152-61.  
8
9
1
. Routh AF, Zimmerman WB. Distribution of particles during solvent  
evaporation from films. 2004;59(14):2961-8.  
. Cardinal CM, Jung YD, Ahn KH, Francis LF. Drying regime maps for  
particulate coatings. AIChE Journal. 2010;56(11):2769-80.  
0. Vanderhoff JW, Bradford EB, Carrington WK. The transport of water  
through latex films. Journal of Polymer Science: Polymer Symposia.  
1
973;41(1):155-74.  
1
1. Kota AK, Li Y, Mabry JM, Tuteja A. Hierarchically Structured  
Superoleophobic Surfaces with Ultralow Contact Angle Hysteresis.  
Advanced Materials. 2012;24(43):5838-43.  
1111