Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1118-1123  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Significant Factors Affecting the Thermo-Chemical  
De-vulcanization Efficiency of Tire Rubber  
1
1*  
2
3
Anuwat Worlee , Sitisaiyidah Saiwari , Wilma Dierkes , Siti Salina Sarkawi  
1
Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000, Thailand.  
2
Department of Mechanics of Solids, Surfaces and Systems, Elastomer Technology and Engineering, University of Twente,  
7
500AE Enschede, the Netherlands  
3
Rubber Research Institute of Malaysia, Malaysian Rubber Board, P.O. Box 10150, 50908 Kuala Lumpur, Malaysia  
Received: 13/05/2020  
Accepted: 09/07/20xx  
Published: 20/09/2020  
Abstract  
In this study, the influence of the molecular structure of the rubber, the carbon black loading and de-vulcanization time and temperature  
on the thermo-chemical de-vulcanization efficiency of whole tire rubber was investigated by correlating sol fraction and crosslink density  
(Horikx-Verbruggen method). Differences in molecular structure influence the de-vulcanization mechanisms of rubbers as well as the  
efficiency. Increasing carbon black loadings result in higher crosslink densities due to a deactivation of the de-vulcanization aid. Variation  
of de-vulcanization temperature and time results in different degrees of heat accumulation in the rubber during de-vulcanization and thus  
leads to different de-vulcanization efficiencies.  
Keywords: Tire rubber; De-vulcanization; Recycling; Carbon black  
Introduction1  
comparable de-vulcanized and virgin rubbers due to the  
1
uncontrolled polymer scission which occurs during the reclaiming  
process. De-vulcanization targets at the sulfuric crosslinks in the  
vulcanized rubber, to selectively cleave C-S and S-S bonds. These  
strength of these bonds differs: -C-S-C (285 kJ/mol), -C-S-S-C-  
When mentioning the environmental pollution problems that  
almost every country is facing today, it is inevitable to discuss the  
issue of non-biodegradable waste like vulcanized elastomers and  
plastic. The molecular structure of these materials results in  
outstanding water resistance and in-conduciveness to growth of  
microbes. In addition, elastomers have a very strong network. As  
a result, these materials when becoming waste are difficult to  
decompose: some types may take more than 100 years to  
biodegrade completely in the environment.  
Used tire rubber is one of polymer materials that is difficult to  
decompose. It is a durable material made of complex components  
consisting of various types of rubbers, reinforcing fillers and  
fabric. Therefore, disposal in the environment or usage of  
inappropriate methods of removal may cause environmental  
pollution in the future. Recycling and re-utilization of used rubber  
pose a great challenge. For end-of-life tires, incineration is  
currently the main outlet, impeding the re-use of this valuable raw  
material in new rubber products. Two recycling processes of end-  
of-life tires are well known: reclaiming and de-vulcanization.  
These two methods are often referred to as similar processes, but  
they are fundamentally different concerning the chemical reaction  
to break sulfur crosslinks, the ratio of crosslink scission to  
network breakdown, and the molecular structure of the polymeric  
material (Fig. 1). Reclaiming is usually accompanied by  
considerable scission of the polymeric chains resulting in a lower  
molecular mass fraction and poorer mechanical properties than  
x
(268 kJ/mol) or C-S -C- (251 kJ/mol). This can be one way to  
selectively break sulfur bonds in a crosslinked elastomer (1). A  
considerable share of material recycling can only be achieved if  
tire material can be used in real recycling loops: tires back into  
tires. This requires high-quality recycled rubber products, which  
can only be produced by a tailored de-vulcanization process.  
Within this study, vulcanized rubber was de-vulcanized and  
its efficiency was investigated concerning the tendency for  
crosslink versus main-chain scission. Thermo-chemical de-  
vulcanization using the optimum conditions proposed by Saiwari  
and co-workers (2) was applied to rubbers used in passenger ca  
tires: styrene-butadiene rubber (SBR), brominated butyl rubber  
(BIIR), natural rubber (NR) and butadiene rubber (BR). The goal  
of this project was to elucidate the influence of the molecular  
structure of the elastomer on the de-vulcanization efficiency, and  
to understand the influence of carbon black in a thermo-chemical  
de-vulcanization process of the tire rubbers. The effect of carbon  
black loading (i.e., 30, 60, 90 phr) and de-vulcanization time and  
temperature on the de-vulcanization efficiency were also studied.  
The mechanisms behind the rubber network breakdown of the  
carbon black filled single rubbers will be investigated and  
discussed. The understanding of the factors affecting the de-  
*
Corresponding author: Sitisaiyidah Saiwari, Department of Rubber Technology and Polymer Science, Faculty of Science and Technology,  
Prince of Songkla University, Pattani, 94000, Thailand. Email: s.saiwari@gmail.com.  
1
118  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1118-1123  
vulcanization mechanism of vulcanized rubber are of major  
importance for the development of an efficient tire recycling.  
(SBR1502) produced by BST Elastomers (Thailand), Bromo-  
butyl rubber produced from KIJ PAIBOON (Thailand) and  
Natural Rubber (RSS#3) obtained from Yang Thai PakTai  
Company, Thailand. Treated distillate aromatic extract or TDAE  
oil (Vivatec 500) was supplied by Hansen&Rosenthal KG  
(Hamburg, Germany). Diphenyl disulfide, DPDS was used as the  
de-vulcanization aid was obtained from Sigma-Aldrich Company  
Ltd., England. The ingredients for preparing rubber compounds  
were ZnO (Global Chemical, Thailand), stearic acid (Imperial  
Chemical, Thailand), TBBS (Flexsys, Belgium), and sulfur (Siam  
Chemical, Thailand). Carbon black (N330) with a particle size of  
2
2
4-32 nm and a CTAB surface area of 75 - 85 m /g was used.  
They were supplied by Polychem Chemicals, Thailand.  
Figure 1: Simplified scheme of the two reactions occurring during  
rubber recycling processes: reclaming and de-vulcanization (2)  
2
Background  
The de-vulcanization of end-of-life of tire is a major challenge  
and was studied extensively over the past several decades. Many  
researchers attempted to develop a new de-vulcanization method  
such as mechanical (3, 4) thermo-mechanical (5) mechano-  
chemical (6), and supercritical CO  
2
processes (7). Using microbes  
(
8, 9, 10) and ultrasound (11, 12, 13, 14, 15, 16) in de-  
vulcanization is also extensively studied. Among the de-  
vulcanization processes, several methods were successfully  
developed in the laboratory; however, after re-vulcanization, the  
material exhibits poor mechanical properties compared to the  
starting vulcanizate due to aging during service life, and the fact  
that whole tire material is a blend of different compounds,  
polymers and fillers. A detailed study of some possibly  
complicating factors such as type of rubber: NR, SBR, BR, IIR,  
and presence or absence of fillers is needed. Thermo-chemical de-  
vulcanization by using diphenyl disulfide (DPDS) or other  
disulfides used as de-vulcanization aid is considered as an  
alternative way of recycling of used tires, which is widely studied  
nowadays. The main reasons to use this process and these de-  
vulcanization aids is that it is a rather simple process, applicable  
in the industrial sector, and low cost as well. The de-vulcanization  
mechanism of this method is shown in Fig. 2. There are two  
possible major reactions: The first one is thermal scission of the  
rubber network due to the elevated temperature of de-  
vulcanization. When thermal vibrations overcome bonding  
energies of S-S bonds or C-S bonds, the rubber network  
breakdown will occur mainly at the sulfur crosslinks being the  
weakest bonds in the network. At excessive temperatures, the  
rubber network is subjected to random scission: breakage of the  
rubber network will occur both ways, at the main chains of the  
polymer (C-C bonds) and at the sulfur crosslinks. For this reason,  
the free radicals generated during de-vulcanization include both,  
carbon radicals from main chain scission and sulfur radicals from  
sulfur bridge breakage. The second reaction is trapping of free  
radicals generated in the first reaction by sulfide radicals of  
DPDS, to prevent the recombination of broken rubber chains (Fig.  
Figure 2: Simplified reaction scheme proposed for radical scavenging by  
DPDS in unfilled rubber (17)  
3
.2 Preparation of vulcanized rubber  
Vulcanized tire rubbers were prepared by incorporation of  
vulcanization ingredients such sulfur, activators and accelerators,  
as well as anti-oxidants into NR, SBR, BR and BIIR in an internal  
3
mixer with a mixing chamber volume of 50 cm . The mixer was  
operated at a rotor speed of 60 rpm, a fill factor of 0.75 and an  
initial temperature of 50 C.  
Table 1: Basic formulations of the rubber compounds  
Ingredients  
Amount (phr.)  
SBR  
100  
-
-
-
NR  
BR  
BIIR  
Zinc oxide  
Stearic acid  
TBBS  
-
-
-
3
2
1.5  
1.5  
100  
-
-
5
1
-
-
-
100  
-
3
2
1.5  
1.5  
100  
3
2
1
0.5  
1
2.5  
Sulfur  
The compounding formulations are simplified as shown in  
Table 1. Cure time (tc,90) at a temperature of 170 C was measured  
in an oscillating disc rheometer (ODR 2000). The cure time was  
used to vulcanize the rubber compounds in a compression  
molding machine at 170°C and 100 bar, into 2 mm thick sheets.  
2
). The trapping efficiency of free radicals in this reaction  
depends on the amount of sulfide radicals of DPDS.  
3
Experimental  
3
.3 Preparation of de-vulcanized rubber  
The vulcanized rubber sheets were subsequently ground in a  
3
.1 Materials  
The rubber materials used in this study were butadiene rubber  
Fritsch Universal Cutting Mill Pulverisette 19 (Fritsch, Germany)  
with a 2 mm screen at room temperature. Thermo-chemical de-  
(
BR) and emulsion-polymerized styrene butadiene rubber  
1
119  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1118-1123  
vulcanization was performed batch wise in an internal mixer. A  
fill factor of 0.7, a constant rotor speed of 50 rpm and a chamber  
temperature of 220C was used as de-vulcanization conditions.  
The de-vulcanization of ground rubbers were carried out using the  
optimized process conditions as elaborated for the gum tire  
rubbers (Saiwari et al., 2013) as given in Table 2. DPDS (30  
mmol/100 g rubber) was blended with 5 phr of TDAE oil relative  
to the polymer content of the rubber, and then mixed with the  
4
Results and Discussion  
4
.1 Influence of rubber molecular structure  
The influence of the rubber molecular structure on the thermo-  
chemical de-vulcanization efficiency of unfilled vulcanized  
rubber can be seen in Fig. 3. The position between the crosslink  
and main chain lines of the data points of each sample is different.  
This indicates that the de-vulcanization mechanisms of the  
rubbers differ. In case of NR, it is known that the molecular chains  
have a low thermal resistance and are destroyed easily at higher  
ground rubber. It was heated in an oven at 60 C for 30 minutes  
before feeding it into the mixing chamber. The de-vulcanization  
was carried out at 220C, and the de-vulcanization time was 6  
min. After de-vulcanization, the material was taken out of the  
internal mixer and directly quenched in liquid nitrogen and  
subsequently stored in a refrigerator to avoid an oxidation.  
temperatures (220 C). Therefore, almost 100% sol fraction and a  
crosslink density reduction to almost zero are observed in unfilled  
NR de-vulcanizates. This indicates that the NR network is  
completely broken during de-vulcanization. For SBR, the data  
point is located on the crosslink scission line, with a remaining  
crosslink density decrease of about 65% relative to the untreated  
SBR. This is attributed to the de-vulcanization conditions used in  
this investigation, as elaborated by for unfilled SBR by Saiwari  
(19). The de-vulcanization efficiency for BIIR is rather close to  
the value measured for SBR. This might be expected as both  
elastomers, SBR and BIIR, are co-polymeric synthetic rubbers  
(Fig. 4) with a lower concentration of double bond units in the  
carbon backbone compared to BR and NR. As the double bond is  
heat-sensitive, these polymers are expected have similar heat  
resistance properties. In the case of BIIR, the bromine atom can  
be thermally split off and it may interfere with the radical trapping  
of DPDS, causing a lower de-vulcanization efficiency.  
3
3
.4 Characterization of the de-vulcanizates  
.4.1 Rubber soluble fraction  
The soluble (Sol) and insoluble (Gel) fractions of the  
vulcanized and de-vulcanized materials will be determined by  
extraction in a Soxhlet apparatus by initial extraction for 48 hours  
in acetone in order to remove low molecular polar substances like  
remains of accelerators and curatives, followed by an extraction  
for 72 hours in tetrahydrofuran (THF) to remove the polar  
components: oil, non-crosslinked polymer residues, and soluble  
polymer released from the network by the de-vulcanization  
process. The extraction will be followed by drying the samples in  
a vacuum oven at 40°C and determining the weight loss until  
constant weight is achieved. The sol fraction is defined as the sum  
of the soluble fractions in acetone and THF.  
3
.4.2 Crosslink density  
The extracted rubber samples are swollen in toluene for 72  
hours at room temperature. The weight of the swollen  
vulcanizates will be measured after removal of surface liquid with  
absorption paper. The crosslink density will be calculated  
according to the Flory-Rehner (18) equation and corrected using  
the Kraus-correction (19).  
Table 2: De-vulcanization condition  
Factors  
Conditions  
De-vulcanization aid  
De-vulcanization oil  
De-vulcanization  
temperature  
De-vulcanization  
atmosphere  
DPDS 30 mmol/100 g rubber  
TDAE 5 phr  
220C  
Figure 3: Sol fraction generated during de-vulcanization versus the  
relative decrease in crosslink density of unfilled rubber de-vulcanizates  
(De-xx: devulcanized polymer)  
With nitrogen gas purging  
In liquid nitrogen  
Dumping condition  
3
.5 Analysis of the de-vulcanization efficiency  
The de-vulcanization efficiency was analyzed using the  
method developed by Horikx (20) and Verbruggen (21): the  
rubber sol fraction of the de-vulcanizate and the decrease in  
crosslink density of the rubber gel fraction were correlated. The  
positioning of the data points for a certain de-vulcanizate is  
indicative of the ratio of crosslink scission to polymer scission:  
the lower line as shown in Fig. 3 represents crosslink scission,  
while the upper line represents random scission.  
Figure 4: Basic molecular structure of each rubber  
1
120  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1118-1123  
The data point of BR is located left of the points of SBR and  
BIIR, and close to the random scission line. It indicates a higher  
crosslink density compared with SBR and BIIR, thus decreased  
de-vulcanization efficiency. Since the molecular structure of this  
rubber contains a double bond in every unit of the repeating  
monomer, this results in lower heat resistance than SBR and BIIR.  
Therefore the rubber network is subjected to random scission: the  
breakage of the rubber network will occur at both, the main chains  
of the polymer and the sulfur crosslinks. Recombination of chain  
fragments will also occur, resulting in an increase in crosslink  
density.  
the de-vulcanization time and temperature are major factors  
affecting the de-vulcanization efficiency. At a constant de-  
vulcanization temperature of 220°C with time variation from 3  
min to 15 min (see Fig. 6), the data points are shifted to the left in  
the graph, which indicates lower de-vulcanization efficiency.  
Longer times contribute to a higher degree of recombination of  
broken rubber chains resulting in higher crosslink density.  
However, this recombination is rather uncontrolled, therefore the  
network structure of the devulcanized rubber is different from the  
starting network. At an increasing de-vulcanization temperature  
with short de-vulcanization time (3 min.), a contradictory trend is  
observed as shown in Fig. 7: The data points significantly shift to  
the right, indicating improved de-vulcanization efficiency. It was  
expected that an increased temperature but short de-vulcanization  
time causes a higher degree of network scission and, as a  
consequence, a larger sol fraction. This is attributed to  
uncontrolled generation of broken rubber chains at this excessive  
temperature.  
4
.2 Influence of carbon black loading  
To understand the effect of carbon black loading on the  
thermo-chemical de-vulcanization efficiency, carbon black filled  
BR vulcanizates were prepared following the formulation as  
shown in Table 1 with varied carbon black loading from 30 phr to  
9
0 phr. Figure 5 shows the Horikx-Verbruggen curves of this  
rubber. When adding carbon black, most data points get close to  
the random scission line. Moreover, they are shifted left as the  
carbon black loading is increased. This indicates a decreased de-  
vulcanization efficiency with addition of carbon black to BR. This  
is due to the two main causes: Firstly, the accumulation of heat  
during the de-vulcanization process increases with increasing  
carbon black loading, resulting in higher temperatures and hot  
spots compared to the unfilled rubber. As a result, the rubber  
network is more subject to random scission: breakage of the  
rubber network will occur at both, the main chains of the polymer  
and the sulfur crosslinks, resulting in a lower ratio of crosslink to  
polymer scission. Secondly, some filler aggregates and  
agglomerates might be broken and form radicals during de-  
vulcanization. The radicals will react with DPDS radicals and  
thus reduces the reactivity of DPDS.  
Figure 6: Sol fraction generated during de-vulcanization versus the  
relative decrease in crosslink density of filled BR with varying de-  
vulcanization time at 220 C  
Figure 5: Sol fraction generated during de-vulcanization versus the  
relative decrease in crosslink density of carbon black filled BR de-  
vulcanizate  
Figure 7: Sol fraction generated during de-vulcanization versus the  
relative decrease in crosslink density of filled BR de-vulcanizates using  
3 min. of de-vulcanization time  
4
.3 Influence of de-vulcanization time and temperature  
In this study, BR compound with 60 phr of carbon black de-  
vulcanized following the formulation and conditions shown in  
Table 1 and Table 2, respectively. Fig. 6 and 7 show the  
relationship between the soluble fraction generated after de-  
vulcanization and the relative decrease in crosslink density while  
varying the de-vulcanization time and temperature. It is clear that  
5 Conclusion  
There are 2 mechanism occurring during a thermo-chemical  
de-vulcanization process: firstly, generation of radicals by  
breakage of polymer chains caused by high temperatures, and  
1
121  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1118-1123  
secondly, trapping of radicals by the sulfide radical of DPDS to  
prevent recombination. Polymers with different molecular  
structures have different de-vulcanization efficiencies due to the  
variation in heat resistance: a lower heat resistance leads to a  
higher degree of random scission. When carbon black is present,  
uncontrolled thermal elastomer and filler network scission occurs.  
Depending on the type of polymer, recombination of the polymer  
fragments and formation of a new polymer network can happen  
as well. Increased carbon black loadings decrease the de-  
vulcanization efficiency. This is due to, firstly, breakage of main  
chains caused by excessive heating with increasing carbon black  
loading, and secondly, breaking of aggregates and agglomerates  
of carbon black to form a reactive surface, to which DPDS  
radicals are attached during de-vulcanization reducing the de-  
vulcanization efficiency of DPDS. For the factors of time and  
temperature, de-vulcanization of the ground rubber at different  
temperatures and times causes differences in heat accumulation  
in the rubber during de-vulcanization, which consequently leads  
to different de-vulcanization efficiencies.  
6
7
Hassan MH, Aly RO, Abdel Aal SE, El-Masry AM, Fathy ES.  
Mechanochemical devulcanization and gamma irradiation of  
devulcanized waste rubber/high density polyethylene thermoplastic  
elastomer. Journal of Industrial and Engineering Chemistry. 2013;  
1
9(5): 17221729.  
Mangili I, Collina E, Anzano M, Pitea D, Lasagni M. Characterization  
and supercritical CO devulcanization of cryo-ground tire rubber:  
2
Influence of de-vulcanization process on reclaimed material. Polymer  
Degradation and Stability. 2014;102: 1524.  
8
9
1
Yao C, Zhao S, Wang Y, Wang B, Wei M, Hu M. Microbial  
desulfurization of waste latex rubber with Alicyclobacillus sp.  
Polymer Degradation and Stability. 2013;98(9): 17241730.  
Li Y, Zhao S, Wang Y. Microbial desulfurization of ground tire rubber  
by Thiobacillus ferrooxidans. Polymer Degradation and Stability.  
2
011;96(9): 16621668.  
0 Romine RA, Romine MF. Rubbercycle: a bioprocess for surface  
modification of waste tyre rubber. Polymer Degradation and  
Stability. 1998;59(1): 353358.  
11 Isayev AI, Chen J, Tukachinsky A. Novel ultrasonic technology for  
devulcanization of waste rubbers. Rubber Chemistry and  
Technology. 1995;68(2): 267280.  
1
2 Isayev AI, Yushanov SP, Chen J. Ultrasonic devulcanization of rubber  
vulcanizates. I. Process model. Journal of Applied Polymer Sciences.  
1996;59(5); 803813.  
Aknowledgment  
The authors gratefully acknowledge the financial support for  
this work of the Thailand’s Education Hub for Southern Region  
of ASEAN Countries for PhD Students (THE-AC) and the PSU  
Research Fund (Project number: SAT580880S).  
13 Yun J, Oh JS, Isayev AI. Ultrasonic devulcanization reactors for  
recycling of GRT: Comparative study. Rubber Chemistry and  
Technology. 2001;74(2): 317330.  
1
4 Johnston ST, Massey J, Meerwall EV, Kim SH, Levin VY, Isayev AI.  
Ultrasound devulcanization of SBR: Molecular mobility of gel and  
sol. Rubber Chemistry and Technology. 1997;70(2): 183193.  
1
5
Shim SE, Isayev AI, Meerwall EV. Molecular mobility of  
ultrasonically devulcanized silica-filled poly(dimethyl siloxane).  
Journal of Polymer Sciecnecs: Part B Polymer Physic. 2003;41(5):  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
4
54465.  
(avoidance of guest authorship), dual submission, manipulation  
1
6 Tukachinsky A, Schworm D, Isayev AI. Devulcanization of waste tire  
rubber by powerful ultrasound. Rubber Chemistry and Technology.  
1996;69(1): 92103.  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
17 Saiwari S. Post-consumer tires back into new tires: de-vulcanization  
and re-utilization of passenger car tires. Thesis Ph.D. May 2013.  
1
8
Flory PJ, Rehner J. Statistical mechanics of cross‐linked polymer  
networks I: Rubber like elasticity. Journal of Chemical Physics.  
1943;11(11): 512520.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
19 Kraus G. A carbon black structure-concentration equivalence  
principle: Application to stress-strain relationships of filled rubbers.  
Rubber Chemistry and Technology. 1971;44(1): 199213.  
0 Horikx MM. Chain scissions in a polymer network. Journal of  
Polymer Sciences. 1956;19(93): 445454.  
1 Verbruggen MAL, Does LVD, Noordermeer JWM, Duin MV, Manuel  
HJ. Mechanisms involved in the recycling of NR and EPDM. Rubber  
Chemistry and Technology. 1999;72(4): 731740.  
2
2
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing  
References  
Author Profile  
1
2
3
4
5
Diao B, Isayev AI, Levin VY. Basic study of continuous ultrasonic  
devulcanization of unfilled silicone rubber. Rubber Chemistry and  
Technology.1999;72(1): 152164.  
Dr. A.Anuwat was bornd in 1983. He started his  
PhD in Thailand  
Saiwari S, Dierkes WK, Noordermeer JWM. Devulcanization of whole  
passenger care tire material. KGK Kautsch. Gummi Kunststoffe.  
2
013;66(7-8): 2025.  
De D, Das A, De D, Dey B, Debnath SC, Roy BC. Reclaiming of  
ground rubber tire (GRT) by a novel reclaiming agent. European.  
Polymer Journal. 2006;42(4): 917927.  
De D, De, D. Processing and material characteristics of a reclaimed  
ground rubber tire reinforced styrene butadiene rubber. Materials  
Sciences and Application. 2011;2: 486- 498.  
Formela K, Cysewska M. Efficiency of thermomechanical reclaiming  
of ground tire rubber conducted in counter-rotating and co-rotating  
twin screw extruder. Polimery. 2014;59(3): 83-91.  
Dr. S. Saiwari was bornd in 1979. He started his  
PhD in Netherlands  
1
122  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1118-1123  
Dr. W. Dierkes was bornd in 1964. He started his  
PhD in Netherlands  
Dr. S.S Sarkawi was bornd in 1976. He started  
his PhD in Netherlands  
1
123