Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1075-1080  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Study of the Chemical Composition of Olive Oil  
According to Its Mode of Extraction and Its Age  
from the Olive Tree  
1
2
1
1
Miloudi Hilali *, Nadia Maata , Hanae El Monfalouti and Badr Eddine Kartah  
1
Laboratory of Plant Chemistry and Organic and Bioorganic Synthesis, Faculty of Science, University Mohamed-V, Av. Ibn Battouta, BP 1014 Agdal-  
Rabat, Morocco  
2
Official Laboratory for Chemical Analysis and Research 25, Rue Nichakra Rahal, Casablanca, Morocco  
Received: 12/04/2020  
Accepted: 29/06/2020  
Published: 20/09/2020  
Abstract  
A comparative study of the chemical composition of olive oil was carried out in the Massmouda district of Ouezzane, a city in  
northern Morocco. It was made in order to study the influence of the extraction temperature and the age of the olive tree on the  
chemical composition of olive oil. To carry out this work, we selected four samples of olive oil of the same kind (Moroccan  
Picholine), from the same place and extracted at different temperatures, but these samples were collected from olive trees of different  
ages. For this we performed physico-chemical analyzes such as acidity, peroxide index, absorbance in ultraviolet, fatty acids, sterols  
and triglycerides. The result of this work shows that the temperature of olive oil extraction can increase the peroxide index, acidity, the  
percentage of oleic fatty acid (C18: 1), the percentage of stigmasterol, and the percentages of triglycerides OOO, POO and can  
decrease the percentage of fatty acid such as: C18: 0, C18: 2 (vitamin F) and the percentages of triglycerides LLL, LOL, OLO, PLO.  
The results of the chemical composition according to the age of the olive tree reveal that the percentages of oleic acid (C18: 1), the  
percentages of the triglycerides LLL, OOO are decreased with the increase in the age of the olive tree. On the other hand, our study  
demonstrates that the percentage of linoleic acid C18: 2 (vitamin F) is increased with the increase of the age of the tree. In the end our  
study proved the high quality of olive oil extracted by cold mechanical pressing.  
Keywords: Olive, Fatty acids, Sterols, Triglycerides, Extraction temperature, Olive age  
Olive oil is practically the only vegetable oil that can be  
1
Introduction1  
consumed in its raw form without prior treatment.  
Appreciated for its flavor and nutritional characteristics, it is  
known for its multiple virtues in the prevention of diabetes,  
high blood pressure [4], certain cancers and aging [5]. It is  
also used in the pharmaceutical and cosmetic fields [6].  
Making the pillar of the Mediterranean diet, several studies  
have been carried out, on the fruit and leaves, to confirm the  
ancestral virtues attributed to it [7-9]. This study is part of the  
continuity of the research series performed by The Laboratory  
of Plant Chemistry, Organic and Bio-organic Synthesis on  
vegetable oils. To enhance olive oil and improve its nutritional  
effect we followed some steps: (a) the study of the chemical  
composition of olive oil according to the age of the olive tree;  
The olive tree is a Mediterranean fruit tree that belongs to  
the Oleaceae family. This tree produces olives; a fruit  
consumed in various forms and from which olive oil is  
extracted. In Morocco, the main cultivated fruit species is the  
olive of the popular variety "Moroccan Picholine" [1] which  
occupies an area of 560,000 ha. Olive groves contribute to  
employment in rural areas with 11 million working days  
annually. Olive production reaches the approximate figure of  
5
60,000 T, generates 50,000 T of olive oils and 90,000 T of  
industrial table olives [2]. The olive tree develops in four  
periods [3].  
and flowering. The olive tree settles, expands but produces  
nothing.  
Period of youth (1-7 years): it is the period of growth, size  
(
b) the study of the chemical composition of olive oil  
according to its mode of extraction and (c) to accomplish this  
work, 4 olive samples belonging to the same region of  
Morocco (the town of Ouezzane Douar Ghnioua) and of the  
same variety "Moroccan Picholine" were selected.  
Period of entry into production (7-35 years): it is in a way  
the adolescence period of the tree which prepares for the  
establishment of regular and significant productions.  
Adult period (35-100 years): full production period (yield of  
5 to 25 kg of olives per tree). The olive tree is in the prime of  
1
life.  
2 Materials and methods  
2.1 Presentation of the study area  
Period of senescence (beyond 150 years): end of the tree's  
productive life, little by little it produces less. Carpenter  
branches die, trunk bursts.  
The study region is the city of Ouezzane which belongs to  
the southern margins of the Jebala area whose major tribes  
bordering the city are: Masmouda, Rhouna, Ghzaoua and Beni  
Mesara. The Ouezzane region, in the North of Morocco,  
extends over an area of 1861.2 km², and has an altitude of 614  
meters [10] (figure 1).  
Corresponding author: Miloudi Hilali, Laboratory of Plant  
Chemistry and Organic and Bioorganic Synthesis, Faculty of  
Science, University Mohamed-V, Av. Ibn Battouta, BP 1014  
Agdal-Rabat, Morocco. Email address: hilali400@yahoo.com.  
1
075  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1075-1080  
Figure 1: Presentation of the study area  
Table 1: Origin and method of extraction of the 4 samples  
N° Sample The age of the tree  
The region  
Ghanioua  
Ghanioua  
Ghanioua  
Ghniuoua  
Extraction mode  
1
2
3
4
10 years  
20 years  
40 years  
40 years  
Extracted by mechanical cold pressing 25 °C  
Extracted by mechanical cold pressing 25 °C  
Extracted by mechanical cold pressing 25 °C  
Same sample 3 but extracted by mechanical hot press 50°C  
2
.2 Biological material  
In the present work, 4 different samples were selected and  
characteristics and the chemical composition of all the  
samples are determined (acidity index, peroxide index, cis and  
trans fatty acids, triglycerides and sterols). The oils are  
analyzed according to the methods of analysis already  
described in the international olive oil advisory literature [12].  
collected through the mode of extraction from olive trees  
having different ages or coming from the same region of  
Ouezzane commune of Massmouda Douar Ghanioua (the city  
of Ouezzane north of Morocco) during the month of  
December 2019. Table 1 provides information on the origin,  
method of extraction and age of the olive tree from each  
sample of olive oil.  
2.4 Physico-chemical analyzes of oils  
The acidity expressed as a percentage of oleic acid and the  
peroxide index were measured according to standardized  
methods, respectively the French standard [13], and the  
French standard [14]. The specific extinction coefficients in  
the ultraviolet at 232 nm and 270 nm (K232) and (K270).  
They are calculated respectively from the absorption at 232  
and 270 nm according to the French method [15], using a  
VARIAN type spectrophotometer.  
2
.3 Preparation of different samples of olive oil  
Only the mechanical pressing extraction method was used  
to extract olive oil. It was done in the Amal cooperative (olive  
oil extraction cooperative province of Ouezzane, Morocco)  
according to extraction methods already described [11],  
avoiding chemical and enzymatic reactions which could  
change its natural composition. The extraction method  
includes four main operations: cleaning the fruit (defoliation,  
washing the olives), preparing the dough (grinding, kneading),  
separation of the solid phase (pomace) and liquid phase (oil  
and water vegetation), separation of the liquid phase (oil and  
water from vegetation). Olive oil is prepared in two different  
ways: (a) samples 1,2,3: the olive oil is extracted by  
mechanical cold pressing at 25 °C (the exit temperature of the  
olive oil after extraction) and (b) sample 4: same olive fruit as  
sample 3 but the olive oil is extracted by mechanical hot  
pressing at 50 °C (the outlet temperature of the olive oil after  
extraction). These oils are then analyzed directly after  
extraction at the Official Laboratory of Analysis and Chemical  
Research of Casablanca (LOARC). The physico-chemical  
2.5 Analysis of cis fatty acids  
The fatty acid composition was determined after  
transformation into methyl esters obtained by trans-  
esterification of the triglycerides with methanolic potassium  
hydroxide. The methyl esters of fatty acids in the samples of  
olive oils are obtained according to the French international  
standard method [16]. Then, these esters were analyzed by gas  
chromatography according to the conditions described in ISO  
5508: 1990, using a VARIAN chromatograph with flame  
ionization detector (FID), equipped with a capillary column  
(CPWAX) 30 m long and 0.25 mm inside diameter. The oven  
temperature is set at 200 °C, and that of the injector at 220 °C.  
The carrier gas used is helium at 1.2 ml / min and the volume  
of the injection is 1 µl, leakage (split on) at ratio: 15%.  
1
076  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1075-1080  
2
.6 Triglyceride analysis  
3.2 Analysis of the physico-chemical characteristics  
To 0.15 g of olive oil is added 0.5 ml of hexane and 15 ml  
of a mixture of hexane / diethyl ether (87/13). This solution is  
poured into a cartridge of supelco brand containing 0.5 g of  
silica gel previously activated with hexane. The fraction of  
triglycerides is thus separated from diglycerides and  
monoglycerides. It is collected in a 100 ml flask. It is  
subjected to analysis after evaporation of the solvent and  
dilution with 1.5 ml of acetone. The triglycerides are analyzed  
by HPLC on a column in the reverse phase of C18 (250 mm ×  
All the acidity values observed are less than 1%. This  
result shows that virgin olive oil is characterized by low  
acidity (acidity of olive oil must be less than or equal to 2%)  
[19]. The acidity results show that the acidity of four samples  
is higher (0.93%) than the acidity of sample 3 (0.7%) (3 and 4  
same sample but extracted at two different temperatures).  
These results suggest that the extraction temperature may  
influence the acidity values of olive oil. The temperature  
therefore appears as a parameter influencing the acidity value  
of olive oil. Indeed, the acidity value of the oil samples  
prepared from mechanical cold pressing is uniformly lower  
than those of oils prepared from mechanical hot pressing.  
The results of the peroxide index of the four samples of  
olive oil show that the samples have a peroxide index of less  
than 10 meq O2 / kg (peroxide index of olive oil ≤ 20 meq O2  
/ kg) (COI / T.20 / DOC. No 42-2 / Rev.2 - 2017). It is quite  
likely that the value of the peroxide index observed in our four  
samples is lower. This is related to the freshness of the oil. In  
fact, it is extracted directly after the recovery of the olive fruit  
and analyzed after its extraction (the analyzes were made after  
15 days). The result of the peroxide index shows that the  
peroxide index of sample 4 is higher. Indeed, this sample is  
extracted by mechanical pressing at a higher temperature (50  
°C). This result clearly indicates that some components of  
olive oil are extremely sensitive to oxidation [20]. The high  
peroxide content is observed for sample 4. This is linked to  
the extraction temperature. Our result is consistent with the  
literature which indicates that extraction methods, geographic  
origin and climatic factors influence the chemical  
characteristics of oils. In a study carried out in Italy and taking  
into account two different methods of storing olive oil, it was  
established that the peroxide index which represents one of  
the quality parameters of olive oil increased rapidly and above  
tolerated threshold according to Torres and Maestri [21]. On  
the other hand, Kiritsakis [22], considers that the place of  
culture has no significant influence on these analytical  
parameters (acidity, UV absorbances and peroxide index).  
This author points out that the deterioration in the quality of  
olive oil is rather fundamentally affected by factors damaging  
the fruit such as attack by parasites (flies) or the use of  
improper systems of harvesting as well as transport and  
storage of olives. Table 3 shows the results of the acidity  
value and the peroxide index of 4 samples.  
4
.6 mm, Φ silica 5 μm), according to the IUPAC method N°  
2
.0 324. The HPLC device is equipped with an HP  
refractometric detector 10 47A. The elution is carried out with  
a mixture (acetonitrile / acetone) (v / v) with a flow rate of 0.5  
ml / min during the analysis time (90 min).  
2
.7 Determination of the composition and nature of total  
sterols [18]  
Weigh 2.5g of olive oil in a 20ml flask. 25 ml of a  
potassium hydroxide solution (1N ethanol) is added to it. The  
flask is heated to boiling under reflux for 30 min until the  
solution becomes clear. Then add 25 ml of distilled water to  
stop the reaction. The extraction of the unsaponifiable is  
carried out using 75 ml of hexane or petroleum ether. The  
organic phase undergoes a series of washing with 15 ml of  
mixture (water / ethanol 95°) (90/10) in a separatory funnel.  
The hexane phase is transferred from the top of the vial to a  
1
00ml flask. After evaporation of the solvent using a rotary  
evaporator, the unsaponifiable material is recovered. The  
unsaponifiable matter, diluted with 300 μl of hexane or  
petroleum ether, is filtered. The unsaponifiable is obtained  
according to standard NFT 50-205. It is fractionated by high  
performance liquid chromatography (HPLC) on a silica  
column (25cm × 4 mm). The HP device is equipped with a  
2
05 nm-254 nm UV detector. The eluent is an isooctane /  
isopropanol mixture (99/1), the flow rate of which is 1.2 ml /  
min. The duration of the analysis is 15 min, and the sterol  
fraction recovered according to standard NF 12228 May 1999,  
is evaporated to dryness. Sterols are transformed into silylated  
derivatives (TMS) using  
hexamethyldisilazane (HMDS) and trimethylchlorosilane  
TMCS), (9/1/1), (v / v / v). The pyridine evaporates to  
a
mixture of pyridine,  
(
dryness and the silylated derivative is diluted with 60 μl of  
heptane or hexane. TMS sterols are analyzed by gas  
chromatography (CPG) on an apolar column (Chroma pack)  
(30m × 0.32mm, ID: 0.25 µm, phase: CPSIL8CB). The HP  
Table 3: Results of acidity and peroxide index  
Hewlett packard 6890 series GC system chromatograph is  
equipped with a FID detector (T °: 300 °C). The carrier gas is  
nitrogen and its flow rate is 1ml / min (P.E: 8.6 bar). The  
analysis is carried out in temperature programming (200 °C up  
to 270 °C with a speed of 10 °C / min and an isotherm at 270  
N° sample  
Acidity  
0.84%  
0.90%  
0.7%  
2
Peroxide index meq O / kg  
1
2
3
4
8
10  
4
0.93%  
10  
°C for 35 min).  
3
.3 Determination of absorbance in ultraviolet  
The specific extinction of olive oil was determined at 247  
3
Results and Discussion  
3
.1 The yield of the extraction  
nm, 270 nm and 266 nm. In general, the values found vary  
between 0.1410 to and 0.1650 to 270 nm. The specific  
extinction of all the samples is lower (lower than 0.1757). It is  
a virgin olive oil prepared cleanly from olive fruit. We found  
that the specific extinction values of sample 4 prepared from  
olive fruit by mechanical hot pressing have values higher than  
sample 3 (same batch). From this result, it was concluded that  
extraction by mechanical hot pressing can increase the  
specific extinction values. This result clearly shows that there  
is a formation of carbon-carbon bonds or carbon-oxygen  
bonds in the form of secondary auto-oxidation products  
during hot extraction. All of these compounds cause an  
increase in absorption in the region between 225 nm and 325  
From these results, since the temperature of the extraction  
(50 °C) increases it is quite possible that the yield of the  
extraction of the olive oil is higher. Consequently we found a  
difference from 5 to 6 liters of olive oil in each 100 kg of olive  
fruit if the extraction has been hot.  
Table 2: The yield of olive oil as a function of the temperature  
of the extraction  
N° Sample  
Oil yield in 100kg / liter  
1
15  
2
14  
3
14  
4
20  
1
077  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1075-1080  
nm. The result of the absorbance in the ultraviolet is collated  
in table 4.  
groups together the results obtained for the four samples. It  
appears from this result that the percentage of trans oleic,  
linoleic and linoleinic acid (C18: 1, C18: 2 and C18: 3),  
(elaidic acid) in virgin olive oil is very low and does not give  
any information on extraction methods or age. The presence  
of trans fatty acids in "virgin" olive oils, suitable for  
consumption, is an indication of the fraudulent presence of  
refined oil. For this reason, the content of trans fatty acids has  
been limited by the standard to 0.05% [27] both for elaidic  
acid and for the sum of the trans isomers of linoleic acids and  
linolenic.  
3
.4 Analysis of cis fatty acids  
The fatty acid composition of the different oils was  
determined after methylation of the oil and analysis of the  
methyl esters by gas chromatography on a capillary column  
[23, 24]. Table 4 groups together the results obtained for the  
four samples. he fatty acid composition of olive oil  
corroborates with data from the standards (COI / T.20 / DOC.  
No 42-2 / Rev.2 - 2017). Olive oil contains 86% unsaturated  
fatty acids. It is of the oleic  linoleic type and contains 13%  
of essential fatty acids: linoleic acid (11 to 13%) (Vitamin F).  
This acid is said to be essential because it cannot be  
synthesized by the body and must be provided by food.  
Unsaturated fatty acids play an essential role in the prevention  
of cardiovascular diseases, and the omega 6 family (such as  
linoleic acid) is vital for the growth of children [25]. Olive oil  
is rich in oleic acid C18:1 Its oleic acid content makes olive  
oil particularly interesting in regulating cholesterol. Studies in  
progress seem to show that ingesting 2 tablespoons a day of  
olive oil for a month could significantly lower blood  
cholesterol levels. The other fatty acids present are: palmitic  
C16: 0 (9 to 10%) and stearic C 18: 0 (2.5 to 3%). The  
percentage of linolenic acid (C18: 3) in olive oil does not  
exceed 1%. The presence in olive oil of long chain fatty acids  
such as C20: 0 (0.3%), C20: 1 (0.3%) is noted. Comparing  
samples 3 and 4 (same sample but the extraction temperature  
is different) we found that the percentage of stearic acid (C18:  
3.6 Triglyceride analysis  
The triglycerides of the different olive oil samples  
analyzed by high performance liquid chromatography are  
grouped in Table 7  
Analysis of the triglyceride fraction of olive oil by HPLC  
allowed the separation of the individual triglycerides. The  
predominance of OOO triglycerides is noted (41.2% to  
45.7%). POO (19.3 to 20.6%), OLO (18.9 to 20.3%), LOL  
(4%), PLO (5.5 to 7.1%). It should also be noted that the  
majority of the oleic and linoleic acids occupy the Sn-2  
position. Our results are in agreement with data from the  
literature [26, 28] which indicate that the triglycerides OOO,  
POO, OLO, LOL, PLO are predominant in olive oil.  
Triglyceride results show that extraction temperature can  
influence the compositions of the triglycerides. We have also  
found that the extraction by mechanical hot pressing decreases  
the percentages of triglycerides such as LLL, LOL, OLO and  
PLO. Analysis of the triglyceride fraction shows that the age  
parameter of the olive tree decreases the percentage of  
triglycerides LLL and OOO. Our results are in agreement with  
data from the literature [29].  
0
) and linoleic acid (C18: 2) is reduced because of hot  
extraction. This is probably due to a deterioration of the fatty  
acid during the hot extraction. These variations can be  
considered as useful markers to ensure the extraction method.  
From this study we noticed that the percentage of linoleic acid  
(C18: 2) is increased with the increase in the age of the olive  
3.7 Analysis of sterols  
tree (samples 1, 2 and 3). The variation in fatty acid resulting  
from our samples is consistent with studies which indicate that  
the percentage of oleic acid may influence the climate [26].  
The sterol composition of the different olive oil samples  
was determined by gas chromatography after silylation of the  
sterol fraction. The latter is obtained by fractionating the  
unsaponifiable of olive oil by HP on a normal phase. The  
various sterols encountered were identified by gas  
chromatography. Table 8 summarizes the results obtained for  
the 4 selected samples.  
3
.5 Analysis of trans fatty acids  
The trans fatty acid composition of the different oil  
samples was determined after methylation of the oil and  
analysis of the methyl esters by gas chromatography. Table 6  
Table 4: Determination of absorbance in ultraviolet  
N° sample  
absorbance in 247 nm  
absorbance in 270 nm  
absorbance in 266 nm  
Extinction  
1
2
3
4
0.1529  
0.1392  
0.1290  
0.1435  
0.1650  
0.1513  
0.1410  
0.1554  
0.1757  
0.1619  
0.1544  
0.1669  
0.0007  
0.0008  
0.0007  
0.0002  
Table 5: The results of cis guys-acids depending on the temperature of the extraction and the age of the tree  
N° sample/ fatty acid  
C16:0  
C16:1  
C17:0  
C17:1  
C18:0  
C18:1  
C18:2  
C18:3  
Retention time  
11.284  
11.932  
12.709  
13.332  
14.192  
14.886  
15.797  
17.116  
1
2
3
4
8.92  
0.58  
0.04  
0.04  
2.65  
73.94  
12.23  
0.84  
0.32  
0.39  
10.08  
0.80  
0.04  
0.05  
2.78  
71.40  
13.23  
0.88  
0.33  
0.36  
9.32  
0 .60  
0.05  
0.04  
3.02  
72.17  
13.04  
0.97  
0.33  
0.36  
9.16  
0.58  
0.03  
0.05  
2.56  
74.83  
11.20  
0.86  
0.32  
0.37  
C20:0  
C21:1  
17.324  
18.092  
1
078  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1075-1080  
Table 6: the result of the trans fatty acid composition according to the temperature of the extraction and the age of the tree  
N° sample  
1
2
3
4
%
C18:1trans (TR13.03min)  
0.03%  
0.02%  
0.02%  
0.00%  
0.03%  
0.02%  
0.03%  
0.02%  
%C 1%C18:2trans+%C18:3trans (TR13.96min)  
Table 7: The triglyceride composition according to the temperature of the extraction and the age of the tree  
Sample/TG  
LLL  
OLL  
LOL  
OLO  
PLO  
OLO  
PLO  
PLP  
OOO  
POO  
POP  
TR min  
32.57  
36.34  
44.71  
47.55  
49.59  
59.41  
66.44  
74.22  
81.67  
92.60  
106.49  
Sample 1  
0.71  
0.11  
4.27  
-
0.45  
19.83  
6.13  
0.56  
44.26  
19.33  
1.63  
Sample 2  
0.52  
0.52  
4.54  
1.38  
-
20.34  
7.13  
0.82  
41.18  
20.57  
1.67  
Sample 3  
0.53  
0.57  
4.41  
1.62  
-
19.64  
6.61  
1.08  
42.10  
19.88  
0.94  
Sample 4  
0.27  
0.1  
3.53  
1.69  
0.60  
18.89  
5.53  
0.37  
45.69  
20.39  
2.22  
(P: palmitic acid, L:linoleic acid, O: oleic acid)  
Table 8: Composition in sterols of the 4 samples.  
N° Samples/ Sterols  
Cholesterol  
Campesterol  
Stigmasterol  
Delta-7-stigmasterol  
β-sitosterol  
TR min  
30.23  
33.32  
34.33  
35.79  
36.57  
37.04  
38.64  
Sample 1  
0.12  
2.89  
2.34  
1.01  
81.80  
10.92  
0.64  
Sample 2  
0.12  
2.73  
2.45  
1.05  
83.10  
9.73  
0.61  
Sample 3  
Sample 4  
0.18  
2.89  
2.22  
1.03  
82.75  
10.10  
0.60  
0.15  
2.85  
1.64  
1.11  
82.56  
10.70  
0.62  
Delta-5-avenasterol  
Delta-5-stigmasterol-stadineol- Tosterol-  
The sterolic composition is in accordance with the data in  
OOO, POO, LLL, LOL, OLO, PLO. These results agree with  
those reported in the literature. This shows that the extraction  
method influences the dietary qualities of olive oil. On the  
other hand, the results of the chemical composition according  
to Olivier's age do not give any significant variation between  
the results obtained.  
the literature [30]. These are essentially β-sitosterol. The main  
products are β-sitosterol and Delta-5-avenasterol. Their  
proportion varies respectively between 81.80% and 83.10%,  
and from 9.73 and 10.92%. The content of campesterol found  
in olive oil varies between 2.7% and 2.9%. The result shows  
that the percentage of cholesterol varies from 0.12% to 0.18%.  
This value is consistent with the standards which indicates  
that the percentage of cholesterol in virgin olive oil must be  
less than 0.5%. The result of the sterols shows that the  
percentage of stigmasterol is higher in sample 4 which is  
extracted by mechanical hot pressing. In spite of these results,  
we have not found a significant variation on the sterol  
composition of the different samples according to the  
temperature of the extraction and age of olive trees.  
Acknowledgements  
The authors thank the director of the official Casablanca  
chemical analysis and research laboratory. Special thanks  
must be addressed to the head of the fat section in the official  
chemical analysis and research laboratory in Casablanca.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
4
Conclusion  
(avoidance of guest authorship), dual submission,  
As part of the promotion of olive oil, we conducted a  
manipulation of figures, competing interests and compliance  
with policies on research ethics. Authors adhere to publication  
requirements that submitted work is original and has not been  
published elsewhere in any language.  
comparative study of the different physico-chemical  
parameters of olive oil as a function of the extraction  
temperature and its olive age. Our study shows that the  
extraction method appears to be a parameter influencing the  
acidity value and the index of peroxide in olive oil. Indeed,  
the acidity values and the peroxide index are higher in sample  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
4
which was prepared from mechanical hot pressing. This  
result suggests that the temperature of the extraction may  
influence the acidity values and the peroxide index. The  
analysis of fatty acids and sterol composition are in  
accordance with data from the literature. The main products  
are β-sitosterol (83%) and Δ-5-avenasterol (10%). The results  
related to the chemical compositions show that the  
temperature of the extraction by mechanical hot pressing can  
influence the percentage of sterol (cholesterol), the percentage  
of fatty acid and the percentages of triglycerides such as:  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing  
References  
1
.
Khadari B, and Abdelmajid M. "Peut-on parler de l’olivier au  
Maroc sans la variété «Zitoun Beldi» ou «Picholine marocaine»."  
1
079  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 1075-1080  
L’oléiculture au Maroc de la préhistoire à nos jours : pratiques,  
diversité, adaptation, usages, commerce et politiques.  
Montpellier, CIHEAM, 2016, pp. 67-78.  
Cherrab M. Étude du pouvoir pathogène des isolats de  
Verticillium dahliae Kleb. Issus de l'olivier (picholine marocaine)  
au Maroc." Revue Marocaine des Sciences Agronomiques et  
Vétérinaires, 2002; 22(1) : 31-37.  
Bedjaoui K, and Bensalem S. Caractérisation physico-chimique  
de l’huile d’olive de deux variétés étrangères : Picholine  
marocaine et Maurino these. 2012.  
Carra la fuente EL. The health benefits of olive oil. Diabetes  
Voice, 2003; 78: 133154.  
Benlemlih M. Ghanam J. Les polyphénols d’huile d’olive, trésors  
santé. Ed. Macro pietteur, Embourg, Belgique,128, 2012.  
Esprit M, Berton N, and Duriez JM. Dégustations d’olives et  
d’huiles d’olive. Issues du Languedoc Roussillon, 2012; Pp. 13.  
Cherrad H, and Bouderbala S. Les grignons d’olive diminuent la  
glycémie et améliorent l’activité antioxydante tissulaire, chez le  
rat rendu diabétique par injection à la streptozotocine. Nutrition  
Clinique et Métabolisme, 2019; 33(1) : 56.  
Manallah A. Activités antioxydante et anticoagulante des  
polyphénols de la pulpe d’olive olea europaea L.Doctoral  
dissertation- Université de Tlemcen , 2018.  
Peyrol J, Meyer G, Obert P, Dangles O, Pechere L, Amiot-Carlin  
MJ, and Riva C. Les effets hypotenseurs d’une huile d’olive  
24. Hilali M, El Monfalouti H and Kartah BE. Evaluation of the  
chemical composition of Argan (Argania spinosa L.) oil  
according to its extraction method, origin of production and  
altitude. Online Journal of Animal and Feed Research, 2020;  
2
3
.
.
DOI:  
25. Sedrati S. Huile d’argane : Composition et intérêt thérapeutique  
diététique et cosmétique. Fac de Pharmacie, Thèse univ.  
Mohammed V. Rabat, 2004, pp. 92.  
26. Bouchenak O, Yahiaoui K, Benhabyles N, Laoufi R, Chaouche  
TA, and Arab K. Etude phytochimique et evaluation de l’activité  
antimicrobienne de deux varites de l’olivier. African Review of  
Science, Technology and Development, 2018; 3: 2.  
27. Conseil oléicole international COI/OT/NC nº 1 Décembre, 2004.  
28. Sekour B. Phytoprotection de l’huile d’olive vierge (HOV) par  
ajout des plantes végétales (Thym, ail, romarin). Magister en  
Génie Alimentaire, Université de Boumerdes, 2012. Pp. 127.  
29. Bouchenak O, Yahiaoui K, Toubal S, Benhabyles N, Laoufi R.  
and Arab K. Comparative study of olive oils from five regions of  
Algeria (Bouira, Bejaia, Biskra, Dellys and Jijel). AgroBiologia,  
2018; 8(2) :1038-1046.  
30. Özdemir İS, Dağ Ç, Özinanç G, Suçsoran Ö, Ertaş E, and  
Bekiroğlu S. Quantification of sterols and fatty acids of extra  
virgin olive oils by FT-NIR spectroscopy and multivariate  
statistical analyses. LWT, 2018; 91: 125-132.  
4
5
6
7
.
.
.
.
8
9
.
.
raffinée enrichie en hydroxytyrosol sont associés  
à une  
amélioration de la fonction musculaire lisse dans un modèle de  
1
1
0. Chohin-Kuper A, and Kemmoun H. De la théorie à la pratique :  
le commerce équitable de l'huile d'olive au Maroc. Cahiers  
Agricultures,2010;19(1) :17-22.  
1. Benyahia N, and Zein K. Analyse des problèmes de l’industrie de  
l’huile d’olive et solutions récemment développées. Contribution  
spéciale de Sustainable Business Associates (Suisse)  
SESEC.2003; II: 2-7.  
à
1
1
2. Mathison B, and Holstege DA. rapid method to determine sterol,  
erythrodiol, and uvaol concentrations in olive oil. Journal of  
agricultural and food chemistry, 2013; 61(19):4506-4513.  
3. AFNOR, Norme NF EN ISO 660. septembre. Corps gras  
d’origine animale et végétale - Determination de l’indice d’acide  
et de l’acidité, 2009.  
1
1
4. ISO 3960. Animal and vegetable fats and oils. Determination of  
peroxide value, 2001.  
5. ISO, N. 3656. Corps gras d’origine animale et végétale.  
Détermination de l’absorbance dans l’ultraviolet, exprimée sous  
la forme d’extinction spécifique en lumière ultraviolet,avril 2001.  
6. ISO 5509. Animal and vegetable fats and oilspreparation of  
methyl esters of fatty acids, 2000.  
7. León-Camacho M, Morales MT, and Aparicio R.  
Chromatographic methodologies: compounds for olive oil  
traceability issues. In Handbook of Olive Oil. Springer, Boston,  
MA, 2013, pp.163-217.  
1
1
1
8. Srigley CT, Oles C J, Kia ARF, and Mossoba M. Authenticity  
assessment of extra virgin olive oil: evaluation of  
desmethylsterols and triterpene dialcohols. Journal of the  
American Oil Chemists' Society, 2016; 93 (2): 171-181.  
9. Haddam M, Chimi H, and Amine A. Formulation d’une huile  
d’olive de bonne qualité. OCL, 2014; 21(5): D507.  
0. Cecchi T, De Marco C, Passamonti P, and Pucciarelli F.  
Analytical definition of the quality of extra-virgin olive oil stored  
in polyethylene terephtalate bottles. Journal of Food Lipid, 2006;  
1
2
1
3: 251-258.  
2
1. Torres M, and Maestri DM. The effects of genotype and  
extraction methods on chemical composition of virgin olive oils  
from Traslasierra Valley (Córdoba, Argentina). Food Chemistry,  
2
006; 96 (4): 507-511.  
2
2
2. Kiritsakis AK. Flavor components of olive oil. A review. Journal  
of the American Oil Chemists' Society, 1998; 75 (6): 673-681.  
3. Santos Júnior Oscar O, Montanher Paula F, Bonafé Elton G,  
Maruyama Swami A, Carbonera Fabiana, A, Rosana M, Eberlin  
Marcos N, and Visentainer Jesuí V. Efficiencies of acid and base-  
catalyzed methylation of vegetable oils by ambient mass  
2
1
080