Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 870-874  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
Synthesis of Silver Nanoparticles from Fish Scale  
Extract of Cyprinus carpio and its Decolorization  
Activity of Textile Dyes  
1
2
3
Bharathi Vadivelu , Arun Meyyazhagan , Sampathkumar Palanisamy , Vijaya Anand  
4
*
5*  
6
Arumugam , Hesam Kamyab , Balamuralikrishnan Balasubramanian , Shreeshivadasan  
5
7
Chelliapan , Krishna Kumar Yadav  
1
Biological and Bioinformatics Research Centre, Trichy, Tamil Nadu, India  
2
EuroEspes Biomedical Research Centre, Institute of Medical Science and Genomic Medicine, Corunna, Spain  
Department of Chemistry and Biosciences, SASTRA Deemed University, Kumbakonum, Tamil Nadu, India  
3
4
Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India  
5
Engineering Department, Razak Faculty of Technology and Informatics ,Universiti Teknologi Malaysia Jalan sultan Yahya Petra 56100 Kuala Lumpur,  
Malaysia  
6
Department of Food Science and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea  
7
Institute of Environment and Development Studies, Bundelkhand University, Jhansi, 284128, India  
Received: 10/01/2020  
Accepted: 11/05/2020  
Published: 20/09/2020  
Abstract  
There is an increasing commercial demand for nanoparticles due to their wide applicability in various areas such as electronics,  
catalysis, chemistry, energy, and medicine. This work deals with the synthesis and characterization of silver nanoparticles (AgNPs) using  
Cyprinus carpio fish scale extract to de-colorization of textile dyes. The synthesized nanoparticles were characterized by using UV-Vis  
absorption spectroscopy, FT-IR and SEM analysis. The reaction mixture turned to a brownish gray color after 5 hrs of incubation and  
exhibits an absorbance peak around 450 nm characteristic of AgNPs. The SEM analysis showed AgNPs were pure and polydisperse and  
the size were ranging from 200 nm. The approach of biosynthesis seems to be cost efficient, ecofriendly and easy alternative to  
conventional methods of AgNPs synthesis. Dye degrading efficiency of AgNPs was assayed against azo dyes. At the end of 24 hrs AgNPs  
showed 48.38% of degradation. As the days of incubation increases from 1 day to 7 days, the degradation efficiency was also increased  
th  
from 48.38% to 93.54% at the end of 7 day of incubation. Further, the FT-IR results confirmed that, the complex, toxic azo dyes are  
degraded into simple, non-toxic compounds.  
Keywords: Fish scale, Cyprinus carpio, Silver nanoparticle, Textile dye, Decolorization  
an important aspect of nanotechnology. Their capability to reach  
1
Introduction1  
high biomass and their feeding nature has been occupied in  
causing major environmental poverty in several freshwater  
ecosystems. The AgNPs are between 1 nm and 100 nm in size  
Common carp (Cyprinus carpio) is considered to be a very  
important aquaculture species in many Asian and some  
European countries. C. carpio is an exotic fish species in India.  
The C. carpio is usually considered to be one of the  
most ecologically damaging fish species of all freshwater  
bodies. The synthesis of silver nanoparticles (AgNPs) is  
extensively studied by using biological methods, but the  
development of reliable technology to produce nanoparticles is  
has many applications due to  
a
large degree of  
commercialization. It is an attractive material for its distinctive  
properties, such as good conductivity, chemical stability [1-3].  
Textile dyes are complex unsaturated aromatic compound  
that possesses characters like intensive color formation,  
solubility, and fastness (fading property). In the early days, dyes  
were used which was produced from natural sources. Azo dyes  
are the most important group of synthetic colorants  
characterized by the presence of one or more azo group (-N=N-).  
They are the most versatile class of dyes and constitute 60% of  
the dyes annually produced [4]. The effluents from textile  
industries are complex, containing a wide variety of dyes and  
other products, such as dispersants, acids, bases, salts,  
detergents, humectants, oxidants, etc. Discharge of these colored  
Corresponding authors: (a) Vijaya Anand Arumugam,  
Department of Human Genetics and Molecular Biology,  
Bharathiar University, Coimbatore, Tamil Nadu, India. E-mail:  
avamiet@yahoo.com. (b) Dr. Hesam Kamyab, Engineering  
Department, Razak Faculty of Technology and Informatics  
,
Universiti Teknologi Malaysia Jalan sultan Yahya Petra 56100  
Kuala Lumpur. E-mail: hesam_kamyab@yahoo.com.  
5
70  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 870-874  
effluents into rivers and lakes results in reduced dissolved  
oxygen concentration, thus creating anoxic conditions that are  
lethal to resident organisms. The mechanism of microbial  
degradation of azo dyes involves the reductive cleavage of azo  
bonds (-N=N-) with the help of azo reductase under anaerobic  
conditions involves a transfer of four-electrons (reducing  
equivalents), which proceeds through two stages at the azo  
linkage and in each stage two electrons are transferred to the azo  
dye, which acts as a final electron. The resulting intermediate  
metabolites (e.g., aromatic amines) are further degraded  
aerobically or anaerobically. Thus, in the presence of oxygen  
usually inhibits the azo bond reduction activity since aerobic  
respiration may dominate utilization of NADH; thus impeding  
the electron transfer from NADH to azo bonds. The potential  
toxicity, mutagenicity, and carcinogenicity of such compounds  
are well documented and have been reviewed elsewhere [5].  
Therefore, the aim of this study synthesis and characterization of  
AgNPs from C. carpio fish scale extracts and to evaluate the  
activity on de-colorization of textile dyes.  
evaluate the photocatalytic degradation of dye. The absorbance  
spectrum of the supernatant was subsequently measured using  
UV-Vis spectrophotometer at the different wavelength.  
Concentration of dye during degradation was calculated by the  
absorbance value at 590 nm [6].  
3
Results and Discussion  
The present study was carried out of preparation of  
AgNPs from the fish scale extract of C. carpio. We developed a  
simple protocol for synthesis and characterization of AgNPs  
from the fish scale extract of C. carpio and studied the presents  
of bioactive compounds. About 10% of the fish scale extracts  
were mixed with silver nitrate solution in 1:9 proportions and  
kept at room temperature for 72 hrs for the development of  
reddish-brown color (Table 1). But in our investigation, the  
AgNPs usually exhibited reddish brown color in aqueous  
solution, due to excitation of surface plasmon resonance in the  
AgNPs after incubation [7]. The appearance of reddish-brown  
color in the reaction vessels suggested the formation of AgNPs.  
Silver nitrate is used as reducing agents as silver has an identical  
property such as good conductivity, catalytic and chemical  
stability.  
2
Materials and Methods  
2
.1 Synthesis of silver nanoparticles  
The fish scale sample collected from C. carpio. The fish  
Table 1: Indication of Color Change for synthesis of AgNPs  
scale samples are sun dried for 3 days, grind the sample and  
used for the synthesis of AgNPs. To take 10g of fish scale  
powder was mixed with 100ml of distilled water, then boiled  
water bath at 70⁰C in 20 minutes. After cooling few minutes, to  
filter by using Whattman filter paper get the fish scale extract.  
After, prepared 100ml of silver nitrate solution. Added the scale  
extract + silver nitrate solution (1:9) ratio. Incubate at dark  
condition for 72 hrs. After, 3 days color changing of reddish-  
brown color sedimentation formed (AgNPs).  
2
.2 Characterizarion of silver nanoparticles  
After the synthesis of AgNPs, the synthesized AgNPs are  
taken for centrifugation at 6000 rpm for 15 mines. After  
centrifugation the supernatant and pellet were collected. The  
pellet was re-dispersed in deionized water to get uncoordinated  
biological molecules. The supernatant was collected and stored  
in refrigerator for further use. The pellet is airs dried for 24  
hours and powdered from AgNPs are taken into Eppendorf tube  
to undergo SEM analysis. The FT-IR Spectra of the sample  
were recorded in order to Characterization the presence of  
functional groups in isolated stains. All the measurements were  
carried out in the range of 100-1000.  
The reduction of silver metal ions to AgNPs was  
preliminarily analyzed using UV-Vis Spectrophotometer  
between 200-1000nm (Table 2 and Fig. 1). This analysis showed  
an absorbance peak at 218 nm which was specific for Ag  
nanoparticles. The reaction mixture changes the color by adding  
various concentrations of metal ions. These color changes arise  
because of the excitation of surface plasma vibrations in the  
AgNPs.  
2
.3 Photocatalytic degradation of dye  
Typically, Azo dye was added to 1000 mL of double  
distilled water used as a stock solution. About 10 mg of  
biosynthesized AgNPs was added to 100 mL of Azo dye  
solution. A control was also maintained without the addition of  
AgNPs. Before exposing to irradiation, the reaction suspension  
was well mixed by being magnetically stirred for 30 min to  
clearly make the equilibrium of the working solution.  
Afterwards, the dispersion was put under the sunlight and  
monitored from morning to evening sunset. At specific time  
intervals, aliquots of 2-3 mL suspension was filtered and used to  
Table 2: Represents the corresponding UV-VIS absorption  
spectrum of AgNPs  
Wavelength  
18.05  
751.55  
Absorbance  
2
4.0000  
0.2371  
0.2581  
9
37.20  
5
71  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 870-874  
Figure 1: Represents the corresponding UV-VIS absorption spectrum of AgNPs recorded (1:9)  
100  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
3
854.50cm-1  
3
802.45cm-1  
3
8
3
5
.
2
1
c
m
-
1
3745.74cm-1  
8
64.20cm-1  
7
06.50cm-1  
69.70cm-1  
71.75cm-1617.87cm-1  
78.13cm-1  
6
7
5
2
322.98cm-1  
1
2
4
7
.
0
5
c
m
- 1  
3
005.60cm-1  
2855.15cm-1  
2080.18cm-1  
1317.00cm-1  
952.55cm-1  
1140.05cm-1  
1077.02cm-1  
1103.61cm-1  
1
7
4
3
.
9
7
c
m
-
1
2
923.92cm-1  
1405.07cm-1  
437.13cm-1  
1
3
357.73cm-1  
1
646.63cm-1  
1018.81cm-1  
4
000  
3500  
3000  
2500  
2000  
1500  
1000  
500 400  
cm-1  
Name  
Description  
Figure 2: FT-IR analysis spectra of AgNPs showed various transmission peats (1:9) ratio  
cm 1and 578.13 cm  
̄
̄ 1  
respectively (Table 3 and Fig. 2). Fig. 3  
It shows yellowish to dark brown in color. The dark brown  
color of silver colloid is accepted to surface plasma resonance  
SPR) arising due to the group of free conduction electrons  
showed that the AgNPs are spherical, triangular, rectangular and  
cubical in shape with uniform distribution. However, no most  
occasions; agglomeration of the particles was observed probably  
due to the presence of the weak capping agent which moderately  
stabilized the nanoparticles. Also, reveals the presences of  
agglomerated nanoparticles were in the range 150.72 -200.49  
nm; however, the average size of an individual particle is  
estimated to be 200nm (Fig. 3).  
(
induced by an interacting electromagnetic field. The FT-IR  
spectra show the biosynthesized AgNPs and carried out to  
possible interactions between protein and AgNPs. The result of  
FT-IR analysis of SNP is presented in Fig. 2 spectra of AgNPs  
1
1
showed transmission peaks at 3854.50 cm  
3
̄
, 3357.73 cm  
̄
, and  
1 1 1  
005.60 cm ̄ , 2923.92 cm ̄ , 1646.63 cm ̄ , 771.75cm , 669.70  
̄ 1  
5
72  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 870-874  
Table 3: Compound group and frequencies (1:9) ratio  
Dye degradation was initially identified by color change.  
Initially, the color of dye shows deep pink color changed into  
light pink after the 1h of incubation with AgNPs while exposed  
Group frequency (cm -1  
)
Functional group  
to  
solar  
light.  
The  
degradation  
was  
analyzed  
3
3
854.50 cm  
̄ 1  
Primary amines  
Carbonyl group (open-chain  
acid anhydride)  
spectrophotometrically. At every 24 hrs intervals sample was  
derived and analyzed spectrophotometrically. The control  
showed 0.31 Optical Density (OD). At the end of 24 hrs 48.38%  
of degradation. As the days of incubation increases from 1 day  
357.73 cm ̄ 1  
005.60cm ̄ 1  
3
2
Amide Group  
to 7 days, the degradation efficiency was also increased from i.e.  
923.92 cm  
646.63 cm  
̄ 1  
̄ 1  
Trimethyl  
th  
4
8.38% to 93.54% at the end of 7 day of incubation (Table 4  
1
7
6
5
Methyl C-H Group  
Disulfides  
Disulfides  
and Fig. 4).  
-
1
71.75cm  
1
Table 4: Dye degradation efficiency of synthesized silver  
69.70 cm  
78.13 cm  
̄
̄
1
nanoparticles  
Absorbance after  
photocatalytic  
degradation (590  
nm)  
Aryl disulfides  
Degradation  
efficiency  
Days of  
Incubation (OD)  
Initial  
(
%)  
1
0.31  
0.16  
48.38  
2
3
4
0.31  
0.31  
0.31  
0.13  
0.08  
0.07  
58.06  
74.19  
77.41  
5
6
0.31  
0.05  
0.03  
0.02  
83.87  
90.32  
93.54  
0
.31  
7
0.31  
During degradation the catalysis was occurring on the  
surface region of metals, therefore increasing the surface area  
availability will significantly improve the efficiency of the  
catalyst. Decreasing the particle size will increase the catalytic  
activity, but there is a critical size below which proves that  
further decreases will actually hamper the reaction. Metal  
nanoparticles support the electron (e-) relay from the donor to  
the acceptor and act as a substrate for the e- transfer reaction.  
During an e-transfer reaction, the reactants are adsorbed on the  
surface of the metal and consequently, the reactants gain an e-  
and are reduced. Thus, AgNPs act as an efficient catalyst  
through the electron transfer process in all the above catalytic  
reactions [8]. Table 5 and Table 6 showed the FT-IR spectrum  
of control and samples obtained after decolorization of both dyes  
showed various peaks. The appearance of some new peaks and  
absence of important peaks in incubation with AgNPs while  
exposed to solar light of the dyes have been observed in the FT-  
IR analysis of the metabolites produced after decolorization. A  
Figure 3: SEM of synthesized (1:9) silver nanoparticles  
The SEM images show AgNPs were spherical and  
polydisperse. Immobilization of Ag NPs on polymer films using  
fish scale extract and was characterized by UV-Vis  
spectroscopy, FT-IR and SEM. Recently, both academic and  
industrial research has explored the possibility of using AgNPs  
as a next generation anticancer therapeutic agent, due to the  
conventional side effects of chemo and radiation therapy.  
Although AgNPs play an important role in clinical research,  
several factors need to be considered, including source of raw  
materials, the method of production, stability, bio distribution,  
controlled release, and finally toxicological issues of human  
beings. We report a simple, facile, inexpensive, eco-friendly and  
green synthesis of AgNPs from the fish scale extract without  
employing man-made chemicals. The UV-Vis spectroscopy and  
FT-IR analysis is confirmed the preliminary confirmation of the  
formation of AgNPs. SEM image showed the spherical shape  
with an average particle size of 200 nm. The biosynthesized  
AgNPs from the fish scale extract of C. carpio showed  
promising dye degrading efficiency. Dye degrading efficiency of  
AgNPs isolated from plant extract was assayed against azo dye.  
At the end of 24 hrs nanoparticles of the fish scale extract  
showed 48.38% of degradation. As the days of incubation  
increases from 1 day to 7 days, the degradation efficiency was  
also increased from i.e. 48.38% to 93.54% at the end of 7th day  
of incubation. The FT-IR results confirmed that, the complex,  
toxic azo dyes are degraded into simple, non toxic compounds.  
In the current investigation, fabric azo dyes were  
-
1
new peak at 1384 cm represented -N=N- stretching vibration.  
-
1
The C-H deformation showed at 1112 cm . The peak at 1384  
-
1
cm showed N-H stretching vibration. The significant change in  
the FT-IR spectrum of metabolites compared to control  
spectrum suggests the biotransformation of complex dyes  
present in the mixture into simple form. The FT-IR spectrum  
of control dye 6 displays peaks at 3449 for intramolecular  
hydrogen bonding and O-H stretches. Peaks in the control dye  
-
1
spectrum represented symmetric stretching at 1384 cm and  
-
1
asymmetric stretching at 1114 cm for C-N. C-N stretching at  
-
1
1637 cm represented nature of the aromatic amine group  
-
1
-1  
present in parent dye; 3449 cm and 2075 cm represented the  
presence of a free NH group of parent dye. Whereas peak at  
-1  
1637 cm represented -N=N- stretching of azo group. In  
-1  
collected from Tiruppur, Tamilnadu, South India, and  
decolorized by AgNPs isolated from C. carpio under solar light.  
degraded extracted metabolites, a new peak at 435 cm  
5
73  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 3, Pages: 870-874  
represented C-H deformation of alicyclic CH  
2
whereas a peak at  
2. Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X.  
-
1
Preparation and antibacterial activity of Fe O Ag nanoparticles.  
6
85 cm was observed for substituting anilines. The FT-IR  
3
-
1
Nanotechnology. 2007;18:p. 604-611.  
3. Aminiranjbar GH. Heavy metal concentration in surficial sediments  
from Anzali wetland, Iran. Journal of Water Air and Soil Pollution.  
analysis result of peak at 3375.38 cm indicates primary amides,  
the peaks at 1789.9 cm indicates carbonyl Group, the peaks at  
1
-
1
-
1
639.78 cm indicates amide Group.  
1
4
998;104 (4):p. 305-312.  
. Russ R, Rau J, Stolz A. The function of cytoplasmic flavin reductases  
Table 5: The FT-IR spectrum of control dyes  
in the reduction of azo dye. Int. J Chem. 2000;66(4):p.1429-34.  
. Chung KT, Cerniglia CE. Mutagenicity of azo dyes: structure- activity  
relationships. Mutation Res. 1992; 277(3):p.201-220.  
. Guzman MG, Dille J, Godet S. Synthesis of silver nanoparticles by  
5
FREQUENCY  
RANGE  
TYPE AND  
GROUP  
TYPE OF BOND  
6
chemical reduction method and their antibacterial activity. World Acad.  
Sci. Eng. Technol. 2008;43:p.357-364.  
3
2
1
459  
080  
638  
O-H Stretch- H Bonded  
-C=C- Stretch  
Alcohols, phenols  
Alkynes  
7
. Karcher S, Kornmuller A, Jekel M. Screening of commercial sorbents  
for the removal of reactive dyes. Dye and Pigment. 2001; 51:p.111-125.  
. Duran N, Marcato PD, Conti RD, Alves OL, Costa FTM, Brocchi M.  
N-H bend  
1o amines  
8
1
384  
C-H bend  
Alkanes  
Alkyl halides  
Potential use of silver nanoparticles on pathogenic bacteria, their toxicity  
and possible mechanisms of action, J. Braz. Chem. Soc. 2010;  
6
85  
C - Br Stretch  
2
1(6):p.949-959.  
Table 6: The FT-IR spectrum of samples obtained after  
decolorization of dyes  
FREQUENCY  
RANGE  
TYPE AND  
GROUP  
TYPE OF BOND  
O-H Stretch-H  
3
2
1
449  
075  
638  
Alcohols, phenols  
Alkynes  
Bonded  
-C=C- Stretch  
N-H bend  
1o amines  
6
67  
C - Br Stretch  
Alkyl halides  
4
Conclusion  
To conclude, this is an efficient, eco-friendly and simple  
process. The nanoparticles were found to be active in degrading  
azo dye solution with visible light illumination. These findings  
suggest that AgNPs synthesized by facile method from plant  
extract are able to degrade dyes in the presence of visible light  
and pave way for ecological health and environmental  
bioremediation. Similarly, instead of using hazardous, time  
consuming and costly chemicals, we could protect our  
environment from dyes by using these types of natural AgNPs  
isolated from fish extract. The present study, it is found that the  
use of natural, renewable, and eco-friendly, reducing agent used  
for synthesis of AgNPs exhibits excellent photocatalytic activity  
against dye molecules and can be used in water purification  
systems and dye effluent treatment.  
Acknowledgment  
This research work was acknowledged by Universiti  
Teknologi Malaysia under the Research University Grant, Vote  
Number: Q. K130000.2510.13H11. Hesam Kamyab is  
a
researcher of Universiti Teknologi Malaysia (UTM) under the  
Post-Doctoral Fellowship Scheme (PDRU Grant) for the project:  
“Alternative Innovation of Enhancement Technologies for Algal  
Oil Extraction” (Vote No. Q. J130000.21A2.03E31) and  
Enhancing the Lipid Growth in Algae Cultivation for Biodiesel  
Production.  
References  
1
. Balon, EK. Origin and domestication of the wild carp, Cyprinus  
carpio: from Roman gourmets to the swimming flowers. Aquaculture.  
995;129(1-4):p. 3-48.  
1
5
74