2020, Volume 8, Issue 2, Pages: 1005-1016  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal weblink: http://www.jett.dormaj.com  
The Realm of Biopolymers and Their Usage: An  
Overview  
1
1
2
3
Jyoti Aggarwal , Swati Sharma *, Hesam Kamyab , and Ashok Kumar  
1University Institute of Biotechnology (UIBT), Chandigarh University, Mohali, Punjab- 140413 India  
Department of Engineering, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia (UTM), 54100 Jalan  
Sultan Yahya Petra, Kuala Lumpur, Malaysia  
2
3
Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan Himachal  
Pradesh- 173 234 India  
Received: 07/02/2020  
Accepted: 03/04/2020  
Published: 20/05/2020  
1
Abstract  
Biopolymers are emerging as an advanced business sector progressively and gained the attention of researchers and  
industrialists. Polymeric materials are useful due to their flexibility, reusability and toughness nature. These biopolymers can be  
the amalgamated with various kinds of natural and synthetic materials to synthesize polymeric composites. Such composite  
materials have comparable properties to oil‐based polymers. Biopolymers also play an essential role in the drug and pharmaceutical  
industry. These can be utilized for industrial purposes, for instance, to regenerate damage, medication administration in addition to  
regenerative medicine to achieve, low immunogenicity, high pharmacological activity. Several biopolymers are described in this  
article. There are various mechanisms to produce biopolymers. There are diverse forms of biopolymers that originated from  
microbes, animals and plants. Biopolymers play a significant role in the chemical and pharmaceutical industries. These are  
extensively used in medical equipment, cosmetics, confectionery, wastewater treatments, food additives, textiles and in bio-sensing  
applications. Numerous possible applications, along with the production form of biopolymers, are reviewed in this article.  
Keywords: Biopolymers, Circular economy, Keratin, Collagen, Cellulose  
1
Introduction  
Biopolymers are produced from living creatures as the  
immobilization system of yeast cells (Saccharomyces sp.) for  
liquor utilising κ-carrageenan beads is one of the popular  
example in liquor industry. Ethanol production through glucose  
by utilizing cells of Zymomonas mobilis immobilized in κ-  
carrageenan was studied in a fluidized bed fermenter. The whole  
cells of Streptomyces aureofaciens immobilized in κ-  
carrageenan were also used for the production of tetracycline  
and chlorotetracycline. Biopolymers have also immense  
applications in bioremediation and pesticide degradation. The  
degradation of Pentachlorophenol in contaminated soil was  
performed using Pseudomonas sp. UG30 cells immobilized  
onto κ-carrageenan (7). The biopolymers of animal origin such  
as chitin, keratin and collagen also have various applications in  
the food and pharmaceutical industry. In this review, we  
highlighted the sources, extraction, production and applications  
of all these biopolymers.  
polymeric structural- substances that exhibited properties such  
as strength, steadiness and flexibility. These include parts of  
crops or plants or obtained from various kinds of animals and  
microorganisms (1, 2). These immediately overlap to acquire  
different shapes and profoundly delicate structures with a high  
level of strong security. The significant plant biopolymers  
origin are cellulose, pectin, hemicellulose and lignin, which  
have immense industrial importance (3, 4). The marine fauna  
and flora also impart a significant fraction of biopolymeric  
ingredients. Biopolymers have been classified on the basis of  
biological nature such as proteins, carbohydrates, lipid wax,  
polyphenols nucleic acids and polyhydroxyalkanoates (PHA)  
2). These are generated from renewable sources i.e. natural  
resources and are readily degradable by enzymatic action  
because of the presence of peptide and glycosidic bonds. The  
byproducts of biodegradation of biopolymers are H  
2 2  
O, SO  
CO , and other organic materials. Biopolymers are thus  
naturally converted into reusable material by biological  
processes (5). Alginate, are abundantly present in brown algae  
2
2
Role of biopolymers and importance in  
nature  
Living creatures produce a wide range of polymers as a  
(pheophyta) of the genera “Ascophyllum, Cystoseira,  
significant part of their morphological, cellular and dry matter.  
These biopolymers play a vital role in the life cycle of organisms  
to support their essential metabolic and cellular activities. A  
schematic diagram has been presented in Fig. 1. Biopolymers  
are produced in the cytoplasm, organelles, cytoplasmic  
membrane, cell wall components, and the surface of cells even  
Macrocystis, Laminaria, Alario, Eisenia, Nercocystis, and  
Sargassum. Another important biopolymer is Carrageenan,  
obtained by extraction from red seaweeds (Rhodophyta). The  
significant genera used for the removal of carrageenan are  
Chondrus crispus, Eucheuma Gigartina, and Hypnea (6). The  
Corresponing author: (a) Swati Sharma, University Institute of Biotechnology (UIBT), Chandigarh University, Mohali, Punjab-  
40413 India. E-mail: sspandit.89@gmail.com.  
1
1005  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 2, Pages: 1005-1016  
extracellularly by enzymatic processes. Synthesis of  
a
predator and fight with various animals for their defence (12,  
14).  
biopolymer may be commenced in one part of a cell and then  
maybe continued in another role as it happens. Many  
biopolymers can be extracted from plants and algae, which build  
up in organic habitats. For example, nutrient agar and alginin  
are extracted from genus Gelidium red algae or from numerous  
brown algae, also known as seaweeds (8). Hyaluronic acid is an  
exception, which is taken out from the umbilical cords of  
newborn children. Some biopolymers are in vitro synthesized  
with the help of purified enzymes in cell-free systems. For  
example, in the polymerase chain reaction (PCR) monodisperse  
defined DNA molecules are developed from heat resistant DNA  
polymerases. One more example is dextran, produced from  
isolated dextran sucrose (8). Biopolymers, e.g. starch, dextran  
can be provided through fermentation processes in industries.  
The biological production of biopolymers may occur  
intracellularly or extracellularly, which creates trouble in the  
downstream processing of the biopolymers in a purified state  
The turtles have a durable sheath in which carapace has  
elevated proportion of α/β-keratin. Nails are a significant source  
of α-keratin. In primates, nails of fingers highlight at the time of  
battling, scraping and to open some objects (12, 14). The  
enzymes are generally utilized for the transformation of  
keratinous squander into feed, manures and fertilizers. The  
microbial catalyst (protease, e.g. keratinases) acts on keratinous  
2
protein substrates and discharges free amino ( NH ) group  
molecules (12, 15). Keratin is present in cattle hides, goatskins,  
sheepskins, and buffalo hides. The major sources of keratin  
sources are appendages, skin, fingernails, hairs of the head,  
cloven hoof, scute, a layer of skin feathers, and wool (11, 16).  
Keratin is composed of amino acid chains with numerous  
functional groups, both on the spine and side chains, which can  
tie metal particles and colours (17, 18). It is among the most  
plenteous and often immaculate non-food proteins.  
Consistently, over 5 million tons of keratin squander is created  
on the planet (19). A few investigations were demonstrated that  
the keratin nanoparticles were utilized for the finding of Crystal  
Violet from watery medium (20). Keratin from quills used to  
make strands, films, hydrogels, miniaturized scale and  
nanoparticles with the end goal of food, clinical, cosmetology,  
material, composite, farming and different businesses (17, 18,  
8).  
3
Analysis of various biopolymers with their  
applications  
3
3
.1 Biopolymers of animal origin and their applications  
.1.1 Keratin  
Keratin is an organic material, which speaks to a gathering  
1).  
The nearness of keratin in the skin layer and hair fingernail  
of cysteine-rich filament proteins. It is a member of a fibrous  
protein family (9, 10). For the epidermal appendages such as  
talons, neb, nails, wool, hair, horns and plume, it acts as a  
safeguard sheet (11, 12). On the basis of auxiliary order, the  
protein is categorized as α and β keratin. In water keratin is  
insoluble; and can be partially assimilated through proteolysis,  
for example, pepsin, papain or trypsin.  
skin helps in holding dampness in the skin by interfacing with  
beautifying agents. Plumes can be utilized to make  
thermoplastic shield for bundling of food and different  
applications (12, 16, 22). Keratinolytic enzymes are produced  
by bacteria and fungi that help to degrade the waste biomass.  
Bacilli create a lot of keratinolytic proteins and actinomycetes  
additionally add to keratin debasement. Microorganisms are  
used for quill debasement as it is profitable and naturally safe  
type of the persistently amassed squander the executives (14).  
The commercial use of keratin from waste biomass not only  
protects the ecosystem but also boost up the cosmetics and  
pharmaceutical industry (11, 23). In a previous study, polyvinyl  
liquor filaments that contain keratin were utilized as permeable  
for harmful material such as substantial alloy particles and  
formalin it indicates the porous nature of keratin particles (12,  
2). Also, for the delivery of drugs keratin particles were mostly  
used because of its durability, low reactivity, auxiliary, and  
excellent mechanical stability. Being a standard polymer,  
keratins have the edge as it is rich in amide, carboxyl, hydroxyl,  
just as sulfhydryl, and these functional groups increase their  
interaction with naturally unique atoms. A nano-based PEG-  
instigated keratin composite was used for drug delivery (12).  
Food processing industry, particularly slaughterhouse, wool  
industry produces millions of tones of keratin containing  
biomass. The monomeric units of ordinary keratin can penetrate  
the skin and hair fingernail skin and protect the skin without any  
responses (1). Keratin is also a fair source of nitrogen used as  
an ingredient of fertilizers (24, 25). Keratin based crest having  
high surface area were used as anode material in  
electrochemistry (26). Keratin squanders can be used in  
cowhide tanning. Keratin hydrolysate is used in filling cum  
holding in cowhide (27). The various biopolymers of animal  
origin and their applications are listed in Table 1.  
Fig. 1: Biological role of biopolymers in living organisms  
Furthermore, their complex structures like nanofiber lattice  
structure and the polypeptide chains make a barrier to save from  
warm pressure morbific intrusions (especially by epidermis),  
machine-like harm, and so on (13, 14). Epithelial cells are the  
most extravagant compartment for keratinous auxiliary protein.  
Hairs assume a significant job of security against residue and  
pathogens (hairs in nostril). Bovid animals like cow, waterbuck,  
sheep, buffalo, and gazelle pass on keratinous material as horn.  
Horns act as a weapon, sometime(s) as a shield to protect from  
3
.1.2 Collagen  
Collagen is the vital auxiliary biopolymer synthesized by  
fibroblasts and 2030% of total body proteins of mammals.  
They are rod-shaped, and collagen has 300 kDa molecular  
weight (28). The body can efficiently absorb it and has  
extremely low immunogenicity.  
1006