Journal of Environmental Treatment Techniques
2020, Volume 8, Issue 3, Pages: 978-984
1
1
1
1
5. Osborne, O.J., Mukaigasa, K., Nakajima, H. Sensory systems and
ionocytes are targets for silver nanoparticle effects in fish.
Nanotoxicology. 2016. 10, 1276-1286.
6. Minghetti, M., Schirmer, K. Effect of media composition on
bioavailability and toxicity of silver and silver nanoparticles in fish
intestinal cells (RTgutGC). Nanotoxicology. 2016. 10, 1526-1534.
7. Molleman B, Hiemstra T (2017) Time, pH, and size dependency of
silver nanoparticle dissolution: the road to equilibrium. Environ Sci
Nano 4:1314–1327
8. Hume SL, Chiaramonti AN, Rice KP, Schwindt RK, Maccuspie RI,
Jeerage KM (2015) Timescale of silver nanoparticle transformation
in neural cell cultures impacts measured cell response. J Nanopart
Res 17:315
9. Tejamaya M, Romer I, Merrifield RC, Lead JR (2012) Stability of
citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology
media. Environ Sci Technol 46:7011–7017
34. Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-
Dependent Phytotoxicity of Nanoparticles to Plants. Environmental
Science & Technology, 43(24), 9473–9479
35. Sawosz E, Binek M, Grodzik M, Zielinska M, Sysa P, Szmidt M, et
al. Influence of hydrocolloidal silver nanoparticles on
gastrointestinal microflora and morphology of enterocytes of quails.
Arch Anim Nutr 2007; 61:444–51.
36. Yalsuyi, A. M., Vajargah, M. F. Acute Toxicity of Silver
Nanoparticles in Roach (Rutilus rutilus) and Goldfish (Carassius
auratus). Journal of Environmental Treatment Techniques. 2017. 5
(1), 1-4.
37. Kouhbanani, M. A. J., Beheshtkhoo, N., Nasirmoghadas, P.,
Yazdanpanah, S., Zomorodian, K., Taghizadeh, S., Amani, A. M.
Green Synthesis of Spherical Silver Nanoparticles Using Ducrosia
Anethifolia Aqueous Extract and Its Antibacterial Activity. Journal
of Environmental Treatment Techniques. 2019. 7(3), 461-466.
38. Khan, N., Bano, A. Role of plant growth-promoting rhizobacteria
and Ag-nano particle in the bioremediation of heavy metals and
maize growth under municipal wastewater irrigation. International
Journal of Phytoremediation, 2015.
1
2
0. Jorge de Souza, T., Rosa Souza, L., & Franchi, L. (2019). Silver
nanoparticles: An integrated view of green synthesis methods,
transformation in the environment, and toxicity. Ecotoxicology and
Environmental Safety, 171, 691-700.
2
2
2
2
1. Cunningham, S., Joshi, L. Assessment of exposure of marine and
freshwater model organisms to metallic nanoparticles [WWW
Document]. EPA Res. 2015. Rep. 150.
2. SCENIHR Scientific Committee on Emerging and Newly Identified
Health Risks SCENIHR Opinion on Nanosilver: Safety, Health, and
Environmental Effects and Role in Antimicrobial Resistance. 2014.
3. Liu, J.Y., Hurt, R.H. Ion release kinetics and particle persistence in
39. Evangelou, M.W., Papazoglou, E.G., Robinson, B.H., Schulin, R.
Phytomanagement: phytoremediation and the production of biomass
for economic revenue on contaminated land Phytoremediation.
Springer International Publishing. 2015. 115-132.
40. Padmapriya, S., Murugan, N., Ragavendran, C., Thangabalu, R.,
Natarajan, D. Phytoremediation potential of some agricultural plants
on heavy metal contaminated mine waste soils, Salem District,
Tamilnadu. International Journal of Phytoremediation, 2015.
41. Eissa, M.A., 2017. Phytoextraction mechanism of Cd by Atriplex
lentiformis using some mobilizing agents. Ecol. Eng. 108 (Part A),
220–226.
42. Adamu, Y.U., Tasiu, S.I., Salisu, M.T. The use of pistia stratiotes to
remove some heavy metals from Romi stream: a case study of
Kaduna refinery and petrochemical company polluted stream.
Journal of Environmental Science, Toxicology and Food
Technology. 2015. 9 (1), 48-51.
43. Gomati, S., Adhikari, S., Mohanty, P. Phytoremediation of copper
and cadmium from water using water hyacinth, Eichhornia
crassipes. Journal of Agricultural Science and Technology. 2014.
2(1), 1-7.
44. Harris, A.T., Bali, R. On the formation and extent of uptake of silver
nanoparticles by live plants. Journal of Nanoparticle Research.
2008. 10(4), 691–695.
45. Andreotti, F., Mucha, A.P., Caetano, C., Rodrigues, P., Gomes,
C.R., Almeida, C.M.R. Interactions between salt marsh plants and
Cu nanoparticles–effects on metal uptake and phytoremediation
processes. Ecotoxicology and Environmental Safety. 2015. 120,
303-309.
46. Farkas, J., Peter, H., Ciesielski, T.M., Thomas, K.V., Sommaruga,
R., Salvenmoser, W., et al. Impact of TiO2 nanoparticles on
freshwater bacteria from three Swedish lakes. Science of the Total
Environment. 2015. 535, 85-93.
47. Schaumann, G.E., Philippe, A., Bundschuh, M., Metreveli, G.,
Klitzke, S., Rakcheev, D., et al. Understanding the fate and
biological effects of Ag-and TiO2-nanoparticles in the environment:
the quest for advanced analytics and interdisciplinary concepts.
Science of the Total Environment. 2015. 535, 3-19.
aqueous nano-silver colloids. Environmental Science
Technology. 2010. 44, 2169-2175.
&
4. Luoma, S.N. Silver Nanotechnologies and the Environment: Old
Problems or New Challenges. Project on Emerging
Nanotechnologies Publication 15 Woodrow Wilson International
Center for Scholars and PEW Charitable Trusts, Washington D.C.
2
008.
2
2
2
2
5. Kataoka, C., Kato, Y., Ariyoshi, T., et al., 2018. Comparative
toxicities of silver nitrate, silver nanocolloids, and silver chloro-
complexes to Japanese medaka embryos, and later effects on
population growth rate. Environ. Pollut. 233, 1155–1163.
6. Vazquez-Munoz R, Borrego B, Juarez-Moreno K, Garcia-Garcia M,
Mota Morales JD, Bogdanchikova N, Huerta-Saquero A (2017)
Toxicity of silver nanoparticles in biological systems: does the
complexity of biological systems matter? Toxicol Lett 276:11–20
7. Asmonaite, G., Boyer, S., de Souza, K.B., et al., 2016. Behavioural
toxicity assessment of silver ions and nanoparticles on zebrafish
using a locomotion profiling approach. Aquat. Toxicol. 173, 143–
1
53.
8. Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN. In
vivo imaging of transport and biocompatibility of single silver
nanoparticles in early development of zebrafish embryos. ACS
Nano 2007;1:133–43.
9. Li, Y., Guo, M., Lin, Z., et al., 2016. Polyethylenimine-
functionalized silver nanoparticlebased co-delivery of paclitaxel to
induce HepG2 cell apoptosis. Int. J. Nanomed. 11, 6693–6702
0. Shrivastava, R., Kushwaha, P., Bhutia, Y.C., Flora, S., 2016.
Oxidative stress following exposure to silver and gold nanoparticles
in mice. Toxicol. Ind. Health 32, 1391–1404.
1. Franchi, L.P., Manshian, B.B., de Souza, T.A.J., et al., 2015. Cyto-
and genotoxic effects of metallic nanoparticles in untransformed
human fibroblast. Toxicol. Vitr 29, 1319–1331.
2. Asharani, P. V.; Wu, Y. L.; Gong, Z.; Valiyaveettil, S. Toxicity of
Silver Nanoparticles in Zebrafish Models. Nanotechnology 2008,
2
3
3
3
3
48. Xu, C., Peng, C., Sun, L., Zhang, S., Huang, H., Chen, Y., Shi, J.
Distinctive effects of TiO2 and CuO nanoparticles on soil microbes
and their community structures in flooded paddy soil. Soil Biology
& Biochemistry. 2015. 86, 24-33.
49. Fernandes, J. P., Mucha, A. P., Francisco, T., Gomes, C. R.,
Almeida, C. M. R. Silver nanoparticles uptake by salt marsh plants:
Implications for phytoremediation processes and effects in
microbial community dynamics. Marine Pollution Bulletin 2017.
119(1), 176-183.
1
9, 1–8.
3. Antsiferova AA, Buzulukov YP, Kashkarov PK, Kovalchuk MV
2016) Experimental and theoretical study of the transport of silver
(
nanoparticles at their prolonged administration into mammal
organism. Crystallogr Rep 61:1020–1026
9
83