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Abstract

This study implemented multiple linear regression model to predict rejection of trace organic contaminants (TrOCs) by the nanofiltration
(NF) membrane NF270. Multiple regression analysis by the Statgraphics Centurion software were used to find an optimal mathematical
modeling that combines interactions between molecular width, molecular height, molecular length, molecular weight and log D of TrOCs for
predicting rejection. The result shows a relatively good agreement between the predicted rejection and the observed rejection and an
acceptable R-squared correlation coefficient were found (R? = 91.42 %) for the best model. In conclusion, a unified general multiple linear
regression equation was able to predict rejections of TrOCs during nanofiltration with the explanatory variables of molecular width, molecular
height, molecular length and molecular weight. Moreover, the present approach is a basis to continue investigation using multiple regression

analysis techniques for understanding rejection of TrOCs by the NF membranes.
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1 Introduction

The demand for fresh water worldwide is increasing
dramatically caused by continued population growth posing
challenges in the last few decades by growing water stress, both
in terms of water scarcity and quality deterioration. Some of most
important problems in water supply are the necessity of fresh
water production for drinking, domestic, agricultural, landscape
or industrial uses, the requirement of higher performance methods
for wastewater reclamation and reusing applications, as well as
lower maximum levels of contaminants [1]. However, the
potential presence of trace organic contaminants (TrOCs) such as
endocrine disrupting chemicals (EDCs), pharmaceutically active
compounds (PhACs) and disinfection by products (DBPSs) in
treated wastewater and other water sources has become a public
concern because of their potential risks on ecological and human
health in recent decades [2-4].

Recognizing these problems, the rejection of TrOCs in water
treatment processes, which are associated with potentially
adverse human health effects, is of increasing interest for
membrane applications.  Nanofiltration (NF) has been
demonstrated to be appropriate technologies for removing most
TrOCs [5,6]. An important driving force for the widespread
implementation of NF membranes is their high removal efficiency
for a large number of inorganic salts and TrOCs amongst the
membrane processes [7-9]. This will have special significance
because satisfactory elimination of micropollutants in water
sources is of paramount importance for the protection of public

health. It has been found that the physicochemical properties of
TrOCs, such as molecular size, molecular weight (MW),
hydrophobicity and charge caused by the functional groups, have
significant effects on their rejection by NF membranes [10,11].
According to Kimura et al. [12], the molecular size of the TrOCs
could be considered one of the most important factors influencing
their rejection by the NF membranes. The molecular weight of the
solutes is often used as an indication of size while the molecular
size parameters such as molecular width, molecular length and
molecular height have been confirmed to more appropriate
predicators for describing size exclusion effects on the rejection
of TrOCs by NF membranes [13-16].

A number of articles have proposed a mechanistic
understanding of the rejection of TrOCs, others have tried to
apply fitting parameter models to model rejection [17-19].
However, there have been few models to predict the rejection of
TrOCs by NF membranes. It would therefore be of interest to have
a statistical model that can use for predicting rejection of TrOCs.
Among modeling approaches, multiple linear regression analysis
is a relatively simple statistical method used to examine the
correlation among variables. The present study is aimed at
developing multiple regression model that can usefully estimate
the rejection of TrOCs by NF membrane based on an integral
approach that considers physicochemical properties of the
compounds.
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2 Materials and methods
2.1 Background of statistical analysis

Statistical analysis is useful for exploring and examining the
basic features of the data prior to applying statistical tests and
fitting statistical models. Because the fact that many factors
influence some phenomena, it is necessary to calculate the
interaction among phenomena. In order to attain this, multiple
regression methods can be used. Multiple regression has taken a
very significant place in statistical science. It is a method of
analysis for assessing the strength of the relationship between a
set of explanatory variables known as independent variables, and
a single response or dependent variable. Applying multiple
regression analysis to a set of data results in what are known as
regression coefficients, one for each explanatory variable [20,21].
Regression analysis is a mathematical measure of the average
relationship between two or more variables in terms of the
original units of the data. The concept of regression analysis
involves finding the best relationship between variables.

In case of researching relationship between two phenomena
and in case of prediction of the value of dependent variable, first
to identify variables and then to find out random sample n size for
the chosen values of dependent variables. Suppose that k
phenomenon is identified as independent variable (predictor), or
Xi,1=1,2,...,k, and Y as dependent random variable. The whole
multiple linear model can be presented as one equation for
dependent variable Yi:

Yi=Bo+ Pixs + Paxz + ...+ PXk + &i (1)

where Yi is dependent random variable, x1, X, ..., xk are values
of independent variable, Po, B1, ..., Pk are model parameters
(regression coefficient), and i is a supporting element, or a
random error which has normal distribution, zero mean and
constant variance. The whole regression model can be estimated
by the sample regression model using least squares fitted
(prediction) equation (obtained by minimizing Error Sum of
Squares, SSE):

Yi = bo + baxa + baxz + ...+ biXk (2)

where yi is adjustable or foreseen value of dependent variable Yi,
X1, X2, ..., xk are values of independent variables, and bo, ba, ...,
bk are estimations of unknown parameters fo, p1, ..., fk. Once a
regression model has been constructed, it may be important to
confirm the goodness of fit of the model and the statistical
significance of the estimated parameters. Commonly used
techniques to verify the goodness of fit include the R square,
Adjusted R square, Multiple R, and hypothesis testing. Statistical
significance can be verified by a Fisher distribution (F-test) of the
overall model, followed by tests of the individual parameters
using Student's t-distribution (t-test) [22].

The fit of a multiple regression model can be judged with
calculation of the multiple correlation coefficient, Multiple R,
defined as the correlation between the observed values of the
response variable and the values predicted by the model. The
squared value of R (R?) gives the proportion of the variability of
the response variable accounted for by the explanatory variables.
Adjusted R square used to compare models with different sets of
independent variables in terms of predictive capabilities. Analysis
of variance (ANOVA) will provide an F-test of the null
hypothesis that each of bo, bs, bz.... bk, is equal to zero, or in other
words that R? is zero [21].

901

2.2 Nanofiltration membrane

The NF270 membrane (Dow-Filmtec, Minneapolis, MN) was
selected for this study. According to the manufacturer, it is a thin-
film composite polyamide membrane that is widely used for water
and wastewater treatment application. This is a loose NF
membrane with a relatively high permeability (of approximately
11 L/bar m?h). At pH 4 and above, this membrane is negatively
charged [23]. The flat sheet membrane samples were stored dry
before use.

2.3 Trace organic contaminants, analytical chemicals and
reagents

The target TrOCs for this research have been chosen from the
major classes of EDCs, PhACs and DBPs. They have diverse
physicochemical properties such as hydrophobicity, charge,
solubility, and molecular size. A stock solution was prepared at a
concentration of 1 mg/mL in pure methanol. A working solution
of these TrOCs was also prepared in pure methanol. Both these
solutions were stored in a freezer at -18 °C prior to use.

Chemical solutions and feed waters were prepared with Milli-
Q water. Both the solvents used for solid phase extraction and
analysis of samples including methanol and dichloromethane,
purchased from Sigma-Aldrich (Sydney, Australia). Internal
standard of bisphenol A-dis and N,O-bis (trimethylsilyl)
trifluoroacetamide ~ (BSTFA)  containing 1 %  of
trimethylchlorosilane (TMCS). Pyridine used in the derivatization
process. All reagents and chemicals were purchased from Sigma-
Aldrich (Sydney, Australia).

2.4 Experimental protocol

A laboratory scale cross flow NF/RO system consisted of a
stainless steel NF/RO membrane cell with an effective surface
area of 40 cm? and channel height of 2 mm, a stainless steel feed
reservoir, and a high pressure pump (Hydra-Cell, Wanner
Engineering Inc., Minneapolis, MN) was used. The temperature
of the feed solution was controlled by a chiller/heater (Neslab
RTE 7, Thermo Scientific Inc., Waltham, MA, USA) equipped
with a stainless steel heat exchanger coil which was submerged
directly into the feed reservoir. A digital flow meter (Optiflow
1000, Agilent Technologies, Palo Alto, CA) connected to a PC
was utilized to measure permeate flow, and the cross flow was
monitored with a rotameter.

The rejection of TrOCs was performed in a background
electrolyte solution containing 10 mM of NaCl, 1 mM of CaCly,
and 1 mM of NaH2PO4 (pH 7) and conducted over 24 hours. Prior
to each experiment, the NF270 membrane samples were gently
washed with copious Milli-Q water to remove any preservatives.
They were then compacted using Milli-Q water at 1,000 kPa for
at least one hour until a stable permeate flux had been obtained.
The background electrolyte solution was then added to the feed
reservoir, and made up to the total feed volume of 10 litres.
During the experiment, the feed reservoir temperature and cross
flow velocity were kept constant at 20 £ 0.1 °C and 42 cm/s,
respectively. The permeate flux was set to the manufacturer’s
quoted nominal membrane flux of 42 L/m?h throughout the
experiment. Both permeate and retentate were recirculated to the
feed reservoir. A mixture of 25 target TrOCs was then added to
the feed reservoir to obtain a concentration of 25 pg/L of each.
The feed solution pH was kept constant during the experiments
by periodically adding a small amount of 1 M of NaOH or 1 M
HCI. Approximately 100 mL of feed and permeate samples were
taken at specific times. Samples were stored in clean glass bottles,
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wrapped in aluminium foil, stored in the fridge for subsequent
extraction and GC/MS analysis. The effective rejection was
defined as R (%):

Cp
R=100x (1-—) ©)
Ct

where Crand Cp were the feed and the permeate concentrations,
respectively.

2.5 Analytical methods

The Oasis HLB SPE cartridges (6 mL, 200 mg, Waters,
Milford, MA, USA) for extraction of the TrOCs in feed and
permeate samples were used in this investigation. The feed and
permeate samples of 100 mL were allowed to reach room
temperature and adjusted by 4 M sulphuric acid to pH range
between 2 and 3. Before the samples were extracted, the SPE
cartridges were conditioned sequentially by 7 mL
dichloromethane and methanol (1:1, v/v), 7 mL methanol, and
about 2 x 7 mL reagent water on a vacuum manifold at a flow rate
of 2 mL/min. Subsequently, the samples were passed through the
cartridges with a flow rate of 2 mL/min. The loaded cartridges
were washed with 6 x 7 mL of Milli-Q water and dried under
vacuum for 30 minutes along with a stream of nitrogen. The SPE
columns containing the TrOCs were eluted with 7 mL methanol
followed by 7 mL dichloromethane and methanol (1:1, v/v) at a
flow rate of 1 - 5 mL/min. The elution volume was then
evaporated to dryness under a gentle stream of nitrogen in a water
bath at 40 °C. An amount of 200 puL methanol solution containing
5 pg bisphenol A-dis was utilized to dissolve the extracted
residues, and was transferred into 1.5 mL vials before further
evaporation to dryness under a gentle nitrogen stream. Finally, the
derivatization of the dried residues in the vials was performed by
adding 100 pL of BSTFA (N,O-bis (trimethylsilyl)
trifluoroacetamide) (1 % TMCS (trimethylchlorosilane)) and 100
pL of pyridine (dried with KOH solid). The conditions of the
derivatization reaction were 30 min at 60 - 70 °C. The derivatives
were allowed to cool to room temperature before analysis by GC-
MS [24].

A Shimadzu GCMS-QP5000 system consisting of a
Shimadzu AOC 20i autosampler and a Phenomenex Zebron ZB-
5 (5 % diphenyl - 95 % dimethylpolysiloxane) capillary column
(30 m x 0.25 mm ID, df = 0.25 pum) was used to determine the
concentrations of the organic compounds. Helium was used as the
carrier gas at a constant flow rate of 1.3 mL/min. The GC oven
temperature program was conducted as follows: 100 °C for 1 min,
first ramp 10 °C/min to 175 °C, 3 min at 175 °C, second ramp 30
°C to 210 °C, third ramp 2 °C/min to 228 °C, fourth ramp 30 °C
to 260 °C, fifth ramp 3 °C/min to 290 °C, 3 min at 290 °C. The
injector port and the temperature of the GCMS interface were set
at 280 °C. A sample volume of 1 pL was injected in splitless
mode.

The MS was obtained by electron impact ionisation in full
scan mode from 50 to 600 of m/z, and later on in selected ion
monitoring (SIM) mode for qualitative determinations. The most
abundant ions of each organic compound were selected from its
spectrum for quantitation, in accordance with previous studies
[25,26]. A series of standard TrOCs at 1, 10, 50, 100, 500, and
1000 ng/mL and a bisphenol A-dis internal standard were
prepared for the instrument calibration. The calibration curves
obtained for each compound had correlation coefficients greater
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than 0.99. The detection limits and quantification limits for
analytes were estimated with the signal to noise (s/n) ratio higher
than 3 and higher than 10, respectively.

A Metrohm model 744 pH Meter was calibrated before
beginning of an experiment and utilized to measure the feed
solution pH for the duration of the experiment.

3 Results and discussion
3.1 Properties of trace organic contaminants and their rejection
efficiency

The major physicochemical properties of the target TrOCs
and their rejection efficiency are shown in Table 1. The standard
deviation of data obtained from two independent experiments.
The compounds selected for this investigation exhibited
considerably difference in their physicochemical properties.
These compounds have low molecular weight, ranging between
138.12 and 361.82 g/mol for salicylic acid and bezafibrate,
respectively. However, they are markedly different in their
dissociation constants (pKa), molecular dimension (width, height
and length) and hydrophobicity properties. Most TrOCs are weak
acids and will dissociate into an ionic form at pH above the pKa.
The molecular widths, heights and lengths of these TrOCs are
from 0.354 to 0.435, 0.505 to 1.313 and 0.615 to 1.179 nm,
respectively. The difference in molecular weight and dimension
can play a major role in the rejection of TrOCs.

On the other hand, it is striking to note that the intrinsic
hydrophobicity of TrOCs was an important factor in determining
their rejection by a NF process [27,28]. The logarithm of the
effective octanol-water distribution coefficient, log D, is a good
parameter which can be used to evaluate the hydrophobicity of
TrOCs at any pH value [29,30]. According to Wells [31] and
Alturki et al. [32], organic compounds with log D equal to 3 or
higher are generally referred to as hydrophobic. By contrast,
organic compounds with log D below 3 are referred to as
hydrophilic.

It can be observed that rejection efficiency of TrOCs varied
considerably depending on the different physicochemical
characteristics of the compounds, ranging from 49.27 to 98.30 %.
In general, larger MW and molecular dimension compounds
showed higher rejections than small MW and molecular
dimension compounds on size exclusion grounds. Because of the
large MW and molecular dimension, TrOCs do not significantly
penetrate into the membrane pores, resulting in their adsorption
occurring mainly at the membrane surface. Consequently, the
diffusion of these compounds across the membrane is very
limited, leading to the high rejection efficiencies observed. These
results are consistent with the observations of Yangali-Quintanilla
and coworkers [33,34], who also demonstrated a strong
correlation between molecular weight, width, length and the
rejection for hydrophilic compounds (such as acetaminophen,
phenacetine, caffeine, metronidazole, phenazone and
sulfamethoxazole) by NF200 and NF90 membranes, and that
rejection of these compounds may be attributed to the domination
of the size exclusion effect. Agenson et al. [13] demonstrated that
size exclusion effect represented by molecular weight and
molecular width of solutes played a major influence on the
rejection efficiency in membrane separation. Additionally, Van
der Bruggen and Vandecasteele [35] suggested that the rejection
of neutral TrOCs can be predicted using the molecular weight of
the compound, a higher rejection for the compounds with larger
molecular weight was obtained.
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Table 1: Physicochemical properties and rejection efficiency of the selected trace organic contaminants

Trace organic compounds Log Kow?®  pKa?®  Molecular Molecular Molecular  Molecular Log D at pH Rejection +

Width (nm) PHeight (nm)® Length  weight (MW) 7°¢ STDEV (%)

(nm)® (g/mol)

Salicylic acid 2.011 3.01 0.354 0.577 0.615 138.12 -1.130 4927 £3.21
Ibuprofen 3.502 4.41 0.354 0.561 0.900 206.28 0.940 80.61 £2.13
Gemfibrozil 4.302 4.75 0.354 0.670 0.972 250.33 2.070 93.08 £2.45
Diclofenac 4.548 4.18 0.354 0.767 0.829 296.15 1.770 98.03 £1.05
Carbamazepine 1.895 13.94 0.354 0.676 0.818 236.27 1.890 81.32+2.88
Pentachlorophenol 5.115 4.68 0.354 0.640 0.659 266.34 2.850 92,74 + 3.96
4-tert-butylphenol 3.397 10.13 0.354 0.505 0.735 150.22 3.400 51.28 £5.99
4-tert-octylphenol 5.180 10.15 0.354 0.595 0.822 206.32 5.180 80.77 £2.73
4-n-nonylphenol 6.142 10.15 0.354 0.519 1.179 220.35 6.140 88.95+2.76
Triclosan 5.343 7.80 0.354 0.602 0.926 289.54 5.280 92.28 £1.49
Bisphenol A 3.641 10.29 0.354 0.570 0.876 228.29 3.640 78.61 +4.68
Estrone 3.624 10.25 0.340 0.693 0.697 270.37 3.620 82.40£4.83
17p-estradiol 4.146 10.27 0.340 0.693 0.697 272.38 4.150 84.38 £1.10
Estriol 2.527 10.25 0.340 0.693 0.751 288.38 2.530 95.72 £0.40
17a-ethinylestradiol 4.106 10.24 0.356 0.693 0.788 296.40 4.110 95.36 +1.94
17B-estradiol acetate 5.111 10.26 0.354 0.842 0.947 314.42 5.110 98.30 £1.03
Caffeine -0.628 0.52 0.412 0.676 0.750 194.19 -7.110 89.52 +3.75
Primidone 0.829 12.26 0.426 0.740 0.734 218.25 0.830 92.07 £1.86
Trimethoprim 0.594 7.04 0.420 0.766 1.047 290.32 0.310 93.64 = 3.27
Sulfamethoxazole 0.659 5.81 0.412 0.595 1.032 253.28 -0.560 88.15+1.75
Amitriptyline 4.410 9.18 0.435 0.933 0.871 277.40 4.410 91.05+0.84
Bezafibrate 2.504 3.29 0.420 1.313 0.773 361.82 -1.210 98.23 £0.05
Linuron 3.125 12.13 0.412 0.668 0.902 249.09 3.120 81.02 £5.36
Formononetin 2.860 6.99 0.412 0.760 1.015 268.26 2.550 85.88 +5.27
Genistein 3.114 6.51 0.354 0.706 1.033 270.24 2.500 87.15 +5.52

aScifinder Scholar, ® calculated using Molecular Modeling Pro™ Plus software, ¢ calculated by the equation: log D¢y = Log Ko — Log (1+10¢HPK),

It is however noteworthy that there was no correlation
between rejection and log D of these TrOCs. These observations
can be attributed to the fact that in addition to the effect of the log
D, there are a number of other factors which may influence TrOCs
rejection such as MW, molecular dimension, charge, and so on.
Correlation between the physicochemical properties and the
rejection for the TrOCs will be discussed in detail in the following
section.

3.2 Multiple linear regression model for trace organic
contaminants rejection

Physicochemical properties of the TrOCs and their rejection
efficiency were used as indicators in the model development.
Database using for multiple regression analysis are presented in
the Table 2. Statistical analysis of multiple regression by
Statgraphics Centurion software was used to construct the best
optimal mathematical modeling for trace organic contaminants
rejection by the NF270 membrane. The whole multiple regression
model can be presented as one equation for dependent variable Y:

Y = bo + biX1 + b2X2 + b3X3 + baX4 + bsX5 + baX1X2 +
b13X1X3 + b23X2X3 + b123X1X2X3

where Y (rejection efficiency) is the dependent variable; X1
(molecular width), X2 (molecular height), X3 (molecular length),
X4 (molecular weight), X5 (log D) are the independent variables;
bo, b1, bz, bs, b4, bs, b1z, b13, bas, bizs are the model parameters
(regression coefficient).

Results of multiple regression analysis are summarised in the
Table 3 and Table 4. In addition, it was discovered that regression
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statistics included R-squared 91.42 percent, R-squared
(adjusted for d.f.) = 86.27 percent and Standard error of Est. =
4.56.

The output shows the results of fitting a multiple linear
regression model to describe the relationship between Y and
independent variables. The equation of the fitted model is as
follows:

Y = -1886.76 + 5020.79X1 + 2267.82X2 + 2092.90X3 +
0.267792X4 - 0.837608X5 - 5891.10X1X2 - 5464.52X1X3 -
2505.03X2X3 + 6448.92X1X2X3

In determining whether the model can be simplified, the
highest P-value on the independent variables is 0.1038, belonging
to X5 (Table 3). Since the P-value is greater or equal to 0.05, that
term is not statistically significant at the 95.0 % or higher
confidence level. Consequently, it should consider removing X5
from the model. Whereas, the regression coefficients (include X1,
X2, X3, X4, X1X2, X1X3, X2X3, and X1X2X3) contribute
significantly to the model (exist in multiple regression equation)
due to their P-values are less than 0.05. Since the P-value in the
ANOVA table is less than 0.05, there is a statistically significant
relationship between the variables at the 95.0 % confidence level.

The R-squared statistic indicates that the model as fitted
explains 91.42 % of the variability in Y. This value shows that
more than 91.42 % of the variability in the percent of TrOCs
rejection is accounted for by knowing width, height, length and
molecular weight of organic compounds.
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Table 2: Database using for multiple regression analysis

Trace organic compounds Molecular Molecular Molecular Molecular weight Log D at X1X2 X1X3 X2X3 X1X2X3 Rejection (%)
Width (nm)  Height (nm) Length (nm) (MW) (g/mol) pH 7 Y
(X1) (X2) (X3) (X4) (X5)
Salicylic acid 0.354 0.577 0.615 138.12 -1.130 0.204258 0.217710 0.354855 0.125619 49.27
Ibuprofen 0.354 0.561 0.900 206.28 0.940 0.198594 0.318600 0.504900 0.178735 80.61
Gemfibrozil 0.354 0.670 0.972 250.33 2.070 0.237180 0.344088 0.651240 0.230539 93.08
Diclofenac 0.354 0.767 0.829 296.15 1.770 0.271518 0.293466 0.635843 0.225088 98.03
Carbamazepine 0.354 0.676 0.818 236.27 1.890 0.239304 0.289572 0.552968 0.195751 81.32
Pentachlorophenol 0.354 0.640 0.659 266.34 2.850 0.226560 0.233286 0.421760 0.149303 92.74
4-tert-butylphenol 0.354 0.505 0.735 150.22 3.400 0.178770 0.260190 0.371175 0.131396 51.28
4-tert-octylphenol 0.354 0.595 0.822 206.32 5.180 0.210630 0.290988 0.489090 0.173138 80.77
4-n-nonylphenol 0.354 0.519 1.179 220.35 6.140 0.183726 0.417366 0.611901 0.216613 88.95
Triclosan 0.354 0.602 0.926 289.54 5.280 0.213108 0.327804 0.557452 0.197338 92.28
Bisphenol A 0.354 0.570 0.876 228.29 3.640 0.201780 0.310104 0.499320 0.176759 78.61
Estrone 0.340 0.693 0.697 270.37 3.620 0.235620 0.236980 0.483021 0.164227 82.40
17p-estradiol 0.340 0.693 0.697 272.38 4.150 0.235620 0.236980 0.483021 0.164227 84.38
Estriol 0.340 0.693 0.751 288.38 2.530 0.235620 0.255340 0.520443 0.176951 95.72
17a-ethinylestradiol 0.356 0.693 0.788 296.40 4.110 0.246708 0.280528 0.546084 0.194406 95.36
17B-estradiol acetate 0.354 0.842 0.947 314.42 5.110 0.298068 0.335238 0.797374 0.282270 98.30
Caffeine 0.412 0.676 0.750 194.19 -7.110 0.278512 0.309000 0.507000 0.208884 89.52
Primidone 0.426 0.740 0.734 218.25 0.830 0.315240 0.312684 0.543160 0.231386 92.07
Trimethoprim 0.420 0.766 1.047 290.32 0.310 0.321720 0.439740 0.802002 0.336841 93.64
Sulfamethoxazole 0.412 0.595 1.032 253.28 -0.560 0.245140 0.425184 0.614040 0.252984 88.15
Amitriptyline 0.435 0.933 0.871 277.40 4.410 0.405855 0.378885 0.812643 0.353500 91.05
Bezafibrate 0.420 1.313 0.773 361.82 -1.210 0.551460 0.324660 1.014949 0.426279 98.23
Linuron 0.412 0.668 0.902 249.09 3.120 0.275216 0.371624 0.602536 0.248245 81.02
Formononetin 0.412 0.760 1.015 268.26 2.550 0.313120 0.418180 0.771400 0.317817 85.88
Genistein 0.354 0.706 1.033 270.24 2.500 0.249924 0.365682 0.729298 0.258171 87.15
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The adjusted R-squared statistic, which is more suitable for
comparing models with different numbers of independent
variables, is 86.27 %. The standard error of the estimate shows
the standard deviation of the residuals to be 4.56. This value can

be used to construct prediction limits for new observations.

Table 3: Regression coefficients

Parameter Estimate Standard T Statistic P-Value
Error
Constant -1886.76 551.468 -3.42134  0.0038
X1 5020.79 1445.26 3.47397 0.0034
X2 2267.82 826.314 2.7445 0.0151
X3 2092.90 643.065 3.25458 0.0053
X4 0.267792  0.0496485 5.39375 0.0001
X5 -0.837608  0.483639 -1.73189  0.1038
X1X2 -5891.10 2121.08 -2.7774 0.0141
X1X3 -5464.52 1707.50 -3.20029  0.0060
X2X3 -2505.03 945.318 -2.64994  0.0182
X1X2X3 6448.92 2474.24 2.60642 0.0198

In conclusion, the best optimal mathematical modeling for

estimating rejection of TrOCs by the NF270 membrane can be
written as follows:

Y = -1886.76 + 5020.79X1 + 2267.82X2 + 2092.90X3 +
0.267792X4 - 5891.10X1X2 - 5464.52X1X3 - 2505.03X2X3 +
6448.92X1X2X3

Table 4: Analysis of variance (ANOVA)

Source Sumof Df Mean  F-Ratio P-Value
Squares Square

Model 3326.16 9 369.574 17.76 0.0000

Residual 312.144 15 20.8096

Total (Corr.)  3638.31 24

It can rewrite this equation as follows: rejection = -1886.76 +
5020.79 molecular width + 2267.82 molecular height + 2092.90
molecular length + 0.267792 molecular weight - 5891.10

100

Observed rejection (%)

molecular width x molecular height - 5464.52 molecular width x
molecular length - 2505.03 molecular height x molecular length
+6448.92 molecular width x molecular height x molecular length.

From the multiple regression model, it can be observed that
rejection will increase in the order of increasing width, height,
length, and increasing molecular weight of the organic
compounds. The graph comparing the actual (observed) rejection
values and predicted rejection values for each organic compound
are shown in Figure 1. The result shows a relatively good
agreement between the predicted and observed TrOCs removal.
Therefore the multiple regression model was considered reliable.
The dataset is provided as supplementary data, a 95.0 %
confidence interval indicates that very few modelled rejections
were out of that interval. Most of the data points focus on the line
of perfect fit, indicating that the correlation between rejection
efficiency and width, height, length and molecular weight are
quite significantly. The goodness of fit of a multiple regression
model describes how well the regression model fits the data
points. All the indices that exist to evaluate the goodness of fit
summarize the discrepancy between the observed values and the
predicted values under the regression model. They can only tell
how good the model fits with the data used to build the models,
not beyond the extent of the data set.

4 Conclusions

From the results obtained using the selected TrOCs, at the
experimental conditions used, a multiple linear regression model
equation was developed to merge information about interaction of
molecular width, molecular height, molecular length and
molecular weight to predict rejections of TrOCs during
nanofiltration. Mathematical modeling was obtained as follows:
Rejection = -1886.76 + 5020.79 molecular width + 2267.82
molecular height + 2092.90 molecular length + 0.267792
molecular weight - 5891.10 molecular width x molecular height -
5464.52 molecular width x molecular length - 2505.03 molecular
height x molecular length + 6448.92 molecular width x molecular
height x molecular length.
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Figure 1: Predicted rejection variables versus observed rejection variables with 95.0 % confidence intervals
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rejection of TrOCs with R? =

This model showed relatively good predictive power for
91.42 %. Based on the model

equation, rejection of TrOCs will increase in the order of
increasing width, height, length, and increasing molecular weight
of the compounds. The multiple linear regression model equation
indicated good potential as a simplified modeling tool to predict
the rejection of TrOCs during nanofiltration.
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