Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1279-1291  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/8(4)1291  
Appraisal of Quality of Groundwater in Selected  
Sites in the Villages of Veeraghattam Mandal in  
Srikakulam District, Andhra Pradesh, India  
1
*
1
Nadikatla Santhosh Kumar , Mushini Venkata SubbaRao , Mudumba Phani Surya Murali  
Krishna2  
1
Department of Chemistry, G M R Institute of Technology (Affiliated to JNTUK, Kakinada), Rajam, Srikakulam District, Andhra Pradesh, India.  
2
Department of Chemistry, Andhra Polytechnic, Kakinada, Andhra Pradesh, India.  
Received: 06/01/2020  
Accepted: 13/04/2020  
Published: 20/09/2020  
Abstract  
The Potability of groundwater in selected location sites in the villages of Veeraghattam (VGT) Mandal of Srikakulam district, Andhra  
Pradesh has been investigated and obtained Water Quality Index (WQI) results are presented in this paper. Several Physico-chemical  
parameters like pH, Electrical Conductivity (EC), turbidity, Total Dissolved Solids (TDS), Total Hardness, calcium, magnesium,  
fluoride, chloride, dissolved oxygen, total alkalinity, and nitrite were experimentally determined from the samples and also to compute  
WQI. The results of WQI computation infer that the quality of groundwater in selected site locations in rural communities in  
Veeraghattam Mandal is rated as “good” for human consumption. Correlation between various parameters has also been computed, and  
the results are presented.  
Keywords: Physico-chemical parameters, Veeraghattam (VGT), WQI, Srikakulam, Correlation matrix  
Introduction1  
necessities of rural and urban people. The major part of the  
1
Indian populace relies on freshwater supplies from lakes, bore-  
wells, and open wells, natural springs, and so on. Besides, the  
majority of the people utilise groundwater continuously for all  
their domestic activities and irrigation in India [11]. In some  
parts of Asian countries, the rural population has to travel half  
a mile to access to drinking water since they lack the necessary  
infrastructures for the water purification. The principal threat  
to groundwater quality embodied household and industrial  
wastes in addition to the use of agricultural composts and  
pesticides [12]. These pollutants may cause contamination by  
penetrating aquifers through the stream; for example, Nitrate is  
One of the utmost necessary things for living beings in the  
world is water. We always think water should be available  
sufficiently and freely as a gift of nature. Hygienic, harmless  
and suitable freshwater is vital to the survival of human beings.  
The assertion of drinking-water safety is a foundation for the  
prevention and control of waterborne diseases. The drinking  
water quality affects the health of human beings [1] due to the  
presence of various unwanted chemical constituents and also  
many diseases associated with these phenomena either directly  
or indirectly depend on the quality of the drinking water. In the  
majority of the places in India [2] as well as in other countries  
of the world, people mainly depend on groundwater for their  
needs [3-5]. According to Li P et al.[6], the main reasons are  
the increased population, various human activities such as  
industrialization, dumping of industrial waste and the increased  
use of fertilizers; the pollution of freshwater resources occurs  
due to wastewater disposal in the most areas. Access to potable  
water is one of the Millennial Development Goals (MDGs) in  
all emerging nations of the globe. This goal is nonetheless to be  
realised as a result of associate degree calculable two billion  
individuals lack access to potable water globally [7].  
Groundwater is safer than surface-water, and at present, the  
quality of groundwater differs from one place to another place  
and this could thus affect its suitableness for potability [8]. An  
impure groundwater resource might initiate waterborne  
diseases, inflammatory disease, cholera, typhoid [9] and  
protozoan infection [10]. However, once groundwater is  
sufficiently safeguarded and well managed, it might be an  
honest supply of potable water. Groundwater is deemed as one  
of the perfect forms of water accessible in Nature to serve the  
hazardous to infants; it affects  
methemoglobinemia[13].  
Characteristics of Groundwater in Southern India are  
a
disease called  
strongly structured over bedrock geology and local weather,  
but additionally may keep impacted in components through  
pollution, especially by agricultural and industrial sources, etc.  
Most probably, an effect of contamination is due to the  
extended elements of Total Dissolved Solids (TDS) [14].  
Groundwater is utilised in residential as well as in industrial  
water supply systems throughout the world. As a result, the  
quick development of the populace and the quick progress of  
industrialisation, for the past few years, the requirement for  
freshwater has been increased enormously. Fast urbanization,  
particularly in emerging nations like India has pretentious the  
provision of the prominence of the worth of groundwater,  
because of its overexploitation and ill-advised waste transfer,  
particularly in the zones of urban [15]. As per WHO (2012),  
around 80% of the considerable number of ailments peoples are  
affected by water [16]. When the water in the underground is  
*
Corresponding Author: Nadikatla Santhosh Kumar, Department of Chemistry, G M R Institute of Technology (Affiliated to JNTUK,  
Kakinada), Rajam, Srikakulam District, Andhra Pradesh, India. E-mail: santoshkumar.n@gmrit.edu.in  
1
279  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1279-1291  
defiled, the quality cannot be brought back by preventing the  
contaminations from the resource. In this line, monitoring is to  
be developed habitually often to observe the water quality and  
plan to develop techniques to safeguard it.  
2
Study area  
Veeraghattam (VGT), one of the rural Mandal(Figure 1) in  
Srikakulam District of Andhra Pradesh State belongs to  
northern coastal of A.P in India and is located 59 KM from  
WQI is the foremost efficient method to convey data on  
the quality of water to the populaces as well as policymakers.  
The Quality Index of Water is characterized as a grading  
mirroring the complex impact of various constituents present in  
the groundwater quality. The Quality Index for water is to find  
out from the perspective of the appropriateness of water for  
individual utilization [17]-[18]. The research work aims to  
examine the appropriateness of groundwater for suitability to  
human beings in the selected region for potable purposes  
because of processed WQI values. Under the study area, the  
people mainly utilizes a huge amount of groundwater for their  
agricultural activities by farmers continuously in addition to the  
potable purpose. Additionally, scarcity of water, intensive  
agriculture has created a huge demand for the groundwater  
resources in the low and medium rainfall received regions per  
year in the villages of Veeraghattam Mandal. The villages in  
this Mandal belong to coastal area which is nearer to the Bay  
of Bengal. Within the coastal areas, an intrusion of brine is also  
polluting the groundwater resources [19]. Given all the factors  
considered into account, the present study on this topic selected  
for selected locations in Veeraghattam Mandal to assess the  
groundwater quality.  
0
0
Srikakulam with Latitude 18 41 11"E and longitude 83 36’  
8"N. Majority of the people in this Mandal belongs to their  
occupation is agriculture and small scale business.  
3
3
Materials and methodology  
The water samples (40) from selected locations are  
collected, and the detailed is given the Table 1 for the period of  
pre-monsoon and post-monsoon seasons of December 2013  
(S1), June 2014 (S2), December 2014 (S3), June 2015 (S4),  
December 2015 (S5), June 2016 (S6). Collected samples are  
from bore-wells only after sufficient pumping (purging) to  
ensure that the sample represents the groundwater source. The  
sample containers are thoroughly cleaned before the collection  
and rinse the sample container two or three times with the  
sample before it is filled. Precautionary methods of collection  
and preservation of the sample will be taken care of. As  
deterioration affects the results, samples requiring preservation  
are preserved as per the drinking water norms IS: 10500 (2012)  
of the Bureau of Indian Standards (BIS). All samples are  
analyses for various physicochemical constituents’ estimation  
are done based on available established standard methods [20].  
Figure 1: study area of Veeraghattam Mandal  
1
280  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1279-1291  
All the used Chemicals are of Analytical Reagent Grade  
and working solutions are freshly made with triple distilled  
water. The electrical conductance and pH of the collected water  
samples were assessed on the spot by using ELICO PE138  
water quality analyzer. Chloride ion concentration present in  
the water sample was determined by Argentometric titration  
post-monsoon, in the samples, the conductivity was observed a  
ranging between 302 to 3532 micromhos/cm and having a  
mean value of 1265 micromhos/cm the entire data was  
pictorially represented in Figure 3. Based on the obtained  
results, the EC values were very distinct before and after  
monsoon seasons, according to WHO [16] the EC in potable  
water would be the range of 500 mg/L as good. The obtained  
results reveal that the conductivity in the 37 samples (92.5%)  
out of 40 in both the seasons are not within the allowable limit  
except V23, V29, and V35 samples. The EC of water is a direct  
function of its TDS [23]. Therefore, it is key to signifying the  
presence of soluble salts in the groundwater.  
2 4  
using K CrO as an indicator. The method used for the analysis  
of calcium and total hardness was EDTA Titration. Magnesium  
was estimated as the difference between hardness and calcium  
with the help of a formula. Turbidity was measured by using  
the Nephelometer (Model 132, Systronics). The chemical  
constituent total alkalinity was measured by acid titration.  
Fluoride ion concentration was measured by fluoride sensitive  
-
electrode, Nitrite ion (NO  
2
) was determined by UV-Visible  
4.3 Turbidity  
Double beam Spectrophotometer (Model AU2701,  
Systronics).  
Due to the existence of suspended solids ad slit, the  
groundwater acquires turbidity. The turbid nature of  
groundwater is caused by the presence of suspended solids and  
silt. As per literature reports a relationship has established  
between gastrointestinal infections with turbidity [21]. In this  
study the observed results in the selected area of water samples  
having the range of 0.14  6.04 NTU in the before monsoon  
season and also identified as 1.56 Nephelo Turbidity Units as  
mean value. During post monsoon, the turbidity values are  
observed closely the same as pre monsoon and having a mean  
value of 1.60 NTU with a range of 0.16 to 6.22 NTU. The entire  
obtained data were shown in Figure 4 in pictorial. Based on the  
results, the observation was that the turbidity was slightly  
higher in the season of post-monsoon than that of pre-monsoon.  
According to BIS [22] in the potable water, the turbidity should  
be required as good the limit of 1.0 NTU and in alternate cases,  
if such type of water is not available, the allowable limit is up  
to 5.0 NTU. In the present analysis, 97.5% of the Veeraghattam  
Madal selected samples were well within the allowable limit,  
except for the V1 sample in Veeraghattam Mandal.  
4
Results and discussion  
4
.1 pH  
pH is a significant factor for water. For successful  
purification with chlorine, the pH ought to ideally be under  
eight, in any case, bring down pH of water (<7) will probably  
be destructive. The inability to limit consumption can bring  
about the defilement of drinking water and an antagonistic  
impact on its taste and appearance [21]. The pH fluctuates  
between slightly acidic to slightly alkaline in the selected sites  
of this Mandal. The hydrogen ion concentration ranging in  
selected sites in Veeraghattam Mandal amidst 6.56-8.06 with  
arithmetic mean value of 6.56 in before monsoon, and 6.61-8.1  
with a mean value of 6.61 during the post-monsoon season.  
Which is within the limit of BIS [22] and WHO [16] guidelines  
(6.5-8.5) for drinking water (Figure 2).  
4
.2 Electrical Conductivity (EC)  
In the collected water samples in this study area, the EC is  
ranging between 316 to 3541 micromhos/cm having a mean  
value of 1261.63 micromhos/cm before monsoon season. In the  
Table 1: List of sample sites of villages in Veeraghattam Mandal  
Veeraghattam Mandal  
Sample Location/Villages  
Sample  
Location/Villages  
Veeraghattam  
Veeraghattam  
Veeraghattam  
Veeraghattam  
Veeraghattam  
Veeraghattam  
Talavaram  
V
1
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Santha Narsipuram  
Mahadevavalasa  
Dasamanthuram  
Chalivendri  
Buruga  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
2
3
4
5
6
S.Gopalapuram  
Kottugummada  
Kottugummada  
Gadagamma  
Tudi  
7
8
Panasa Nandivada  
Neelanagaram  
Tettangi  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Bitiwada  
Tudi  
Adaru  
Chdimi  
Bodlapadu  
Palametta  
Regulapadu  
Kella  
Nadimikella  
Kambara  
Kummidi  
Gangampeta  
Rajapuram  
Kattula Kaviti  
Hussenpuram  
Venkampeta  
Achipuvalasa  
Kambaravalasa  
Vikrampuram  
Nadukuru  
1
281  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1279-1291  
pH in VGT  
8
.2  
8
7
7
7
7
.8  
.6  
.4  
.2  
7
6
6
6
.8  
.6  
.4  
Sample stations  
S1 S2 S3 S4 S5 S6  
Figure 2: Seasonal variation of pH in selected sample locations in Veeraghattam Mandal  
EC in VGT  
S1 S2 S3 S4 S5 S6  
3
3
2
2
1
1
800  
300  
800  
300  
800  
300  
8
3
00  
00  
V1 V3 V5 V7 V9 V11 V13 V15 V17 V19 V21 V23 V25 V27 V29 V31 V33 V35 V37 V39  
Sample stations  
Figure 3: Seasonal variation of EC in selected sample locations in Veeraghattam Mandal  
4
.4 Total dissolved solids (TDS)  
Total Dissolved Solids are placed a vital role in the drinking  
4.5 Total hardness (TH)  
water and these are leading to affect the taste of water. The  
greatest permissible limit allowable utmost of TDS for  
potability tenacity was 500 mg/l and probably in the alternate  
source desirable limit was accepted upto1500 mg/l by WHO if  
satisfactory water was not available [16] in that area. In this  
research study the obtained dissolved solids as a total in the  
water samples are observed between 144-2921 mg/L having  
The amount of hardness of the groundwater is owing to the  
presence of Ca, and Mg ions holding minerals are geologically  
existing in the freshwater sources. The water is contaminated  
2
-
-
of Ca  
due to the cause of the presence of the CO  
3
and HCO  
3
and Mg, limestone (CaCO ) and dolomite, and in water  
3
hardness contribution is owning to the Ca and Mg salts. In this  
research study, the obtained results indicate that the water  
samples having the hardness in-between 148 to 1826 mg/L in  
the post monsoon with an average value of 447.53mg/L. The  
same trend was observed in the post monsoon season with  
hardness values in between 154 to 1813 mg/L in the water  
samples and consisting of the mean value 447.88mg/L,Finally  
the results revealed that the water samples having above the  
mean value of the standards as per BIS (300 mg/L) [22].  
8
64.18 mg/L of mean value in the before monsoon and in  
between 184  2916 mg/L during post-monsoons with 873.35  
mg/L as mean value respectively. The results revealed that 25  
samples (31.6%) of pre-monsoon and 23 samples of (29.1%)  
post-monsoon, the dissolved solids content are identified more  
than 500 mg/L. The TDS variation in different seasons are  
pictorially presented in Figure 5. The possible cause may be in  
the samples shows high solids due to the presence of laxative  
or constipation effects.  
1
282  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1279-1291  
Turbidity in VGT  
7
6
5
4
3
2
1
0
V1 V3 V5 V7 V9 V11 V13 V15 V17 V19 V21 V23 V25 V27 V29 V31 V33 V35 V37 V39  
Sample stations  
S1 S2 S3 S4 S5 S6  
Figure 4: Variation of Turbidity with respect to pre and post monsoon seasons in water samples in the mandal of Veeraghattam  
TDS in VGT  
3
2
2
1
1
100  
600  
100  
600  
100  
6
1
00  
00  
V1 V3 V5 V7 V9 V11 V13 V15 V17 V19 V21 V23 V25 V27 V29 V31 V33 V35 V37 V39  
Sample stations  
S1 S2 S3 S4 S5 S6  
Figure 5: Variation of TDS in the seasons of selected water samples in the mandal of Veeraghattam  
High Total Hardness (TH) leads to heart disease and kidney  
stones [24], formation in human beings and also leads to  
development of scales and sludges whenever this water is  
directly utilized without purification in Boilers and chance is  
leading to deteriorations pipes. The obtained results as per  
season variations are pictorially shown in Figure 6.  
permissible limits [16]. The variation of calcium in the  
groundwater in the selected locations of Veeraghattam Mandal  
is shown in Figure 7.  
4
.7 Magnesium  
Magnesium is another highly copious inorganic ion  
2
+
existing in water [25]. Mg ion in the samples are obtained in  
between 18.06 to 391.23 mg/L(with mean value 85.92 mg/L)  
in before monsoon, and 25.25 to 387.78 mg/L was observed  
with an average value of 85.54mg/L during post-monsoon. The  
4
.6 Calcium  
2+  
Ca is a foremost cation present in water which makes  
water hard. Desirable limit [16] of Calcium (75 mg/L) is  
essential to our body and due to the presence of an inadequate  
quantity of calcium leads to many problems in human beings.  
The concentration of calcium in the study zone is varied in  
between 9.19 to 185.4 mg/L in pre-monsoon with a mean value  
of 65.98mg/L and 12.33 to 178.21mg/L with an average value  
of 63.38mg/L in after monsoon season respectively. The  
obtained experimental results reveal that a total of 7 (17.5%)  
and ten samples (25%) in pre and post-monsoon are beyond the  
2+  
2+  
ions of Ca and Mg are entered into the groundwater due to  
the presence of carbonate minerals, such as calcite and  
dolomite. Based on the well-established data [22] the  
acceptable range of Magnesium concentration is 30 mg/L for  
potable water. The experimental results indicate that in pre (39  
samples, 97.5%) and post-monsoon (33samples, 82.5%) are  
respectively found in above the standard limits [22]. The  
obtained data related to the variation of magnesium ion  
1
283  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1279-1291  
concentrations in the samples in selected sites are shown in  
Figure 8. In this research study, a significant observation was  
selected sites, the groundwater samples had a maximum  
amount of fluoride concentration noticed in post-monsoon (the  
maximum value is 3.02 mg/L) and 2.95 mg/L was observed in  
earlier monsoon. The concentration of fluoride in all the  
samples in selected locations in Veeraghattam Mandal was  
varied from 0.09  2.95mg/L in the before monsoon with a  
mean value of 0.87mg/L and also observed in post-monsoon  
these values were varied from 0.1 3.02 mg/L with an average  
value of 0.96 mg/L. In this investigation, the results showed  
that the sample like V2, V9, V13, V17, V20, and V39 have  
more fluoride concentration than the desirable limit as per  
standard values [16,22]. Except for these samples in this  
research study, the other samples showed well within the limit.  
The concentration of fluoride ion against the samples are  
pictorially represented in Figure 9.  
2
+
2+  
identified as compared to Ca ion; the Mg ion concentration  
2
+
in the samples was quite high. The concentration of Mg ion  
is generally due to the weathering and leaking of magnesium  
minerals [26].  
4
.8 Fluoride  
Fluoride [27] is the existence of water in dissimilar  
concentrations. As per the standard [22] references one mg/L  
as attainable and 1.50 mg/L as allowable frontier limits  
respectively for the ion of fluoride in drinking water. If human  
beings consume an excess amount of fluoride-containing water  
than the desirable limit for a long period, people suffer the  
diseases of fluorosis. In this present investigation in the  
TH in VGT  
1
1
1
1
1
850  
650  
450  
250  
050  
8
6
4
2
50  
50  
50  
50  
5
0
V1 V3 V5 V7 V9 V11 V13 V15 V17 V19 V21 V23 V25 V27 V29 V31 V33 V35 V37 V39  
Sample stations  
S1 S2 S3 S4 S5 S6  
Figure 6: Variation of Total Hardness in the water samples in selected sites of Veeraghattam Mandal  
Ca in VGT  
1
1
1
1
1
90.00  
70.00  
50.00  
30.00  
10.00  
9
7
5
3
1
0.00  
0.00  
0.00  
0.00  
0.00  
V1 V3 V5 V7 V9 V11 V13 V15 V17 V19 V21 V23 V25 V27 V29 V31 V33 V35 V37 V39  
Sample stations  
S1 S2 S3 S4 S5 S6  
Figure 7: Variation of concentration of Calcium in water samples in selected sites of Veeraghattam Mandal  
1
284  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1279-1291  
Mg in VGT  
4
3
3
3
2
2
2
1
1
1
1
00.00  
70.00  
40.00  
10.00  
80.00  
50.00  
20.00  
90.00  
60.00  
30.00  
00.00  
7
4
1
0.00  
0.00  
0.00  
V1 V3 V5 V7 V9 V11 V13 V15 V17 V19 V21 V23 V25 V27 V29 V31 V33 V35 V37 V39  
Sample stations  
S1 S2 S3 S4 S5 S4  
Figure 8: The variation of concentration of Magnesium in water samples in selected sites of Veeraghattam Mandal  
F- in VGT  
3
2
2
2
2
.8  
.6  
.4  
.2  
2
1
1
1
1
.8  
.6  
.4  
.2  
1
0
0
0
0
.8  
.6  
.4  
.2  
0
V1 V3 V5 V7 V9 V11 V13 V15 V17 V19 V21 V23 V25 V27 V29 V31 V33 V35 V37 V39  
sample stations  
S1 S2 S3 S4 S5 S6  
Figure 9: The concentration of Fluoride ion in selected sites in the mandal of Veeraghattam  
4
.9 Chloride  
The amount of Chloride [11] is observed naturally in the  
4.10 Dissolved oxygen (DO)  
groundwater due to the process weathering and leaching of  
sedimentary rocks, soils and salt dissolution. Chloride is  
frequently appended to Na, as sodium chloride and the water  
In this present investigation in the majority of the samples  
showed the concentration of DO was more than 6.0 mg/L and  
well agreement with established standards [16, 22]. It indicates  
that in this research area in the selected sites we can say that the  
water samples are free from organic matter. Based on the  
parameter of DO as per the standards in this study area, the  
water was suitable for domestic usefulness.  
-
was salty. In this research area, the [Cl ] in the groundwater  
samples are in-between 36 to 760 mg/L was obtained and  
having an average of 206.4 mg/L in the earlier monsoon. After  
-
this monsoon, the [Cl ] was observed between 39 to 774 mg/L  
with an average of 217.41 mg/L. An observation was noted  
-
here under this study [Cl ] in post-monsoon was higher than to  
4.11 Total alkalinity (TA)  
pre-monsoon. It was also found that in pre-monsoon (13  
samples) and post-monsoon (14 samples) were showed the  
upper values than the standards [22], the remaining samples  
were within the standard limit [16, 22]. If a person consumes  
more chloride-containing water regularly, person persons  
suffering from kidney and heart problems [28].The obtained  
chloride content in the sample areas is pictorially presented in  
Figure 10.  
Due to the presence of regular salts in the groundwater, the  
water shows alkalinity. It has the capacity to neutralize a  
-
2-  
-
and OH  
powerful acid and due to the existence of HCO  
3
, CO  
3
with Na, K and Ca [29]. The Total Alkalinity was varied in the  
samples in selected sites of Veeraghattam Mandal is from 177  
to 938 mg/L with an average of 408.1 mg/L in before monsoon.  
The values are obtained between 188 to 930 mg/L (average of  
402.18 mg/L) in the post monsoon.  
1
285  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1279-1291  
7
7
7
6
6
5
5
5
4
4
3
3
3
2
2
1
1
1
80  
40  
00  
60  
20  
80  
40  
00  
60  
20  
80  
40  
00  
60  
20  
80  
40  
00  
Cl- in VGT  
S1 S2 S3 S4 S5 S6  
6
2
0
0
V1 V3 V5 V7 V9 V11 V13 V15 V17 V19 V21 V23 V25 V27 V29 V31 V33 V35 V37 V39  
Sample stations  
-
in  
Figure 10: The concentration of Chloride ion (Cl ) variation water samples in selected zones of Veeraghattam Mandal  
1
100  
TA in VGT  
9
7
5
3
1
00  
00  
00  
00  
00  
S1 S2 S3 S4 S5 S6  
V1 V3 V5 V7 V9 V11 V13 V15 V17 V19 V21 V23 V25 V27 V29 V31 V33 V35 V37 V39  
Sample stations  
Figure 11: The concentration of Total alkalinity in selected sites in the villages of Veeraghattam Mandal  
Nitrite in VGT  
S1 S2 S3 S4 S5 S6  
0
0
0
.36  
.34  
.32  
0
.3  
0
0
0
0
.28  
.26  
.24  
.22  
0
.2  
0
0
0
0
.18  
.16  
.14  
.12  
0
.1  
0
0
0
0
.08  
.06  
.04  
.02  
0
V1 V3 V5 V7 V9 V11 V13 V15 V17 V19 V21 V23 V25 V27 V29 V31 V33 V35 V37 V39  
Sample stations  
Figure 12: The concentration of Nitrite against sample stations of Veeraghattam Mandal  
1
286  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1279-1291  
Table 2: The mean, max, min and SD of Physico-chemical parameters for selected location samples in Veeraghattam  
Mandal during pre and post-monsoons  
VGT  
Pre-monsoon  
Post-monsoon  
Standard values as  
per BIS  
Standard  
Deviation  
Standard  
Deviation  
Constituent  
Average  
7.36  
Maximum  
Minimum  
6.56  
Average Maximum Minimum  
pH  
8.06  
0.35  
7.47  
8.10  
6.61  
0.36  
6.5-8.5  
Electrical  
conductivity  
1
261.63  
3541  
6.04  
2921  
316  
0.14  
44  
736.59  
1.31  
1265  
1.60  
3532  
6.22  
2916  
302  
0.16  
184  
736.87  
1.30  
500  
5
Turbidity  
1.56  
Total Dissolved  
Solids  
8
64.18  
586.47  
873.35  
585.95  
500  
TH  
447.53  
65.98  
85.92  
0.87  
1826  
185.4  
391.23  
2.95  
760  
148  
261.91  
31.64  
58.63  
0.71  
447.88  
63.38  
85.54  
0.96  
1813  
178.21  
387.78  
3.02  
154  
267.70  
29.75  
58.52  
0.71  
300  
75  
Calcium  
Magnesium  
Fluoride ion  
Chloride ion  
DO  
9.19  
18.06  
0.09  
36  
12.33  
25.25  
0.1  
30  
1.5  
250  
-
206.4  
5.64  
146.28  
1.25  
217.41  
5.65  
774  
39  
147.29  
1.21  
8.14  
938  
3.36  
177  
8.08  
3.32  
188  
Total Alkalinity 408.14  
Nitrite 0.03  
166.59  
0.05  
402.18  
0.03  
930  
165.77  
0.06  
200  
0.02  
0.29  
0.011  
0.35  
0.011  
*Except pH, Electrical conductivity and Turbidity, the constituents are in mg/L  
Based on the experimental results indicated that most of the  
were used to calculate WQI of groundwater in selected  
locations in the villages of Veeraghattam Mandal.  
samples display more alkalinity in both the seasons except the  
samples of V7, V10, and V29 [16, 22]. The minimum quantity  
of alkalinity present in water it can cause corrosiveness and  
irritation of the eyes. Due to more alkalinity, it has a sense of  
taste like soda and it might be the foundation for dry-skin and  
also can cause to formation of scaling on through water  
distribution system [25]. Variation of alkalinity in the selected  
sites in the Mandal is shown in Figure 11.  
Table 3: Relative Weight of parameters  
Parameter  
As per BIS  
Wi  
pH  
8.5  
0.058415  
0.000993  
0.000993  
0.001655  
0.00662  
0.016551  
EC  
500  
TDS  
TH  
500  
4
.12 Nitrite  
The concentration of nitrite was obtained between 0.011 to  
.45 mg/L in pre-monsoon and 0.011 to 0.48 mg/L in post  
300  
Ca  
75  
0
monsoon. The results indicated that in both the seasons the  
nitrite concentration was maintained the same tempo.  
According to established standards [16] in drinking water  
nitrite concentration should be required 0.02 mg/L, above the  
concentration of 1.0 mg/L of nitrite containing water is not used  
for infant feeding. All the groundwater samples in the present  
analysis are within the accessible range. Variation of nitrite in  
the selected locations is shown in Figure 12 and the studied  
physicochemical parameters in this research work the mean  
values in this study are presented in Table 2.  
Mg  
30  
F-  
1.2  
0.413774  
0.001986  
Cl-  
250  
Total alkalinity  
Nitrite  
200  
1
0.002483  
0.496529  
i
W = 1  
5
Water Quality index (WQI)  
Out of 13 parameters/constituents analyzed in the selected  
WQI is calculated by using the following formula:  
WQI = ΣQiWiWi  
sites, 10 parameters were [Table 3] taken for calculating WQI  
30]. The quality of Index for water is assumed by way of a  
[
ranking reflecting the mingled effect of different drinking water  
quality parameters on the entire quality of drinking water. The  
WQI was computed for the idea of understanding the  
appropriateness of water instead of human utilization in the  
selected sites in the villages of Veeraghattam Mandal. It is  
assumed that the weights for several drinking water worth of  
parameters are inversely proportionate to the standards for the  
relevant parameters [30]. Weighted arithmetic index method of  
WQI proposed by Brown (1972) stood applied [31] to evaluate  
the water quality rank of the groundwater [32]. The parameters  
where Qi is the value ranking of ith water value parameter and  
Wi is the component weight of the nth water quality parameter.  
The Qi is calculated by the following formula:  
i o o  
Qi = 100*[(V  V )/ (Vs  V )]  
th  
where V  
ideal value of the parameter, V  
i
o
is the actual amount of i parameter present, V is the  
= 0, except for pH (V = 7) and  
o
o
th  
Vs is the standard allowable value for the i water quality  
parameter. Unit weight (Wi) is estimated by using the following  
formula:  
-
-
-
like EC, pH, TDS, TH, Ca (II), Mg (II), Cl , F , NO and TA  
2
1
287  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1279-1291  
two of the water quality parameters. In this study different  
correlations are studied [Tables 4 to 9] like perfectly correlated  
(
Wi = k /V  
i
2 2  
R = 1), very strongly correlated (±0.9 ≤ R ≤ 1), strongly  
2 2  
correlated (±0.7 ≤ R < ±0.9), moderately correlated (±0.5 ≤ R  
here k is proportionality constant, and it is estimated by using  
the following equation:  
2
<
±0.9), and (R < ±0.5) as poorly correlated [34].  
In Veeraghattam Mandal for the located samples, the  
-
2
are  
correlation between parameters is Calcium, TA, and NO  
did not strongly correlated with any of the parameters. pH is  
poorly correlated with F , NO  
DO. EC is very strongly correlated with Cl , TA, TDS, TH, and  
moderately correlated by way of Mg. TDS is strongly  
correlated with Cl , and reasonably with TH, TA, and Mg.  
s
K = 1/Σ V = 1, 2… n  
-
-
, and moderately correlated with  
2
-
Based on the obtained WQI results, it was observed that the  
variations of WQI of the groundwater are noticed within the  
range from 34.55 to 46.33 in the selected sites in rural  
communities in the Mandal of Veeraghattam. The obtained  
results revealed that in the majority of the locations in the  
research area represents that the quality of groundwater is good  
for potable as well as agriculture purpose [32-33].  
-
However, TDS is high due to the existence of Magnesium  
dissolved salts. A very Solid positive correlation was noticed  
between total hardness and Mg, and it is strongly correlated  
-
with Cl . It signifies that hardness was due to mostly the  
dissolved Mg salts. A strong correlation with chloride also  
indicates the presence of permanent hardness in groundwater.  
F and Cl were moderately correlated with TA.  
6
Correlation  
The correlation studies are attempted for this investigation  
-
-
results to know the degree of a linear relationship between any  
Table 4: Correlation of Physico-chemical constituents for selected samples in Veeraghattam Mandal (December 2013)  
Total  
EC  
pH  
Turbidity  
TDS  
TH  
Ca  
Mg  
F-  
Cl-  
DO  
Nitrite  
alkalinity  
EC  
pH  
Turbidity  
TDS  
TH  
1.00  
0.06  
0.11  
0.79  
0.72  
0.16  
0.70  
0.33  
0.94  
0.12  
1.00  
0.21  
0.02  
-0.21  
-0.08  
-0.20  
0.43  
-0.11  
0.37  
1.00  
0.18  
-0.04  
0.06  
-0.06  
-0.07  
0.00  
0.16  
1.00  
0.61  
0.16  
0.59  
0.07  
0.75  
0.06  
1.00  
0.31  
0.96  
0.08  
0.83  
0.33  
Ca  
1.00  
0.03  
0.07  
0.24  
-0.13  
Mg  
1.00  
0.06  
0.81  
0.38  
F-  
1.00  
0.29  
-0.03  
Cl-  
1.00  
0.18  
DO  
1.00  
0.00  
0.25  
Total  
alkalinity  
Nitrite  
0
.81  
0.20  
0.33  
0.10  
0.05  
0.57  
0.05  
0.36  
0.16  
-0.10  
0.14  
0.41  
0.13  
0.47  
0.38  
0.61  
0.17  
1.00  
0.27  
0.20  
1.00  
Table 5: Correlation of Physico-chemical constituents for selected samples in Veeraghattam Mandal (June 2014)  
Total  
alkalinity  
EC  
pH  
Turbidity TDS  
TH  
Ca  
Mg  
F-  
Cl-  
DO  
Nitrite  
EC  
pH  
1.00  
0.10  
1.00  
0.20  
0.05  
-0.11 -0.02  
-0.04 0.06  
-0.12 -0.05  
0.41  
-0.04 -0.01  
0.50  
0.19  
0.39  
Turbidity 0.13  
1.00  
0.20  
TDS  
TH  
Ca  
0.79  
0.72  
0.16  
0.70  
0.36  
0.93  
0.07  
1.00  
0.63  
0.18  
0.60  
0.09  
0.77  
0.01  
1.00  
0.30  
0.96  
0.08  
0.83  
0.26  
1.00  
0.03  
0.04  
0.23  
Mg  
1.00  
0.06  
0.80  
-
F
-0.05  
1.00  
0.30  
-0.05 0.09  
Cl-  
1.00  
DO  
0.12  
0.14  
0.06  
-0.15 0.30  
1.00  
Total  
alkalinity  
Nitrite  
0
.81  
0.56  
0.07  
0.36  
0.16  
-0.11 0.40  
0.50  
0.37  
0.60  
0.18  
-0.03 1.00  
0.28 0.28  
0.22  
0.12  
0.13  
1.00  
1
288  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1279-1291  
Table 6: Correlation of Physico-chemical constituents for selected samples in Veeraghattam Mandal(December 2014)  
Total  
alkalinity  
EC  
pH  
Turbidity TDS  
TH  
Ca  
Mg  
F-  
Cl-  
DO  
Nitrite  
EC  
pH  
1.00  
0.04  
1.00  
0.19  
0.02  
-0.17 -0.04  
-0.07 0.06  
-0.18 -0.06  
Turbidity 0.12  
1.00  
0.18  
TDS  
TH  
Ca  
0.79  
0.72  
0.17  
0.69  
0.36  
0.93  
1.00  
0.62  
0.18  
0.59  
0.09  
0.77  
1.00  
0.30  
0.96  
0.08  
0.84  
1.00  
0.03  
0.04  
0.23  
Mg  
1.00  
0.02  
0.79  
-
F
0.41  
-0.09 -0.02  
-0.05  
1.00  
0.29  
Cl-  
1.00  
DO  
-0.05 0.54  
0.07  
0.13  
0.03  
-0.13 0.05  
-0.19 0.10  
-0.02 -0.06 1.00  
Total  
alkalinity  
Nitrite  
0
.81  
0.16  
0.33  
0.56  
0.05  
0.36  
0.17  
-0.12 0.39  
0.50  
0.37  
0.60  
0.14  
-0.08 1.00  
0.33 0.26  
0.18  
0.08  
0.15  
1.00  
Table 7: Correlation of Physico-chemical constituents for selected samples in Veeraghattam Mandal (June 2015)  
Total  
alkalinity  
EC  
pH  
Turbidity TDS  
TH  
Ca  
Mg  
F-  
Cl-  
DO  
Nitrite  
EC  
pH  
1.00  
0.07  
1.00  
0.22  
0.05  
-0.14 -0.02  
-0.10 0.07  
-0.14 -0.05  
0.36  
-0.07 -0.01  
0.49  
0.16  
0.31  
Turbidity 0.13  
1.00  
0.19  
TDS  
TH  
Ca  
Mg  
F-  
Cl-  
DO  
Total  
alkalinity  
Nitrite  
0.79  
0.73  
0.17  
0.70  
0.39  
0.93  
0.07  
1.00  
0.63  
0.20  
0.59  
0.13  
0.77  
0.00  
1.00  
0.30  
0.96  
0.13  
0.84  
0.25  
1.00  
0.04  
0.05  
0.24  
1.00  
0.12  
0.81  
-0.07  
1.00  
0.33  
-0.05 0.09  
1.00  
0.12  
0.14  
0.00  
-0.17 0.30  
1.00  
0
.80  
0.55  
0.02  
0.35  
0.16  
-0.12 0.39  
0.51  
0.37  
0.59  
0.15  
-0.03 1.00  
0.32 0.26  
0.16  
0.07  
0.16  
1.00  
Table 8: Correlation of Physico-chemical constituents for selected samples in Veeraghattam Mandal (December 2015)  
Total  
alkalinity  
EC  
pH  
Turbidity TDS  
TH  
Ca  
Mg  
F-  
Cl-  
DO  
Nitrite  
EC  
pH  
1.00  
0.11  
1.00  
0.28  
0.07  
-0.06 -0.01  
-0.01 0.06  
-0.15 -0.08  
Turbidity 0.12  
1.00  
0.18  
TDS  
TH  
Ca  
0.79  
0.70  
0.15  
0.69  
0.39  
0.93  
1.00  
0.58  
0.16  
0.59  
0.12  
0.77  
1.00  
0.25  
0.96  
0.14  
0.80  
1.00  
0.03  
0.06  
0.23  
Mg  
1.00  
0.09  
0.80  
-
F
0.38  
-0.04 -0.02  
-0.06  
1.00  
0.33  
Cl-  
1.00  
DO  
-0.04 0.52  
0.06  
0.12  
-0.02  
-0.13 0.08  
-0.20 0.09  
-0.03 -0.05 1.00  
Total  
alkalinity  
Nitrite  
0
.80  
0.17  
0.29  
0.56  
0.05  
0.37  
0.20  
-0.12 0.38  
0.50  
0.36  
0.59  
0.18  
-0.10 1.00  
0.31 0.28  
0.21  
0.09  
0.16  
1.00  
1
289  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1279-1291  
Table 9: Correlation of Physico-chemical constituents for selected samples in Veeraghattam Mandal (June 2016)  
Total  
alkalinity  
EC  
pH  
Turbidity TDS  
TH  
Ca  
Mg  
F-  
Cl-  
DO  
Nitrite  
EC  
pH  
1.00  
0.05  
1.00  
0.24  
0.01  
Turbidity 0.12  
1.00  
TDS  
TH  
Ca  
0.79  
0.72  
0.15  
0.69  
0.40  
0.93  
0.18  
1.00  
0.63  
0.17  
0.59  
0.13  
0.77  
-0.17 -0.03  
-0.08 0.07  
-0.17 -0.07  
1.00  
0.30  
0.96  
0.14  
0.83  
1.00  
0.03  
0.06  
0.22  
Mg  
F-  
Cl-  
1.00  
0.11  
0.80  
0.32  
-0.06  
1.00  
0.35  
-0.10 -0.02  
1.00  
DO  
Total  
alkalinity  
Nitrite  
-0.03 0.57  
0.07  
0.13  
-0.04  
-0.13 0.05  
-0.19 0.09  
-0.03 -0.05 1.00  
0
.80  
0.12  
0.27  
0.56  
0.05  
0.36  
0.18  
-0.13 0.39  
0.51  
0.35  
0.60  
0.19  
-0.08 1.00  
0.30 0.29  
0.23  
0.06  
0.17  
1.00  
7
Conclusion  
References  
The computed WQI values were placed from 34.55  
1
.
Li, P., & Wu, J. Drinking water quality and public health.  
to 46.33. It indicates that gradually the quality of water  
availability is decreasing. The obtained value of the  
Water Quality Index in this research work affected due  
to growing the amounts of parameters like Total  
Dissolved Solids, Fluoride, Total Hardness and  
Magnesium in the groundwater. The outcome of the  
correlation analysis points out a powerful positive  
2. Elayaraj, B., & Selvaraju, M. Seasonal Variations in Physico-  
Chemical Parameters of Sri Kamatchiamman Temple Pond  
Chidambaram Taluk, Tamilnadu. J. Environ. Treat. Tech, 2015,  
3
(3), 126-133.  
3
.
Garba, T., Ilelah, K. G., Kwari, M. A., Sadiq, L. S., Sani, M. J., &  
Zulkarnain, O. L. Assessment of Open Well Water Contamination  
in High Density Residential Area. J. Environ. Treat. Tech., 2016,  
-
correlation between Mg and Cl which is tremendously  
4
(2), 37-40.  
correlated and showed that the hardness is stable.  
Moreover, the amount fluoride in V2, V9, V13, V17,  
V20, and V39 samples have higher than the desirable  
limit [16, 22]. The established outcomes revealed that  
Water Quality Index concerning, water samples of the  
selected sites need specific treatment earlier than the  
utilization and it requires to safeguarding from the  
elements of infection too.  
4
5
.
.
Hossain, L., & Islam, K. Assessment of Water Quality in  
Chandpur District of Bangladesh. J Enviro. Treat. Tech, 2013,  
1(2), 91-100.  
Ghalib, H. B. Groundwater chemistry evaluation for drinking and  
irrigation utilities in east Wasit province, central Iraq. Applied  
7(7),  
3447-3467.  
6. Li, P., Tian, R., Xue, C., & Wu, J. Progress, opportunities, and key  
fields for groundwater quality research under the impacts of human  
activities in China with a special focus on western China.  
8
AAcknowledgement  
The author wishes to acknowledge the management of G  
1
7. Lefort, R. “Down to the last drop.” UNESCO Sources, Vol. 84(7),  
M R Institute of Technology, Rajam for providing all facilities  
to carry out the research work.  
2006.  
8
.
Subba Rao, N. Groundwater quality from a part of Prakasam  
Ethical issue  
9. Mogasale, V. V., Ramani, E., Mogasale, V., Park, J. Y.,  
&
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
Wierzba, T. F. Estimating typhoid fever risk associated with lack  
of access to safe water: A systematic literature review. Journal of  
Environmental and Public Health, 2018, 2018, 1-14.  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
1
1
0. Barakat, A.,  
Meddah, R.,  
Afdali, M.,  
&
Touhami, F.  
Physicochemical and microbial assessment of spring water quality  
for drinking supply in Piedmont of béni-mellal atlas (Morocco).  
4
1. Kumar N. S, Rao M. V. S, Krishna M. P. S. M. Study of Some  
Physical & Chemical Characteristic Properties of Groundwater in  
the Villages of Veeraghattam and Palakonda Mandals in  
Srikakulam District, A.P, India. Curr World Environ, 2015, Vol.10  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
(2) pp.610-618.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
12. Ofodile, M.E. Groundwater study and development in Nigeria.  
University of Ibadan Press, Nigeria, 2002.  
1
3. McCasland, M., N.M. Trautmann, R.J. Robert and K.S. Porter,  
Nitrate: Health effects in drinking water. 2007.  
1
4. Varol, S., & Davraz, A. Evaluation of the groundwater quality  
with WQI (Water quality index) and multivariate analysis: A case  
1
290  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1279-1291  
study of the Tefenni plain (Burdur/Turkey). Environmental Earth  
Pakistan. Asian Journal of Water, Environment and Pollution,  
33. Tiwari, A. K., Singh, A. K., Singh, A. K.,  
&
Singh, M. P.  
1
5. Adimalla, N., & Venkatayogi, S. Geochemical characterization  
and evaluation of groundwater suitability for domestic and  
agricultural utility in semi-arid region of Basara, Telangana state,  
Hydrogeochemical analysis and evaluation of surface water  
quality of Pratapgarh district, Uttar Pradesh, India. Applied Water  
34. Sojobi, A. O. Evaluation of groundwater quality in  
a rural  
1
1
6. WHO, Guidelines for drinking water quality. World Health  
Organization, Geneva, 2012.  
7. Nadikatla, S. K., Mushini, V. S., & Mudumba, P. S. Water quality  
index method in assessing groundwater quality of Palakonda  
mandal in Srikakulam district, Andhra Pradesh, India. Applied  
community in north central of Nigeria. Environmental Monitoring  
8. Neisi, A., Zeyduni, G.,  
Hamzezadeh, A., Jalili, D., Abbasnia, A., Yousefi, M.,  
1
Mirzabeygi  
(Radfard), M.,  
&
Khodadadi, R. Data on fluoride concentration levels in cold and  
warm season in city area of Sistan and Baluchistan province, Iran.  
18,  
713-718.  
1
9. Taiwo, A.M. “Source identification and apportionment of  
pollution sources to groundwater quality in major cities in  
Southwest, Nigeria.” Geofizika, 2012, Vol. 29, pp. 157-174.  
2
2
0. APHA (American Public Health Association), Standard method  
for examination of water and wastewater, NW, DC 20036, 2012.  
1. Singh, S., & Hussian, A. Water quality index development for  
groundwater quality assessment of greater Noida sub-basin, Uttar  
Pradesh, 3(1).  
2. BIS, drinking water specifications. Bureau of Indian Standards, IS  
0500, 2012.  
3. Harilal, C. C., Hashim, A., Arun, P. R., and Baji, S.  
Hydrogeochemistry of two rivers of Kerala with special reference  
to drinking water quality. Ecology, Environment and  
Conservation, 2004, Vol. 10, no. 2, pp. 187192.  
2016,  
2
2
1
2
2
4. Lalitha S, Kalaivani D, Selvameena R, Barani A.V. Assay on  
quality of water samples from medical college area in Thanjavur,  
India. Indian J Environ Protect, 2004, 24(12), 925930.  
5. Howladar, M. F., Al Numanbakth, M. A., & Faruque, M. O. An  
application of water quality index (WQI) and multivariate statistics  
to evaluate the water quality around Maddhapara granite mining  
2
2
6. Kumar, S. K.,  
Rammohan, V.,  
Sahayam, J. D.,  
&
Jeevanandam, M. Assessment of groundwater quality and  
hydrogeochemistry of Manimuktha river basin, Tamil Nadu, India.  
3
7. Narsimha, A., & Rajitha, S. Spatial distribution and seasonal  
variation in fluoride enrichment in groundwater and its associated  
human health risk assessment in Telangana state, South India.  
Human and Ecological Risk Assessment: An International  
2119-2132.  
2
8. Kuppuraj, R. M., Selvaraj, D., Govindaraj, S., Rangaswamy, M.,  
Narayanasamy, J. R., & Kuppanagounder, K. Assessment of  
groundwater quality in the flood plains of upper Palar river, India.  
2
3
3
3
9. Kundu, A., & Nag, S. K. (2018). Assessment of groundwater  
quality in Kashipur block, Purulia district, West Bengal. Applied  
0. Ramakrishna, Ch., Mallikarjunarao, D., Subba Rao, K., and  
Srinivas, N. “Studies on Groundwater Quality in Slums of  
Visakhapatnam, Andhra Pradesh.” Asian Journal of Chemistry.  
2
009, Vol. 21, pp. 4246-4250.  
1. Brown, R. M.,  
McClelland, N. I.,  
Deininger, R. A.,  
&
O’Connor, M. F.  
A
water quality index —  
Crashing the  
2. Khan, A., Qureshi, F. R. Groundwater quality assessment  
through water quality index (WQI) in new Karachi town, Karachi,  
1
&
1
291