Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1268-1273  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/8(4)1273  
Bacterial Strain Isolated from High-Salt  
Environments Can Produce Large Amounts of New  
Polyhydroxyalkanoate (PHA)  
1
, 2  
2
2
3
Ahmad Gholami , Younes Ghasemi , Aboozar Kazemi , Seyyedeh Narjes Abootalebi ,  
4
5
1
6*  
Cambyz Irajie , Aida Ireji , Navid Omidifar , Milad Mohkam  
1
Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran  
2
Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran  
Devision of Intensive Care Unit, Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran  
3
4
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran  
5
Medicinal and natural products chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran  
6
Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran  
Received: 28/05/2020  
Accepted: 24/08/2020  
Published: 20/12/2020  
Abstract  
Since the major problem connected to the industrial production of Polyhydroxyalkanoates (PHAs) is their high production price, this  
study was performed to inspect the new potential bacterial species for industrial PHA production. The bacterial samples were collected  
during a screening program from Pink Salt Lake as an extreme environment in the south of Iran, Fars province. The PHA-producing  
bacteria were isolated. Then further studies on different morphological, cultural, and physiological characteristics of isolates were  
performed. Among the isolated microorganisms in this study, 18 of 143 bacteria were selected as PHA-producer microorganisms to be  
studied for analysis along with a partial sequence of the 16S rRNA gene. This study introduces two bacteria; Bacillus endophyticus  
BCCS 011 and Lysobacter sp. BCCS 052 as new potential PHA producer that has not been reported previously. They could be an ideal  
option for cheaper PHAs production.  
Keywords: Polyhydroxyalkanoate (PHA), Bacillus, Lysobacter, 16S rRNA, Extreme environment  
Introduction1  
in bacteria (18). Therefore, they have a wide range of  
1
applications, such as in the packaging industry, pharmacy,  
medicine, agriculture, and food industry (19). As a result, the  
fabrication of biodegradable polymers such as PHAs from  
renewable sources is the need of the today, in the face of these  
environmental facts.  
Polyhydroxyalkanoates (PHA), a family of biopolymers  
with diverse structures, are polyoxoesters of hydroxy alkanoic  
acids which are synthesized by various bacteria to overcome  
environmental stress (1). Originally, they are accumulated as  
carbon and energy reserves by a variety of bacterial species  
under nutrient (Phosphorus, Nitrogen, or Sulfur) depleted  
circumstances with excess carbon (2). Based on the monomer  
structures, PHA are divided into short-chain-length (SCL) PHA  
commonly consisting of 3-hydroxypropionate (3HP), 3-  
Production and marketing of PHAs have been restricted in  
two ways. The first cope with the ability of bacteria in  
accumulation of the polymer, while more than 300 bacterial  
species have been found in PHA accumulation, but  
accumulation levels in many of them is very low (20). On the  
other hand, species such as Alcaligenes latus, Ralstonia  
eutropha (formerly known as Alcaligenes eutrophus),  
Pseudomonas putida, Pseudomonas oleovorans, recombinant  
Escherichia coli and Azotobacter vinelandii have been  
extensively investigated (21, 22). The second aspect, which has  
restricted PHA production and marketing, is associated with  
the high costs of the substrate (mainly carbon source) as  
compared to those of petrochemical origin (23). New strains,  
hydroxybutyrate (3HB) and  
medium-chain-length (MCL)  
3
hydroxyvalerate (3HV);  
PHA containing 3-  
hydroxyhexanoate (3HHx), 3 hydroxyheptanoate (3HHp) to 3-  
hydroxytetradecanoate (3HTD) (3, 4). Many bacteria are  
capable of producing PHAs in activated sludge, in high seas,  
and extreme environments (5). PHAs are biocompatible,  
biodegradable, and environmentally friendly thermoplastics as  
compared to petroleum-based plastics that are harmful wastes  
and take several years to degrade completely (6, 7). Because of  
increasing global environmental concerns associated with  
discarded petrochemical-based plastics (8-12), several studies  
have been conducted on the development of an appropriate eco-  
friendly material that can substitute at least some of the  
commodity plastics (13-17). PHAs properties like conventional  
plastics (especially polypropylene) have versatile plasticable  
properties and are produced as high molecular mass polymers  
using economic substrates along with having  
a high  
accumulation proportion, must thus be isolated to solve these  
problems mentioned above. Interest has been a focus on Gram-  
positive bacteria such as the genera Bacillus, where this  
bacterium has chemoorganotrophic features(24-28), secretion  
of a large number of amylases and proteases (29) and lack  
lipopolysaccharide (LPS) (30). These properties of Bacillus  
,
Corresponding author: Milad Mohkam Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.  
Tel.: +98 71 3242 6729; Fax: +98 71 3242 6729 and E-mail: miladmohkam@gmail.com  
1
268  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1268-1273  
spp. are of interest for exploring the possibility of utilizing  
different agricultural raw materials as a carbon source for the  
fabrication of various metabolites (24). Furthermore, the  
genera of Bacillus are suitable model systems for the  
heterologous expression of foreign genes related to PHA  
manufacturing and numerous fine chemicals (31). In the  
present study, PHB producing bacteria from a salty lake (Pink  
Lake, Shiraz, Iran) were isolated, identified, and characterized  
using morphological, biochemical, and molecular methods. To  
our best knowledge, this is the first report of Bacillus  
endophyticus along with Lysobacter sp., and Pantoea sp. as  
PHA producers that can be industrially exploited for bioplastics  
fabrication.  
by using the Basic Local Alignment Search Tool (BLAST).  
The nucleotide sequences of 16S rRNA genes were published  
to GenBank under the accession numbers, as shown in table1.  
Then the PHA extracted from all the PHA positive isolates  
were analyzed by an spectroscopic methods, FT-IR.  
1.4 FT-IR spectroscopy  
The infrared (IR) spectrum was recorded using Bruker,  
Vertex 70, FTIR spectrometer (34). The extracted PHA was  
dissolved in chloroform, and the unfiltered solution was cast  
onto NaCl crystal.  
2
Results and discussion  
In this study, a total of 143 bacterial isolates were examined  
1
Materials and Methods  
for isolation of PHA-producing bacteria from a salty lake (Pink  
Lake). This seasonal lake also locally known as Maharloo is  
located in the 27.0 km southeast of Shiraz, Iran, which is full  
of potassium and other salts and looks pink (Fig. 1).  
1
.1 Sample collection  
Bacterial isolates were obtained from a salty lake "Pink  
Lake" Fars province, in the south of Iran. Briefly, liquid  
samples were collected and transferred in sterile tubes at the  
ice. The samples were then serially diluted with sterile distilled  
water, and then 200 µL of the dilution was spread on a sterile  
Nutrient Agar (NA) plates. The plates were incubated at pH=7  
and 30 °C for two days. Various colonies of different  
morphology, including color, form, and edge appearance, were  
individually picked and subcultured 3-4 times on nutrient agar  
plates. Pure bacterial isolates were achieved by subculturing  
individual colonies several times on a fresh NA medium to gain  
single colonies. Agar slants of these colonies were kept at 4 °C  
for one month.  
Of these isolates, 21 of them were positive for PHA using  
Sudan Black B and then confirmed by Nile Blue A. Sudan  
Black B was used as the first-line screening for PHA-  
accumulating bacteria when they were cultured in an  
unbalanced growth medium. It was assumed that the negatively  
stained of isolates with Sudan Black B did not form lipid  
granules and thus also did not produce PHA due to the lipidic  
feature of polyester. Sudan black B stains PHA non-  
specifically as well as for other lipid bodies. In contrast, Nile  
Blue A is more specific than Sudan black B for PHA detection.  
Therefore, Nile Blue A was used for confirmation of PHA-  
accumulating bacteria. The bacterial flora is categorized into  
two groups, according to their Gram's reaction. In general, the  
Gram-positive bacteria tended to dominate the salty lake,  
nearly 66.67% of the total 21 PHA-producing isolates showed  
Gram-positive character. The result of PCR blasted with other  
sequenced bacteria in NCBI showed a similarity of more than  
95% to the 16S rRNA of other bacteria. Various  
microbiological and biochemical tests were carried out as a  
means for the identification of native strains (Table 1). Among  
21 of PHA-producing isolates, 13 isolates were belonged to  
Bacillus and one isolate to Halobacterium genera along with  
other Gram-negative bacteria (Table 2). These isolates  
(Bacillus spp. and Halobacterium) showed strong growth in  
10% (w/v) salt concentration suggesting that they could tolerate  
relatively salt concentration, which is consistent with the  
natural condition of this salty lake. These bacteria tend to  
accumulate PHA, which is commonly consumed by the  
bacterium itself when the growth circumstances are  
unfavorable. The PHA-positive isolates opted after Nile blue A  
staining and then grown in an E2 broth medium containing 2%  
(w/v) glucose in 100-ml flasks, and were employed to extract  
PHA after two days of incubation on a rotary shaker. The PHA  
from the isolates was extracted by the chloroform method,  
developed by Vizcaino-Caston et al. (35). The concentration  
of PHA in the E2 medium and PHA% of cell dry weight along  
with cell dry weight achieved for various positively stained  
isolates are depicted in Table 2. These isolates produced PHA  
from 0.031 to 0.34 g/l, amounting to about 2.1623.13% PHA  
of cell dry weight (Table 2).  
1
.2 Screening the PHA-producing bacteria  
All the bacterial isolates were qualitatively examined for  
PHA production by Sudan Black B dye to detect the existence  
of lipid granules in the bacteria (32). A positively-stained  
isolate was considered a potential PHA producer and cultured  
in the modified E2 medium, a nitrogen-limiting medium  
containing 2% (w/v) glucose (20 g/l of Glucose), 0.9 gr/l of  
NH  
KH  
4
2 4  
Cl, 0.9 gr/l of NaCl, 5.22 gr/l of K HPO , 3.7 gr/l of  
PO , 0.246 gr/l of MgSO .7H O, and 1ml of MT  
2
4
4
2
microelement (1 liter of MT stock contains 2.78 gr of  
FeSO .7H O, 1.98 gr of MnCl .4H O, 2.81 gr of CoCl .6H O,  
.47 gr of CaCl , 0.17 gr of CuSO .5H O and 0.29 gr of  
ZnSO .7H O) at 37°C for 72h. Then all the isolates were  
stained by Nile blue a dye to confirm the PHA production.  
4
2
2
2
2
2
1
2
4
2
4
2
1
.3 Identification of Bacterial isolates  
The PHA-positive bacterial isolates were identified  
according to conventional biochemical tests and by partially  
sequencing the ribosomal 16s RNA gene. Total genomic DNA  
was extracted according to Gholami et al. and was used as a  
Chromosomal DNA template for the amplification of the 16s  
RNA gene (33). The following oligonucleotide sequences 5'-  
ACGGGCGGTGTGTAC -3' were used as forward, and 5'-  
CAGCCGCGGTAATAC-3' reverse primers. The PCR  
products were purified and then sequenced by CinnaGen  
Company (Tehran, Iran). The resulting 16S rRNA gene  
sequences were aligned and compared to the nucleotide  
sequences of some known microorganisms in the GenBank  
database of the National Center for Biotechnology Information  
1
269  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1268-1273  
Figure 1: Satellite image of salty Pink Lake  
Table 1: The morphological and biochemical traits used for classification of 21 selected PHA-producer isolates  
Morphology  
Gelatinase production  
Catalase production  
Oxidase production  
Lipase production  
Hippurate hydrolysis  
Esculin hydrolysis  
Cell shape  
Cell size  
Motility  
Gram staining  
Endospore  
Spore shape  
Acid production from  
Spore position  
Cultural characteristics  
Colony shape  
Optimum pH  
Glucose  
Galactose  
Fructose  
Mannitol  
Maltose  
Sucrose  
Optimum temperature  
Growth on nutrient agar  
Growth on McConkey agar  
Growth on Eosin methylene blue agar  
Growth at 5, 20 and 50 °C  
Growth in NaCl 2.57.0%  
Utilization of  
Succinate  
Citrate  
Resistance to antibiotics  
Erythromycin  
Neomycin  
Biochemical properties  
Urease production  
Nitrate reduction  
Voges-Proskauer  
Arginine hydrolysis  
Casein hydrolysis  
Lecithinase production  
HCN production  
Novabiocin  
Tetracycline  
Kanamycin  
Chloramphenicol  
Ampicillin  
Tetracycline  
1
270  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1268-1273  
Table 2: The amount (mg/ml) and the weight yield (w %) of PHA of production, the accession numbers and the concentration of  
obtained from the screened bacteria which were isolated from Maharlu Lake.  
Bacteria  
Dry cell weight (gr/l)  
1.36  
PHA.con (gr/l)  
0.24  
% PHA (CDW)  
Bacillus endophyticus BCCS 011  
Bacillus sp. BCCS 060  
17.64  
8.39  
8.63  
3.9  
0.786  
0.926  
3.24  
0.066  
0.08  
Bacillus subtilis BCCS 028  
Bacillus subtilis BCCS 033  
Bacillus sp. BCCS 036  
0.126  
0.128  
0.09  
0.926  
0.973  
1.4  
13.82  
9.4  
Halobacterium sp. BCCS 030  
Bacillus subtilis BCCS 031  
Bacillus endophyticus BCCS 024  
Bacillus pumilus BCCS 002  
Bacillus subtilis BCCS 005  
Bacillus subtilis BCCS 012  
Pantoea sp. BCCS 053  
0.033  
0.034  
0.10  
2.3  
1.36  
2.5  
0.686  
1.03  
15.4  
4
0.04  
0.66  
0.085  
0.05  
13  
0.613  
1.14  
8.4  
Escherichia coli BCCS 054  
Escherichia coli BCCS 055  
Aeromonas sp. BCCS 056  
Bacillus sp. BCCS 057  
0.045  
0.106  
0.038  
0.05  
3.93  
11.4  
1.8  
0.933  
2.166  
0.793  
1.866  
1.286  
1.46  
6.4  
Aeromonas sp. BCCS 058  
Bacillus sp. BCCS 059  
0.07  
4
0.113  
0.026  
0.046  
8.8  
Bacillus sp. BCCS 061  
1.8  
Lysobacter sp. BCCS 052  
1.466  
3.2  
FTIR spectroscopy of the polymer producing bacteria was  
investigated along with Poly(R)-3-hydroxybutyric acid (PHB)  
prepared from Sigma-Aldrich (cat no: 363502). The polymer  
extracted illustrated the intense absorption characteristic for  
ester carbonyl (C=O) stretching groups at 1720, 2325 and 2985  
-
1
cm corresponding to the CH group in comparison with the  
PHB (Fig. 2).  
An important finding was that all Bacillus spp could able  
to produce a high amount of PHA in comparison to other  
bacterial species. To our knowledge, this study introduces a  
new species of Bacillus named Bacillus endophyticus that has  
a high ability to produce PHA (23.13% of CDW) as compared  
to other isolates. The Bacillus spp. are critical industrial  
bacteria for the production of such enzymes and also for PHAs  
production.  
The  
properties,  
including  
lack  
of  
lipopolysaccharides (LPS) and the ability to consume a wide  
range of cheap carbon sources, made this bacterium a suitable  
candidate for the production of PHAs, especially for medical  
implant purposes (33). Moreover, recovery of approximately  
Figure 2: FT-IR spectra of standard PHB and PHA produced by  
isolated bacterial strain  
3 Conclusion  
7
0 to 90% of bacterial dry biomass as PHA production is  
In conclusion, different bacterial strains were isolated from  
an extremely salty lake and screened for polyhydroxyalkanoate  
production, and bacterial isolates were identified and  
characterized using morphological, biochemical, and  
molecular methods in this study. Within this extremely  
halophilic environment, most PHA-producing strains were  
from genus bacillus. Besides, other strains such as Pantoea sp.,  
Halobacterium sp., and Lysobacter sp. have a high potential for  
the conversion of carbohydrates into PHB. Among the isolated  
strains, Bacillus endophyticus was able to produce the highest  
amount of polyhydroxy butyrate (23.13% of the cell dry mass,  
which is very important from an industrial point of view.  
Presently, the selected microorganisms are further considered  
to enhance the production of polyhydroxyalkanoates by the  
optimization of the process factors. In order for the industrial  
potentially enough for determining an economically feasible  
process (2).Most interestingly, this research also identifies a  
novel bacterium Lysobacter, which has not been reported as a  
PHA producer so far. This bacterium is considered a rich source  
for the fabrication of novel antibiotics, such as macrocyclic  
lactams, β-lactams containing substituted side chains and  
macrocyclic peptides (36). The ease of genetic manipulation  
and able to occupy a wide range of ecological niches, including  
a broad range of extreme environments, provides this  
bacterium an ideal candidate for PHA production (37).  
Therefore, such studies are needed for the development of these  
new potential strains for commercial PHA production.  
1
271  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1268-1273  
production of this environmentally valuable product, it is  
critical to produce more cost-effectively and to achieve greater  
competitiveness with similar petroleum products that severely  
pollute the environment.  
bacteria growth, physical and mechanical properties. Polymers  
from Renewable Resources. 2017;8(4):177-96.  
1. Mousavi SM, Hashemi SA, Jahandideh S, Baseri S, Zarei M,  
Azadi S. Modification of phenol novolac epoxy resin and  
unsaturated polyester using sasobit and silica nanoparticles.  
Polymers from Renewable Resources. 2017;8(3):117-32.  
1
Acknowledgment  
12. Mousavi SM, Zarei M, Hashemi SA, Lai CW, Bahrani S. K-Ion  
Battery Practical Application Toward Grid-Energy Storage.  
Potassium-ion Batteries: Materials and Applications. 2020:43.  
This work was supported by the Research Council of Shiraz  
University of Medical Sciences, Shiraz, Iran.  
1
1
1
3. Bahrani S, Hashemi SA, Mousavi SM, Azhdari R. Zinc-based  
metalorganic frameworks as nontoxic and biodegradable  
platforms for biomedical applications: review study. Drug  
metabolism reviews. 2019;51(3):356-77.  
4. Goudarzian N, Hashemi S, Mirjalili M. Unsaturated polyester  
resins modified with cresol novolac epoxy and silica nanoparticles:  
processing and mechanical properties. Int J Chem Pet Sci.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
2
016;5(1):13-26.  
5. Hashemi SA, Mousavi SM, Ramakrishna S. Effective removal of  
mercury, arsenic and lead from aqueous media using Polyaniline-  
Fe3O4-silver diethyldithiocarbamate nanostructures. Journal of  
Cleaner Production. 2019;239:118023.  
1
1
6. Mousavi S, Zarei M, Hashemi S. Polydopamine for biomedical  
application and drug delivery system. Med Chem (Los Angeles).  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
2
018;8:218-29.  
7. Mousavi SM, Hashemi SA, Salahi S, Hosseini M, Amani AM,  
Babapoor A. Development of clay nanoparticles toward bio and  
medical applications. Current Topics in the Utilization of Clay in  
Industrial and Medical Applications. 2018;9:167.  
8. Sharma L, Srivastava JK, Singh AK. Biodegradable  
polyhydroxyalkanoate thermoplastics substituting xenobiotic  
plastics: a way forward for sustainable environment. Plant  
Responses to Xenobiotics: Springer; 2016. p. 317-46.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
1
References  
1
.
Gholami A, Mohkam M, Rasoul-Amini S, Ghasemi Y. Industrial  
production of polyhydroxyalkanoates by bacteria: opportunities  
and challenges. Minerva Biotecnologica. 2016;28(1):59-74.  
Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A,  
Varrone C, Gavala HN, et al. Recent Advances and Challenges  
towards Sustainable Polyhydroxyalkanoate (PHA) Production.  
Bioengineering (Basel). 2017;4(2):55.  
19. Battista F, Frison N, Pavan P, Cavinato C, Gottardo M, Fatone F,  
et al. Food wastes and sewage sludge as feedstock for an urban  
biorefinery producing biofuels and added‐value bioproducts.  
2
.
Journal of Chemical Technology  
2020;95(2):328-38.  
&
Biotechnology.  
20. Możejko-Ciesielska  
J,  
Kiewisz  
R. Bacterial  
polyhydroxyalkanoates: still fabulous? Microbiological Research.  
2016;192:271-82.  
3
.
Cha D, Ha HS, Lee SK. Metabolic engineering of Pseudomonas  
putida for the production of various types of short-chain-length  
polyhydroxyalkanoates from levulinic acid. Bioresource  
Technology. 2020;309:123332.  
21. Mohapatra S, Mohanta P, Sarkar B, Daware A, Kumar C,  
Samantaray D. Production of polyhydroxyalkanoates (PHAs) by  
Bacillus strain isolated from waste water and its biochemical  
characterization. Proceedings of the National Academy of  
Sciences, India Section B: Biological Sciences. 2017;87(2):459-  
66.  
22. Gholami A, Shahin S, Mohkam M, Nezafat N, Ghasemi Y.  
Cloning, Characterization and Bioinformatics Analysis of Novel  
Cytosine Deaminase from Escherichia coli AGH09. International  
Journal of Peptide Research and Therapeutics. 2015;21(3):365-74.  
23. Arumugam A, Anudakshaini T, Shruthi R, Jeyavishnu K, Harini  
SS, Sharad J. Low-cost production of PHA using cashew apple  
(Anacardium occidentale L.) juice as potential substrate:  
optimization and characterization. Biomass Conversion and  
Biorefinery. 2019:1-12.  
24. Mohkam M, Rasoul-Amini S, Shokri D, Berenjian A, Rahimi F,  
Sadraeian M, et al. Characterization and in vitro probiotic  
assessment of potential indigenous Bacillus strains isolated from  
soil rhizosphere. Minerva Biotecnologica. 2016;28(1):19-28.  
25. Mousavi SM, Hashemi SA, Zarei M, Bahrani S, Savardashtaki A,  
Esmaeili H, et al. Data on cytotoxic and antibacterial activity of  
synthesized Fe3O4 nanoparticles using Malva sylvestris. Data in  
brief. 2020;28:104929.  
26. Mousavi SM, Zarei M, Hashemi SA, Babapoor A, Amani AM. A  
conceptual review of rhodanine: current applications of antiviral  
drugs, anticancer and antimicrobial activities. Artificial cells,  
nanomedicine, and biotechnology. 2019;47(1):1132-48.  
27. Mousavi SM, Zarei M, Hashemi SA, Ramakrishna S, Chiang W-  
H, Lai CW, et al. Gold nanostars-diagnosis, bioimaging and  
4
5
.
.
Zheng Y, Chen J-C, Ma Y-M, Chen G-Q. Engineering  
biosynthesis of polyhydroxyalkanoates (PHA) for diversity and  
cost reduction. Metabolic engineering. 2020;58:82-93.  
Pang H, Ma W, He J, Pan X, Ma Y, Guo D, et al. Hydrolase activity  
and microbial community dynamic shift related to the lack in  
multivalent cations during cation exchange resin-enhanced  
anaerobic fermentation of waste activated sludge. Journal of  
Hazardous Materials. 2020:122930.  
6
7
.
.
Zhong Y, Godwin P, Jin Y, Xiao H. Biodegradable polymers and  
green-based antimicrobial packaging materials: A mini-review.  
Advanced Industrial and Engineering Polymer Research.  
2
020;3(1):27-35.  
Shrivastav A, Mishra SK, Shethia B, Pancha I, Jain D, Mishra S.  
Isolation of promising bacterial strains from soil and marine  
environment for polyhydroxyalkanoates (PHAs) production  
utilizing Jatropha biodiesel byproduct. International Journal of  
Biological Macromolecules. 2010;47(2):283-7.  
8
9
1
.
.
Mousavi S, Aghili A, Hashemi S, Goudarzian N, Bakhoda Z,  
Baseri S. Improved morphology and properties of nanocomposites,  
linear low density polyethylene, ethylene-co-vinyl acetate and  
nano clay particles by electron beam. Polymers from Renewable  
Resources. 2016;7(4):135-53.  
Mousavi S, Hashemi S, Amani A, Moujodi F, Hamedfateh A,  
Zarei M. Modification of polypropylene-starch blend by eggshell  
nano-particle, EVA and maleic anhydride to improve  
biodegradability and thermal properties. Int  
018;15:225.  
J Chem Sci.  
2
biomedical  
applications.  
Drug  
Metabolism  
Reviews.  
0. Mousavi SM, Hashemi SA, Amani AM, Saed H, Jahandideh S,  
Mojoudi F. Polyethylene terephthalate/acryl butadiene styrene  
copolymer incorporated with oak shell, potassium sorbate and egg  
shell nanoparticles for food packaging applications: control of  
2020;52(2):299-318.  
28. Tech JET. Investigating the Activity of Antioxidants Activities  
Content in Apiaceae and to Study Antimicrobial and Insecticidal  
Activity of Antioxidant by using SPME Fiber Assembly  
1
272  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1268-1273  
Carboxen/Polydimethylsiloxane (CAR/PDMS). Journal of  
Environmental Treatment Techniques. 2020;8(1):214-24.  
9. Lorpour M, Kazemi A, Gholami A, Safari A, Ghasemi Y. Isolation  
and phylogenetic analysis of some lipase producing bacteria from  
Thermostable Alpha-Amylase Produced by a Novel Thermophilic  
Bacillus megaterium Isolated from Pediatric Intensive Care Unit.  
Journal of Environmental Treatment Techniques. 2020;8(3):952-  
60.  
2
3
a
2
saline lake. Journal of Pure and Applied Microbiology.  
015;9(1):497-502.  
34. Gholami A, Rasoul-Amini S, Ebrahiminezhad A, Abootalebi N,  
Niroumand U, Ebrahimi N, et al. Magnetic properties and  
antimicrobial effect of amino and lipoamino acid coated iron oxide  
nanoparticles. Minerva Biotecnologica. 2016;28(4):177-86.  
35. Vizcaino-Caston I, Kelly CA, Fitzgerald AV, Leeke GA, Jenkins  
M, Overton TW. Development of a rapid method to isolate  
polyhydroxyalkanoates from bacteria for screening studies.  
Journal of bioscience and bioengineering. 2016;121(1):101-4.  
36. Boto A, Pérez de la Lastra JM, González CC. The road from host-  
defense peptides to a new generation of antimicrobial drugs.  
Molecules. 2018;23(2):311.  
0. Kazemi A, Lorpour M, Gholami A, Solhjoo K, Ghasemi Y. High  
level amylase production by Pseudomonas stutzeri ML-18;  
isolation, identification and media optimization in a fermentation  
system using Response Surface Methodology (RSM). Journal of  
Pure and Applied Microbiology. 2015; 9(Special Edition 2):127-  
3
3.  
3
3
1. Mohapatra S, Maity S, Dash HR, Das S, Pattnaik S, Rath CC, et  
al. Bacillus and biopolymer: Prospects and challenges.  
Biochemistry and biophysics reports. 2017;12:206-13.  
2. Ebrahimi N, Gharibi S, Ghoshoon MB, Karimi Z, Gholami A,  
Nezafat N, et al. Selective Isolation and Identification of Arginine  
Degrading Bacteria; the Optimized Arginine Deaminase  
Production by Enterobacter sp. sgn1 as a New Source of This  
Potentially Anti-Tumor Enzyme. Journal of Applied  
Pharmaceutical Science. 2016;6(09):093-101.  
37. Wang C, Xu H, Zhang Y, Wu S, Chen D, Qian G, et al.  
Optimization of culture conditions for promoting heat-stable  
antifungal factor production level in Lysobacter enzymogenes.  
FEMS Microbiology Letters. 2019;366(17):fnz007.  
3
3. Abootalebi SN, Saeed A, Gholami A, Mohkam M, Kazemi A,  
Nezafat N, et al. Screening, Characterization and Production of  
1
273