Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1625-1629  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/8(4)1629  
Biosynthesis, Characterization, Antibacterial  
Activity and Anticancer Effect of Silver  
Nanoparticles Using Anethum Graveolens Leaf  
Extract  
1
2
3
1
Vahab Alamdari-Palangi , Alireza Shojazadeh , Farnaz Hosseini , Nesa Khalaf , Aria  
4
5
Dianatinasab *, Mehrdad Ameri *  
1
Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran  
2
Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran  
Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz,  
Iran  
3
4
Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.  
5
Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz,  
Iran  
Received: 15/07/2020  
Accepted: 27/09/2020  
Published: 20/12/2020  
Abstract  
Nanoparticles are used in various fields of science, especially medicine. Advent of nanotechnology has led to significant  
development in disease diagnosis, treatment and drug delivery. Silver nanoparticles (Ag-NPs) play an important role in medical  
application, which makes them a viable alternative to common antibiotics. Amongst various methods, synthesis of Ag-NPs via green  
method has the advantage of being cost effective with no toxic agent. In this study, Spherical shape Ag-NPs with average size of 30 nm  
were synthetized using Anethum graveolens leaf extract as a green, cost-effective, non-toxic and environment-friendly source.  
Transmission electron microscopy (TEM), particle size analysis (PSA) and Fourier transform infrared (FT-IR) were performed to  
characterize synthesized Ag-NPs. The antibacterial activity of the synthetized Ag-NPs was evaluated against gram positive and negative  
bacterial pathogens. The minimum inhibitory concentration (MIC) at different concentrations of Ag-NPs were used to evaluate their  
antibacterial properties against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa  
pathogens. The results exhibited a desirable antibacterial property of Ag-NPs, suggested its usage as putative antibacterial agents.  
Moreover, the anticancer effect of green synthesized Ag-NPs was evaluated against MCF-7 lines and results showed that the cell viability  
is depended on the concentration of Ag-NPs. In short, this method provides a simple, cost effective and eco-friendly way to synthesis  
Ag-NPs which can be used as a suitable alternative to common antibiotics that use hazardous chemical agents, additionally, with  
anticancer effects against MCF-7 cells.  
Keywords: Silver nanoparticles, Nanotechnology, Antibacterial agents, Anticancer effect  
1
Nowadays, a great deal of efforts has been put into  
1
Introduction  
synthesis of Ag-NPs (8, 9). The Ag-NPs are being applied in  
cosmetic and hygiene products such as shampoos, soaps,  
toothpastes, anti-septic gels and pomades. Ag-NPs are  
generally synthesized using physical and chemical methods,  
but these approaches use toxic chemicals, organic solvents and  
non-biodegradable materials that are dangerous to human  
health and environment. Therefore, non-toxic, biocompatible,  
and eco-friendly methods to synthesize Ag-NPs are warranted  
Emergence of nanotechnology has attracted researchers in  
various fields of science and industries (1). Nanoparticles  
bridge the gap between bulk material, atomic and molecular  
structures. They have the potential to be used in medicine,  
hygiene, pharmacy, dentistry and etc., which is due to their  
interesting and unique physical and chemical properties such as  
optical, magnetic, mechanical and conductivity properties (2).  
Excessive use of antibiotics has led to microbial resistance;  
thus, many researchers have focused on development of novel  
and effective antimicrobial agents (3, 4). Several studies  
showed the antibacterial activity of Ag-NPs against a wide  
range of microorganisms (5, 6). Hence, they can be a promising  
compound in development of novel antimicrobial agents (7).  
(
10, 11). Recent developments showed the critical role of plant  
extracts in production of Ag-NPs (12). Plants extracts contain  
several phenolic and antioxidant compounds that reduces Ag to  
Ag-NPs (13). There are several studies on the synthesis of Ag-  
NPs using various plants, such as Cupressus sempervirens Leaf  
*
Corresponding author: (a) Mehrdad Ameri, Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical  
Sciences, Shiraz University of Medical Sciences, Shiraz, Iran. Tel: +989386360918, Email address: mehrddameri@gmail.com and (b)  
Aria Dianatinasab, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. Email address:  
dianatinasab.aria@gmail.com  
1625  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1625-1629  
(
10) Givotia moluccana leaf (4), Syzygiumcumini fruit (14),  
Azadirachta indica aqueous leaf (15), Eriobotrya japonica leaf  
16), aloe vera (17), Nigella sativa (18), Pistacia atlantica (13),  
Hinton Broth medium. One Ag-NPs sample was used as the  
positive control and another with no bacteria as negative  
control.  
(
Nyctanthes arbortristis (19), Orange and pineapple (20), and  
Pinus densiflor (21). Anethum graveolens (dill) is an annual  
herb and since antient time it has been exploited in ayurvedic  
medicines. Anethum graveolens is a member of Apiaceae  
family and rich in polyphenols, anti-oxidants and minerals (22).  
It is helpful in patients with hyperlipidemia (23) and as a  
component in gripe water, it can alleviate colic pain in babies  
and flatulence in young children (24). We used Anethum  
graveolens aqueous leaf extract to synthesize and evaluate  
antibacterial activity of Ag-NPs.  
2.5 Anticancer effect  
To evaluate the anticancer effect of synthesized synthetized  
nanoparticles, five different concentration of Ag-NPs (6.25,  
12.5, 25, 50, 100 µgr/ml) were exposed to MCF-7 cells for 24  
hours. MCF-7 cell line which is a breast cancer cell line was  
purchased from Pasteur institute of Iran. At first, cancerous  
cells were cultured in RPMI1640 medium containing 10% fetal  
bovine serum (FBS), 1% penicillin/streptomycin. Optimum  
2
condition for cell growth were considered as 5% CO , 95%  
°
The main purpose of this study was to green synthesis of  
Ag-NPs, using Anethum graveolens leaf extract as an  
inexpensive, simple and non-hazardous BioSource. The  
antibacterial properties of resultant Ag-NPs were investigated  
against Staphylococcus aureus, Enterococcus faecalis,  
Escherichia coli, and Pseudomonas aeruginosa pathogens.  
Moreover, the anticancer effect of green synthesized Ag-NPs  
were evaluated against MCF-7 cells.  
humidified atmosphere air and 37 C temperature. After  
subculture and cell count, we added 10000 cells to each well of  
a 48-well plate, additionally, cells were treated with different  
concentration of Ag-NPs. In addition to samples treated with  
silver nanoparticles, an untreated cell sample was considered as  
a control. After 24 hours of incubation (MTT) assay was  
performed to evaluate the effect of Ag-NPs on MCF-7 cells.  
Therefore, supernatant of each wells was extracted and while  
cells are attached at the bottom of wells, MTT was added to  
°
each well. After 4 hours of incubation in 37 C and 5% CO  
2
2
Materials and methods  
contents of each wells were removed and 50 µl of DMSO was  
added to the wells. Consequently, after 30 min of incubation,  
the plate was read at 570nm with an ELISA reader and the  
percentage of cell cytotoxicity was calculated using the optical  
density and the below formula:  
2
.1 Chemicals  
Silver nitrate (AgNO3, 99%) was purchased from Sharlo  
(
Spain). Before usage, the glassware was washed with HCl and  
deionized water. Ultrapure deionized water was used for  
synthesis reactions and leaves extraction.  
%
Cell viability = (OD value for test/OD value for  
2
.2 Leaf extract preparation  
A. graveolens leaves were collected from the countryside  
control)ꢀ×ꢀ100  
of Shiraz, Fars, Iran and an herbalist confirmed the species. The  
fresh plant leaves were washed with distilled water for several  
times (diH2O) to remove any dusts and mods. The leaves were  
shade dried at room temperature. To prepare leaf extract, 5 g  
dried leaf powder was boiled in 100 ml deionized water for 15  
min. Then mixture was filtered through a Whatman filter paper  
No.1. The filtered extract was stored at 4oC, which was used  
for synthesis reaction.  
3 Results  
3.1 synthesis of Ag-NPs  
After adding AgNO3 solution to the A. graveolens leaf  
extract, the color of mixture changed to dark brown. This  
alteration indicates the silver ions reduction to Ag-NPs.  
3.2 Characterization of synthetized Ag-NPs  
The TEM micrograph and PSA data of the synthesized Ag-  
NPs by A. graveolens extract are depicted in figure 1. TEM  
micrograph showed spherical Ag-NPs was surrounded by a thin  
layer of biological matrix from A. graveolens leaf extract. The  
particle size distribution of the biosynthesized Ag-NPs was in  
the range about 30 nm. The PSA analysis showed that most Ag-  
NPs had a size less than 100 nm. It is worth noticing that PSA  
measures hydrodynamic diameter of nanoparticles, always  
reported larger size than TEM image. The FTIR analysis are  
2
.3 Ag-NPs synthesis  
For green synthesis, 1 ml silver nitrate (AgNO3·6H2O, 0.1  
M) was added to 9 ml leaves extract under vigorous stirring at  
room temperature. After 24 h, the final mixture was centrifuged  
at 12000 rpm for 5 min. The obtained Ag-NPs was washed with  
deionized water and dried in an oven at 50°C.  
2
.4 Ag-NPs characterization  
Ag-NPs size and morphology were evaluated by TEM  
1  
exhibited in figure 2. The band at 3417 cm indicates the  
combined peaks of the amine or amide and OH group  
stretching vibration in the plant extract. The methyl group gives  
(
Philips, CM 10; HT 100 Kv) and PSA. Functional groups of  
the phytochemicals, involved in the formation of Ag-NPs were  
analyzed using FTIR (Perkin- Elmer, Two).  
-1  
its symmetric tensile vibrations of about 2863 cm and  
-
1
1  
asymmetric traction in 2922 cm . The peak at 1100 cm was  
1
related to C-O stretching. The peak at 1628 cm (sp 2 -  
hybridized C = C) can be assigned to the skeletal vibrations of  
the plant extract. Likely, the peak intensities in 1383 cm is  
2
.5 Antibacterial activity  
The synthesized Ag-NPs were tested for antimicrobial  
1  
activity by evaluating MIC minimum inhibitory concentration  
MIC) against gram-positive (Staphylococcus aureus ATCC  
5923 and Enterococcus faecalis ATCC 29212) and gram  
due to CN stretching in the extract of the plant capped silver  
(
2
1  
nanoparticles. The peaks at 2322 and 2355 cm are related to  
N-H amine and amide group. This indicates the binding of Ag  
with O and N of OH and NH2 groups in the extract of the  
plant.  
negative (Escherichia coli ATCC 25922 and Pseudomonas  
aeruginosa ATCC 27853) pathogens. The bacteria were  
cultured in Muller-Hinton agar and fresh colonies were  
suspended in sterile water to reach their tarnish equivalent to  
0
(
×
.5 McFarland. MIC with different concentration of Ag-NPs  
4, 8, 16, …, 2048 µgr/ml) was evaluated against 50 µl of 1.5  
106 CFU/ml bacterial suspension and cultured in Muller-  
1626  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1625-1629  
a)  
size of 10-30 nm. Raj et al. (26) synthesized Ag-NPs in a  
diameter ranging 2-20 nm, and Arunachalam et al. (27)  
reported the biosynthesis of spherical Ag-NPs with a size range  
of 9-12 nm.  
b)  
Figure 2: The FTIR spectra of synthesized Ag-NPs is illustrated. The  
standard peaks related to amine, amide and OH groups appear at 3417  
-
1
-1  
-1  
-1  
cm . The peaks at 2863 cm (methyl), 2922 cm (methyl), 1100 cm  
C-O), and 1628 cm-1 (C = C) can be observed. The C-N stretching  
(
-
1
caused an intensive peak at 1383 cm . The N-H amine and amide group  
give the peaks at 2322 and 2355 cm-1  
Table 1: Minimum inhibitory concentrations of Ag-NPs (µgr  
-1)  
ml are evaluated against candidate bacteria  
Strains  
MIC  
E. coli  
64  
E. faecalis  
P. aeruginosa  
S. aureus  
512  
512  
512  
Figure 1: a) The approximate size and shape of synthetized Ag-NPs are  
shown in TEM micrograph. b) The PSA analysis of the Ag-NPs showed  
that the most of Ag-NPs have size less than 100 nm  
3
.3 The antibacterial activity of obtained Ag-NPs  
The antibacterial activity of the synthesized Ag-NPs against  
Staphylococcus aureus, Enterococcus faecalis, Escherichia  
coli, and Pseudomonas aeruginosa photogenes were evaluated.  
This study is a report about the synthesis of Ag-NPs by A.  
graveolens extract, their antibacterial activity and anticancer  
effect against some pathogenic bacteria and MCF-7 cell line  
respectively. In our study, TEM micrograph and PSA data were  
used to investigate the morphology, size and shape of Ag-NPs.  
-1  
The lowest concentration of Ag-NPs (µgr ml ) which  
prevented the visible growth of bacteria are reported as MIC in  
table 1. The results showed noticeable effect of synthesized Ag-  
NPs on the growth of these pathogens. The MIC of Ag-NPs  
against Escherichia coli and three other organisms were  
evaluated 64 µgr ml-1 and 512 µgr ml , respectively.  
Consequently, it can be concluded that Escherichia coli was  
more sensitive than the other tested pathogens against  
synthetized Ag-NPs.  
-1  
3
.4 The anticancer effect Ag-NPs on MCF-7 cell line  
The anticancer effect of five concentration (6.25, 12.5, 25,  
0, 100 µgr/ml) of the synthesized Ag-NPs were evaluated  
5
against MCF-7 cell line using cell culture and MTT assay. After  
exposing each concentration of Ag-NPs with MCF-7 cells for  
2
4 h, cell viability was calculated using the optical density.  
MCF-7 cell treatment with Ag-NPs at 6.25, 12.5, 25, 50, 100  
µgr/ml concentration in 24 h reduced cell viability 60.40 ± 0.83  
Figure 3: Cell viability of MCF-7 cells against different concentration  
of Ag-NPs after 24 h. results are reported as % cell viability compared  
with control sample  
%
0
, 48.70 ± 0.49 %, 35.54 ± 0.78 %, 21.78 ± 0.39 %, 11.14 ±  
.13 % respectively and cell viability for control sample  
calculated 100 % after 24 hours. (Figure 3).  
According to PSA analysis, the spherical nanoparticles  
with average size of 30 nm have desirable size distribution. The  
FTIR analysis was performed to identify the functional groups  
of biological compounds in the A. graveolens leaf extract that  
was involved in the reduction of Ag ions to Ag-NPs. FTIR  
analysis indicates the binding of Ag with O and N of OH and  
4
Discussion  
The study results indicated that A. graveolens leaf extract  
can efficiently reduce the silver ions to Ag-NPs in a diameter  
range of 30 nm, and prevented the aggregation of nanoparticles.  
Srinithya et al. (25) biosynthesized spherical Ag-NPs with a  
NH2 groups in the plant extract.  
1627  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1625-1629  
Various studies showed antimicrobial activities of Ag-NPs  
against both Gram-negative and Gram-positive bacteria (7). In  
the present study, the antibacterial effect of Ag-NPs was  
evaluated against pathogenic strains such as E. coli, E. faecalis,  
P. aeruginosa and S. aureus. According to the results,  
synthesized Ag-NPs exhibited excellent antibacterial effect  
against these pathogenic bacteria. Based on MIC value reported  
researches, it is suggested to evaluate anticancer effects of  
green synthesized Ag-NPs against different cell lines, and anti-  
inflammation studies can be implemented. Moreover, the  
antibacterial activity of the synthetized Ag-NPs should be  
investigated against other pathogenic bacterial strains.  
Aknowledgment  
-
in table 1, it can be concluded that Escherichia coli (64 µgr ml  
The authors wish to thank Mr. H. Argasi at Research  
Consultation Center (RCC) of Shiraz University of Medical  
Sciences for his invaluable assistance in editing this  
manuscript. This study was supported by a grant from the  
Research Council of Shiraz University of Medical Sciences.  
1
)
was more sensitive than the other tested pathogens (512 µgr  
-1  
ml ) against synthetized Ag-NPs. These results are in line with  
previous studies. For example, Singhal et al. investigated  
antimicrobial properties of synthesized silver nanoparticles by  
Ocimum sanctum leaf extract. The MIC of biosynthesized  
silver nanoparticles was also measured using pathogenic  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
-1  
bacteria such as E. coli (0.314 µgr ml ) and S. aureus (1.25 µgr  
-1  
ml ). Hence, results showed that Escherichia coli was more  
sensitive than S. aureus (28). Martınez-Castanon et al. (29)  
Synthetized 29 nm silver nanoparticles and reported MIC 13.02  
and 16.67 µgr ml for E. coli and S. aureus, respectively. It  
seems these differences might be due to particle size and  
bacterial strains (29, 30).  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
-1  
This inhibitory effect was due to different mechanisms. For  
example, Ag-NPs can be attached to the bacterial cell wall and  
infiltrate it. Therefore, these nanoparticles can produce reactive  
oxygen species (ROS) and free radicals in the bacterial cell,  
causing apoptosis and cell death (28). Anticancer effect of  
green synthesized silver nanoparticles with different leaf  
extracts have been reported recently (31, 32). Thus, we  
prepared five different concentration of synthesized Ag-NPs  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
(
6.25, 12.5, 25, 50, 100 µgr/ml) to evaluate their anticancer  
effect against MCF-7 cell line. Cell culture and MTT assay  
were used for this purpose. MTT assay is a colorimetric assay  
and reduction of MTT (yellow) to formazan (purple blue) is the  
basis of test. This reaction is mediated by a mitochondrial  
enzyme termed succinate dehydrogenates. The results of cell  
exposure to various concentration of Ag-NPs after 24 h  
indicated that the cell viability is depended on the concentration  
of silver nanoparticles. Highest concentration of Ag-NPs (100  
µgr/ml) caused lower cell viability (11.14 ± 0.13 %). A key  
strength of the present study was synthetizing Ag-NPs, using  
green synthesis, which is eco-friendlier and more cost effective  
in comparison to commonly used methods. However, there are  
some drawbacks and limitation when using this method to  
produce metal nanoparticles. Due to plant impurities, the size  
and size distribution was not controllable. The nanoparticles  
produced using green synthesis are sometimes less stable than  
the ones synthetized using chemical methods (33).  
References  
1. Sattarahmady N, Movahedpour A, Heli H, Hatam G. Gold  
nanoparticles-based biosensing of Leishmania major kDNA  
genome: visual and spectrophotometric detections. Sensors and  
Actuators B: Chemical. 2016;235:723-31.  
2
.
Shabaninejad Z, Yousefi F, Movahedpour A, Ghasemi Y,  
Dokanehiifard S, Rezaei S, et al. Electrochemical-based biosensors  
for microRNA detection: Nanotechnology comes into view.  
Analytical biochemistry. 2019;581:113349.  
3. Thombre RS, Shinde V, Thaiparambil E, Zende S, Mehta S.  
Antimicrobial activity and mechanism of inhibition of silver  
nanoparticles against extreme halophilic archaea. Frontiers in  
microbiology. 2016;7:1424.  
4
.
Sana SS, Dogiparthi LK. Green synthesis of silver nanoparticles  
using Givotia moluccana leaf extract and evaluation of their  
antimicrobial activity. Materials Letters. 2018;226:47-51.  
5
.
Kim S-H, Lee H-S, Ryu D-S, Choi S-J, Lee D-S. Antibacterial  
activity of silver-nanoparticles against Staphylococcus aureus and  
Escherichia coli. Korean J Microbiol Biotechnol. 2011;39(1):77-  
8
5.  
5
Conclusions  
6
7
.
.
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial  
agent: a case study on E. coli as a model for Gram-negative  
bacteria. Journal of colloid and interface science. 2004;275(1):177-  
In this study, A. graveolens leaves extract is presented as a  
beneficial capping and reducing agent to synthesize Ag-NPs.  
The synthetized nanoparticles were stable even after several  
months and no change was observed visually. The obtained Ag-  
NPs were characterized using TEM, PSA, and FT-IR  
spectroscopy. The results showed spherical nanoparticles with  
approximately 30 nm in size and also desirable size  
distribution. The FT-IR analysis showed adding functional  
group to Ag-NPs. The analyses confirmed that the proposed  
green synthesis could be effective in synthetizing Ag-NPs.  
Also, the antibacterial activity of the Ag-NPs was analyzed  
against gram positive and negative pathogens. The results  
showed an intensive antibacterial property and bio-synthetized  
Ag-NPs can be used as a putative antibacterial agent.  
Moreover, we showed the anticancer effect of Ag-NPs is  
depended on the concentration of nanoparticles. For further  
8
2.  
Siddiqi KS, Husen A, Rao RA. A review on biosynthesis of silver  
nanoparticles and their biocidal properties. Journal of  
nanobiotechnology. 2018;16(1):14.  
8. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, et  
al. Silver nanoparticles as potential antibacterial agents.  
Molecules. 2015;20(5):8856-74.  
9
.
Yan J, Abdelgawad AM, El-Naggar ME, Rojas OJ. Antibacterial  
activity of silver nanoparticles synthesized In-situ by solution  
spraying onto cellulose. Carbohydrate polymers. 2016;147:500-8.  
1
0. Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM,  
Savar Dashtaki A, et al. Green synthesis of silver nanoparticles  
toward bio and medical applications: review study. Artificial cells,  
nanomedicine, and biotechnology. 2018;46(sup3):S855-S72.  
1628  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1625-1629  
1
1
1
1. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B.  
Synthesis of silver nanoparticles: chemical, physical and biological  
methods. Research in pharmaceutical sciences. 2014;9(6):385.  
2. Singh P, Kim Y-J, Zhang D, Yang D-C. Biological synthesis of  
nanoparticles from plants and microorganisms. Trends in  
biotechnology. 2016;34(7):588-99.  
3. Sadeghi B, Rostami A, Momeni S. Facile green synthesis of silver  
nanoparticles using seed aqueous extract of Pistacia atlantica and  
its antibacterial activity. Spectrochimica Acta Part A: Molecular  
and Biomolecular Spectroscopy. 2015;134:326-32.  
30. Yazdi MET, Khara J, Sadeghnia HR, Bahabadi SE, Darroudi M.  
Biosynthesis, characterization, and antibacterial activity of silver  
nanoparticles using Rheum turkestanicum shoots extract. Research  
on Chemical Intermediates. 2018;44(2):1325-34.  
31. Al-Sheddi ES, Farshori NN, Al-Oqail MM, Al-Massarani SM,  
Saquib Q, Wahab R, et al. Anticancer Potential of Green  
Synthesized Silver Nanoparticles Using Extract of <i>Nepeta  
deflersiana</i> against Human Cervical Cancer Cells (HeLA).  
Bioinorganic Chemistry and Applications. 2018;2018:9390784.  
32. Gomathi AC, Xavier Rajarathinam SR, Mohammed Sadiq A,  
Rajeshkumar S. Anticancer activity of silver nanoparticles  
synthesized using aqueous fruit shell extract of Tamarindus indica  
on MCF-7 human breast cancer cell line. Journal of Drug Delivery  
Science and Technology. 2020;55:101376.  
1
1
1
1
1
4. Mittal AK, Bhaumik J, Kumar S, Banerjee UC. Biosynthesis of  
silver nanoparticles: elucidation of prospective mechanism and  
therapeutic potential. Journal of Colloid and Interface Science.  
2
014;415:39-47.  
5. Ahmed S, Saifullah, Ahmad M, Swami BL, Ikram S. Green  
synthesis of silver nanoparticles using Azadirachta indica aqueous  
leaf extract. Journal of radiation research and applied sciences.  
33. Ahmad S, Munir S, Zeb N, Ullah A, Khan B, Ali J, et al. Green  
nanotechnology:  
a review on green synthesis of silver  
nanoparticlesan ecofriendly approach. International journal of  
nanomedicine. 2019;14:5087.  
2
016;9(1):1-7.  
6. Rao B, Tang R-C. Green synthesis of silver nanoparticles with  
antibacterial activities using aqueous Eriobotrya japonica leaf  
extract. Advances in natural sciences: Nanoscience and  
nanotechnology. 2017;8(1):015014.  
7. Tippayawat P, Phromviyo N, Boueroy P, Chompoosor A. Green  
synthesis of silver nanoparticles in aloe vera plant extract prepared  
by a hydrothermal method and their synergistic antibacterial  
activity. PeerJ. 2016;4:e2589.  
8. Amooaghaie R, Saeri MR, Azizi M. Synthesis, characterization  
and biocompatibility of silver nanoparticles synthesized from  
Nigella sativa leaf extract in comparison with chemical silver  
nanoparticles. Ecotoxicology and Environmental Safety.  
2
015;120:400-8.  
1
9. Gogoi N, Babu PJ, Mahanta C, Bora U. Green synthesis and  
characterization of silver nanoparticles using alcoholic flower  
extract of Nyctanthes arbortristis and in vitro investigation of their  
antibacterial and cytotoxic activities. Materials Science and  
Engineering: C. 2015;46:463-9.  
2
2
0. Hyllested JÆ, Palanco ME, Hagen N, Mogensen KB, Kneipp K.  
Green preparation and spectroscopic characterization of plasmonic  
silver nanoparticles using fruits as reducing agents. Beilstein  
Journal of Nanotechnology. 2015;6(1):293-9.  
1. Velmurugan P, Park J-H, Lee S-M, Jang J-S, Lee K-J, Han S-S, et  
al. Synthesis and characterization of nanosilver with antibacterial  
properties using Pinus densiflora young cone extract. Journal of  
Photochemistry and Photobiology B: Biology. 2015;147:63-8.  
2. Jana S, Shekhawat GS. Anethum graveolens: An Indian traditional  
medicinal herb and spice. Pharmacogn Rev. 2010;4(8):179-84.  
3. Mirhosseini M, Baradaran A, Rafieian-Kopaei M. Anethum  
graveolens and hyperlipidemia: A randomized clinical trial. J Res  
Med Sci. 2014;19(8):758-61.  
2
2
2
2
4. Pulliah T. Medicinal plants in India. Regency Publ, New Delhi,  
India. 2002:137-9.  
5. Srinithya B, Kumar VV, Vadivel V, Pemaiah B, Anthony SP,  
Muthuraman MS. Synthesis of biofunctionalized AgNPs using  
medicinally important Sida cordifolia leaf extract for enhanced  
antioxidant and anticancer activities. Materials Letters.  
2
016;170:101-4.  
2
2
6. Raj DR, Prasanth S, Vineeshkumar T, Sudarsanakumar C. Surface  
plasmon resonance based fiber optic dopamine sensor using green  
synthesized silver nanoparticles. Sensors and Actuators B:  
Chemical. 2016;224:600-6.  
7. Arunachalam K, Shanmuganathan B, Sreeja P, Parimelazhagan T.  
Phytosynthesis of silver nanoparticles using the leaves extract of  
Ficus talboti king and evaluation of antioxidant and antibacterial  
activities. Environmental Science and Pollution Research.  
2
015;22(22):18066-75.  
2
2
8. Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP.  
Biosynthesis of silver nanoparticles using Ocimum sanctum  
(Tulsi) leaf extract and screening its antimicrobial activity. Journal  
of Nanoparticle Research. 2011;13(7):2981-8.  
9. Martínez-Castañon G-A, Nino-Martinez N, Martinez-Gutierrez F,  
Martinez-Mendoza J, Ruiz F. Synthesis and antibacterial activity  
of silver nanoparticles with different sizes. Journal of nanoparticle  
research. 2008;10(8):1343-8.  
1629