Journal of Environmental Treatment Techniques  
2020, Volume 4, Issue x, Pages: 1385-1393  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/8(4)1393  
Cultivation of the Targeted Forest Plantations  
1
2
2
3
4
Ol'ga Kunickaya *, Vadim Tanyukevich , Daria Khmeleva , Anastasia Kulik , Elena Runova ,  
5
6
7
Vera Savchenkova , Anna Voronova , Mikhail Lavrov  
1
Yakut State Agricultural Academy, Yakutsk, Russian Federation  
2
Novocherkassk Reclamation Engineering Institute named after A. K. Kortunov - branch of Federal State Budgetary Educational Institution of higher  
professional education “Don State Agrarian University”, Novocherkassk, Russian Federation  
3
Federal Scientific Centre of Agroecology, Complex Melioration and Protective Afforestation Russian Academy of Sciences, Volgograd, Russian Fed-  
eration  
4
Bratsk State University, Bratsk, Russian Federation  
5
Mytischi Branch of Bauman Moscow State Technical University, Moscow, Russian Federation  
6
Petrozavodsk State University, Petrozavodsk, Russian Federation  
7
North-Eastern Federal University in Yakutsk, Yakutsk, Russian Federation  
Received: 06/05/2020  
Accepted: 17/09/2020  
Published: 20/12/2020  
Abstract  
Targeted reforestation refers to ecosystems with natural and artificial energy reserves. Additional energy reserves are spent on grow-  
ing and harvesting, various types of forest care, forest use, and delivery of products to consumers, including energy costs for all types of  
preparation. The wood to be harvested must be assessed on the energy consumption required for its production. The purpose of this work  
was to develop a comprehensive methodology to assess the energy effect, model the process of plantation operation considering the soil  
type, tree species, and technical parameters of operating machines. According to the estimation results of the trunk wood energy value,  
it has been established that depending on the growth rate and maturity level, the target plantations are divided into two types, which  
should be taken into account during planting and subsequent rotation. It is shown that with regard to the technological features of machine  
systems and the type of plantation, it is necessary to consider dimensional characteristics of the planting scheme and the technological  
cycle of exploiting the forest plantation. The results of mathematical modeling following the technological parameters of operating  
machines and all types of costs showed that the cost of the selected target species for reforestation can provide sufficient profit when  
optimizing the machine system operations. The principle of modular division of machines system on power, technological, and transport  
modules is offered, which vary in purpose, criteria of parameters optimization, and indicators of work. The obtained mathematical model  
and methodology of target planting optimization can be applied in forestry and agricultural complexes, as well as become the basis for  
further research in this direction.  
Keywords: Targeted reforestation, Wood energy value, Productivity, Ecosystem management, Plantation preparation, Planting systems  
Introduction1  
1
5 years. The first target energy plantations for research pur-  
poses were planted in the USA, then in Germany and Yugosla-  
via, and after in Sweden [4]. In Sweden, for example, planting  
of fast-growing tree species for the pulp and paper industry be-  
gan in the 1960s, and energy plantings of willow trees began in  
Targeted forest plantation is the result of artificial reforesta-  
tion or forest-growing activities. Their creation is a very prom-  
ising area of forest business and may have several objectives,  
for example, accelerated growth of target timber (forest planta-  
tions), creation of shelterbelts, as well as reducing greenhouse  
gas emissions through biophysical processes of carbon dioxide  
sequestration [1]. In all cases, forest plantations with specified  
operational and ecological properties are artificially created. In  
order to increase the efficiency of target forest plantations, the  
optimal choice of tree species to be planted is required, which  
will best meet the soil, climate, and operational objectives of  
their creation. An optimal choice of machine system and tech-  
nological processes for site preparation, planting, and cultiva-  
tion are needed as well [2].  
1
970 resulting in approximately 1% of country's annual timber  
harvest [5], mainly in southern and middle Sweden, where is  
the most favorable climate for this purpose. In Sweden, energy  
plantations with short cutting times are grown on an area of  
1
.200 ha for heat and electricity production. Whereas in 1984,  
about 14% of the energy produced in Sweden was derived from  
the dendro-mass, it was planned to increase this figure to 61%  
by 2015 [6]. The assessment and comparison results of the re-  
gional capacity in Northern Europe to cultivate fast-growing  
woody biomass showed that the potential for biomass produc-  
tivity in fast-growing forest plantations is 58.5 million cubic  
meters per year [7]. Besides, according to these results, it has  
been established that the management strategy for the target  
forest plantations should be local rather than general. A review  
of the project results on fast-growing hybrid poplar and willow  
trees in various plantations of Canada also showed that these  
species are well adapted to climatic and soil changes and can  
be used to plant abandoned ores and old landfills to restore the  
The history of target forest plantations spans several dec-  
ades, which allowed gaining significant forestry experience. At  
that time, countries such as Sweden, Finland, England, Serbia,  
Croatia, Hungary, the United States, Australia, and New Zea-  
land began to pay considerable attention to this issue [3]. En-  
ergy plantations are those that have a harvest turnover of 2 to  
Correspoding author: Ol'ga Kunickaya, Yakut State Agricultural Academy, Yakutsk, Russian Federation, E-mail: kunickaya_ol@ram-  
bler.ru  
1
385  
Journal of Environmental Treatment Techniques  
2020, Volume 4, Issue x, Pages: 1385-1393  
fertility of these lands [8]. Similar results have been obtained  
for long-term monitoring and evaluation of shale quarries in  
Estonia [9]. Thus, the development and application of targeted  
reforestation strategies are relevant in terms of economic and  
environmental issues associated with increased carbon dioxide  
emissions into the atmosphere and intensive logging of natural  
forests.  
time. A universal indicator of the qualitative forest manage-  
ment process that considers all the differences in natural and  
productive conditions of the forest area location can be deter-  
mined based on the concepts of "ecological efficiency" and "en-  
ergy quality".  
Problem Setting  
Unfortunately, almost no co-educational forest plantations  
for growing the target timber were initiated on the territory of  
the Russian Federation until now. However, there is a great ex-  
perience in creating forest shelterbelts for agricultural lands, es-  
pecially in the regions of Krasnodar Krai, as well as creating  
fire spacings in the forests. For example, for improving fertile  
soils in the Kuban, large-scale activity has been carried out on  
protective forestation since 1949 [10], and as of 2013, the area  
of such plantations in the region was 122778.5 ha. Fire breaches  
are created by planting deciduous strips in coniferous forests,  
and after felling, the main part of the logging site begins to  
overgrow intensively with deciduous species of trees. Forest re-  
generation with hardwoods contributes to diminishing inten-  
sive burning and spread of the fire area in the initial stage of a  
forest fire [11]. Therefore, target forest plantations can be cre-  
ated both for obtaining target timber (fuel, balances, saw logs)  
and achieving environmental effects.  
In terms of negative climate change, environmental pollu-  
tion, increasing overcrowding, frequent droughts and crop fail-  
ures, food shortages and clean drinking water shortages, and  
quickly evolving migration processes in this regard, the issue  
of sustainable and efficient land use is becoming increasingly  
important. Thus, more and more forest land is being used for  
agricultural crop planting after harvest. The principal differ-  
ence between plantations of forest and traditional crops is the  
duration of the harvest, its size, as well as the fact that in forest  
plantations, a wide range of useful products, including fruits of  
forest plants and shrubs, mushrooms, etc. can be obtained for  
the turnover of felling [12]. It should be noted that conventional  
forest management significantly differs from agricultural pro-  
duction, which is mostly designed for the production of mono-  
cultures on certain areas, i.e. separate areas are allocated for  
animal husbandry, separate for annual and perennial monocul-  
tures, and the collection of products is usually performed at a  
certain time  the time of maturity of the harvest. In this case,  
the main difference of a natural forest is that a wide range of  
useful products can be obtained in one area at different times  
that provide multiple benefits for the livelihoods of local com-  
munities, as well as regional and national economies [13]. For  
example, a study on the economic benefits of target plantations  
and reforestation in China shows that it depends on such factors  
as population density, gross forest output, forest area, crop area,  
and area burned by forest fires. Positive correlations with forest  
plantations had areas planted with crops and population density  
depending on the region and the main activity performed in this  
region [14]. This information is also important when develop-  
ing reforestation and target plantation projects. The willingness  
to adopt energy plantations is influenced, in particular, by farm-  
ers' and foresters' perceptions of the potential for continued  
profitability and flexibility in managing land resources. The  
widespread adoption of targeted plantations requires a range of  
socio-economic benefits, flexibility in land management, and  
sustainable land use [15].  
Exploitable forests, as well as agricultural land, are ecosys-  
tems with natural and artificial energy subsidies. As in agricul-  
ture, additional energy subsidies are spent on growing and har-  
vesting various types of forest care, forest use, and delivery of  
products to consumers. It should also include energy costs for  
all types of preparation, especially transport routing. By anal-  
ogy with productivity in agriculture, the harvested wood can be  
estimated by the energy required for its treatment. The purpose  
of this work was to develop a comprehensive methodology for  
assessing the energy effect, to model the process of plantation  
considering the soil type, tree species, and technical parameters  
of the operating machines. To achieve the set goal, it is neces-  
sary to perform the following tasks using mathematical model-  
ing: (a) to develop a methodology for assessing the efficiency  
of forest management based on the energy effect; (b) to create  
a decision-making system that allows selecting units for ex-  
ploiting forest tree plantations at maximum profit; and (c) to  
create a system for making optimal decisions on the choice of  
the target species, composition and the amount of fertilizer ap-  
plied, as well as technology for the preparation of seeds or seed-  
lings.  
Methods and materials  
To evaluate the energy consumption required for wood har-  
vesting, the method of measuring the energy intensity of the  
logging operations developed by the scientific school "Ad-  
vances in lumber industry and forestry" is used in this work  
[16].  
The difference between the energy production costs (energy  
consumption for all phases of forest management) and energy  
value (energy intensity) of these products will show the abso-  
lute ecological effect of the process, i.e., its optimality. That is:  
  푊 = 푊푓  
,
(1)  
where Wpr is the energy intensity of forest products; "Wcons is  
costs required for all phases of receiving forest products; "Weff  
is the energy effect of the forest management process. Another  
requirement of the universal quality indicator for the forest  
management process can also be presented:  
ꢁꢂ  
⇒ 푚푎푥.  
However, when assessing the quality of the forest manage-  
(2)  
ꢃꢄꢅꢆ  
ment process by the proposed criterion, the indicators of energy  
intensity of forest products and the costs for all phases of ob-  
taining forest products should be reduced to a single denomina-  
tor based on the principle of improving the quality and decreas-  
ing the amount of energy in the chain of its transfer. To predict  
and analyze the dynamics of energy intensity required for trunk  
wood harvesting, the following comparative calculation was  
performed within the frameworks of methodology develop-  
ment for assessing the efficiency of forest management by the  
energy effect. The proposed comparison characterizes the en-  
ergy intensity of coniferous and softwood plantations. It is  
known the relationship between the age of the secondary forest,  
average tree height, trunk diameter, and a number of trees per  
hectare (single-age undisturbed plantations) and the yield class.  
This information was used to obtain approximate dependencies  
Considering the productivity of ecological systems, the  
process of industrial production of agricultural products is cy-  
clical and results in the appearance of a certain number of var-  
ious products. In forest biogeocenosis, as in most other biolog-  
ical communities, the process of production is continuous in  
time, so the products should be attributed to the selected unit of  
1
386  
Journal of Environmental Treatment Techniques  
2020, Volume 4, Issue x, Pages: 1385-1393  
for determining the wood stock per hectare of forest-covered  
areas depending on the age of the timber stand. Afterward,  
using the recommendations for determining the wood density  
in the air-dry state, the obtained dependencies were converted  
into the air-dry wood mass distributed on 1 hectare of forest-  
covered area. Thus, the formula for determining the energy  
value of trunk wood per 1 ha of the area obtained using the data  
on the ratio between the calorific value of the wood mass unit  
and its moisture content (depending on the species) is as  
follows (GJ/ha):  
plantations from poplar clones, the scheme of 3.0x0.5 m is  
employed. At that, the distance between the tree rows of 3 m is  
chosen based on what is the most suitable in terms of the  
parameters of applied machines for the plantations care and  
machines for the chips preparation, and the distance of 0.5 m  
between the trees is most suitable for maximum yield of  
phytomass and is optimal for manual care of trees. Germinated  
and not germinated seeds, cuttings, seedlings, and nurslings can  
be used as planting material. The cuttings are carved out of  
quality branches and usually have a length of 20 cm, while for  
certain species, this length reaches 1-3 m. The cuttings are  
soaked in water 24 hours before planting. Planting of cuttings  
can be performed either by landers or manually.  
1  
]ꢌꢇ12  
(
ꢊꢈꢊ1ꢊ3+ꢊ2)⋅ꢋ  
12 푒ꢉ푝[  
ꢊ1  
푊 (푡) = 퐴 {  
}
(3)  
푝푟  
0
(ꢊꢈꢊ1ꢊ3+ꢊ2)⋅ꢋ  
13ꢍꢇ2 푒ꢉ푝[ ꢌꢎ]  
ꢊ1  
In both cases, compaction of the soil around the cuttings is  
mandatory as a prerequisite for the formation of a quality root  
system. For cuttings, the planting is possible only in spring,  
while planting from germinated cuttings can be carried out both  
in early spring and autumn. Based on the scientific and design  
developments of the Hungarian specialists, a scope of special  
forestry machinery for the energy plantation of planting cut-  
tings was created [4]. For example, a single or multi-row cut-  
tings planting machine with a sliding plowshare without a feed  
gearbox (Fig. 1), twinned (one or 2-3 pairs) cuttings planting  
machine with a sliding plowshare without a feed gearbox (Fig.  
Afterward, the empirically determined coefficients  
included in the formula (3) for different species were calculated  
Table 1). For growing the specified timber yards, e.g., for use  
as fuel, such tree planting parameters as row spacing and tree  
spacing are selected depending on the technical parameters of  
the harvesting machine complex and the type of plantation. The  
distance between rows of trees is 2.53 m due to the use of  
specific harvesting equipment. Consequently, from 5000 to  
(
1
0000 seedlings can be planted on 1 hectare, and this number  
varies depending on the quality of soil, growing time, and an  
available fleet of harvesting machines. For example, for energy  
2
), or a two-row cuttings planting machine with a semi-auto-  
matic push-up feeding system (Fig. 3), etc.  
Table 1: Regression model factors (3) for determining the energy intensity of forest products (trunk wood) as a function of timber  
stand age and yield class  
Factor  
Species  
Yield class  
a
0
a
1
a
2
a
3
A
0
A
1
I (Ic)  
II (Ib)  
III (Ia)  
IV (I)  
V (II)  
VI (III)  
VII (IV)  
VIII (V)  
IX (Va)  
I (Ic)  
II (Ib)  
III (Ia)  
IV (I)  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0,9  
0,9  
0,9  
0,9  
0,9  
0,9  
0,9  
45.268  
40.75  
0.6883  
0.596  
0.5104  
0.4303  
0.348  
0.0225  
0.0239  
0.0249  
0.0229  
0.0201  
0.0209  
0.022  
0.0273  
0.0337  
0.0322  
0.0322  
0.0326  
0.0334  
0.036  
35.723  
31.966  
28.536  
24.057  
19.948  
15.141  
11.143  
47.588  
42.902  
38.279  
33.741  
29.036  
24.32  
19.545  
15.617  
12.375  
37.24  
33.785  
29.805  
26.68  
21.172  
16.688  
13.526  
40.485  
37.197  
33.071  
28.012  
23.763  
19.513  
0.5282  
1.1244  
0.2615  
0.186  
0.1258  
0.0772  
0.4045  
0.3538  
0.2999  
0.2375  
0.1708  
0.1196  
0.0802  
0.0511  
0.0353  
1.1125  
0.8575  
0.6116  
0.4244  
0.2726  
0.1639  
0.0942  
2.4002  
1.6509  
1.0526  
0.6504  
0.4005  
0.2451  
V (II)  
0.1692  
0.1371  
1.4654  
VI (III)  
VII (IV)  
VIII (V)  
IX (Va)  
II (Ib)  
III (Ia)  
IV (I)  
V (II)  
VI (III)  
VII (IV)  
VIII (V)  
I (Ic)  
II (Ib)  
III (Ia)  
IV (I)  
0.038  
0.0398  
0.0438  
0.0419  
0.0146  
0.0108  
0.0146  
0.017  
0.0268  
0.0343  
0.0399  
-0.015  
-0.007  
0.0106  
0.027  
0.9  
0.9  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
1.5369  
1.7243  
0
.0884  
V (II)  
VI (III)  
0.0355  
0.0372  
1
387  
Journal of Environmental Treatment Techniques  
2020, Volume 4, Issue x, Pages: 1385-1393  
Figure 1: Single-row planter for cuttings planting  
Figure 2: Planter for cuttings planting in one twinned row  
1
388  
Journal of Environmental Treatment Techniques  
2020, Volume 4, Issue x, Pages: 1385-1393  
with the maximum felling turnover of 8-15 years is planted.  
Elaborating such types of plantations results in obtaining fuel  
chips and technological wood. Depending on the age of the har-  
vesting (felling turnover), the target energy forest plantations  
are classified into the following groups: (a) short (cutting turn-  
over of up to 5 years); (b) medium (cutting turnover of 5-10 or  
1
0-15 years); and (c) long (cutting turnover of 10-20 or 15-30  
years).  
Figure 3: Planter (two-row) with semi-automatic push-up feeding sys-  
tem for energy plantations  
The methods of mathematical modeling and optimization  
are proposed to solve the set tasks.  
Results and discussion  
Assessing the accumulation of wood energy value  
The graphs in Fig. 4 are constructed according to formula  
(3) with the application of empirically determined factors and  
show the dynamics of accumulating energy value of trunk  
wood on 1-hectare area (by the example of II yield class for  
aspen and birch and I yield class for the other species consid-  
ered). Thus, by the maturity age of deciduous tree species (60  
years), they accumulate more energy than conifers, whose ma-  
turity age is much higher, especially for willow. Afterward, the  
energy reserves of the soft-wood species decrease due to over-  
maturity and increasing tree mortality. The reforestation of co-  
niferous stands after the final felling requires significant energy  
costs for the soil preparation and production of the planting ma-  
terial in case of artificial reforestation, while softwood species  
have twice as smaller felling turnover. Therefore, in terms of  
ecological (energy) efficiency of forest management, it is pref-  
erable to make a crop rotation, alternating in time coniferous  
trees with softwood ones. Target energy plantations are divided  
into two main types. The first type is energy plantations of tree  
species on a coppice basis, the main difference of which is  
planting a significant number of seedlings (12-15 thousand  
pcs./ha). At that, the maximum age of cutting is 2-5 years.  
When using this type, the main purpose of the plantation is to  
produce a phytomass of wood in the form of fuel chips. The  
data on the mass accumulation of energy wood in a completely  
dry state, or atrophies for three tree species, are given in Table  
Figure 4: Accumulating the energy value of trunk wood per 1-hectare  
area (on the example of II yield class for aspen and birch and I yield  
class for other species considered)  
1
and illustrated in Figure 5. The second type is the energy tree  
plantations of trunk origin, i.e., with planting trees at each rota-  
tion. In this case, the fast-growing tree species are planted,  
which most correspond to the available soil quality in the high-  
est possible quantity. Usually, 8-10 thousand pieces per hectare  
Figure 5: Mass accumulation of energy wood in absolutely dry condi-  
tion: 1) poplar; 2) willow; 3) acacia  
Table 2: Mass accumulation of energy wood in absolutely dry condition  
Poplar  
Acacia  
Willow  
Age  
Optimal location  
Accumulated  
Optimal location Accumulated  
Optimal location  
Accumulated  
of growing  
at/ ha/years  
3
yields  
at/ha  
3
of growing  
at/ha/years  
2
yields  
at/ha  
2
of growing  
at/ ha/years  
2
yields  
at/ha  
2
years  
1
2
3
4
5
10  
15  
20  
30  
13  
28  
48  
78  
6
8
18  
32  
48  
7
9
20  
35  
53  
10  
14  
16  
11  
15  
18  
1
389  
Journal of Environmental Treatment Techniques  
2020, Volume 4, Issue x, Pages: 1385-1393  
Assessing technological requirements for exploitation of tar-  
get plantations  
care, which consists in creating optimal conditions for the  
growth of the target tree species. At this stage, cultivators, ma-  
chines for additional fertilization, machines for controlling tree  
species pests, e.g., sprayers, hand pruners, etc. are used; (d)  
Harvesting the grown crop and logging, when the specified  
turnover of felling is achieved. At this stage, different techno-  
logical equipment is used, depending on the purpose and size  
of the grown wood. When growing structural or balance wood,  
a system of machines for logging operations consists of har-  
vester and forwarder, or felling and packaging machines, as  
well as skidder and processor. For small areas and reserves, the  
chainsaws and harvester, or combination of chainsaws, har-  
vester and processor in the upper stage are applied. For energy  
wood (thin wood, respectively), the felling and chopping ma-  
chine, or mulch and skidder are used. (E) The last stage of the  
technological chain is clearing of the plantation from the vege-  
tation remainders, collection of cutting residues, dressing or  
shredding of stumps, roots, and re-cultivation of the land for  
transfer to other uses, or the return to the first stage, i.e., prepa-  
ration of the site for a new cycle of target cultivation of forest  
plantations.  
For planting and maintaining energy plantations according  
to the technical characteristics of the planting machines, the fol-  
lowing requirements must be considered. The dimensional  
characteristics of the single-row cuttings plantation scheme are  
as follows (Fig. 6): row spacing is 1.52.8 m and the spacing of  
cuttings is 0.41.0 m. Dimensional characteristics of the twin-  
row cuttings planting scheme (Fig. 7) are as follows: row spac-  
ing is 2.0-2.8 m, the spacing of cuttings is 0.4-1.0 m, and the  
twin-row spacing is 0.6-0.8 m.  
To meet these conditions in Hungary, a team of employees  
[4] has developed the BGT-ETG-E machine system, which can  
perform all the necessary operations. These machines and  
equipment allow planting with different spacing between rows  
of trees. Also, this system includes soil tillage equipment, seed  
drills, planting machines, and care machines. At target refor-  
estation, the careful choice of the target species, cutting turno-  
ver, composition and quantity of fertilizers applied, as well as  
technology for preparing seeds or seedlings is required. The  
technological cycle of exploiting the forest plantation can be  
divided into stages: (a) preparing the site for planting (sowing)  
of wood species. This stage involves mainly the preparation of  
soil, in some cases, preliminary clearance of the site from  
stumps. The technological equipment used in this process in-  
cludes pullers, mulchers, plows, harrows, harrows, rippers,  
soil-cutters, etc. (b) Planting (sowing) of woody crops depend-  
ing on the selected species for target forestry. At this stage,  
planting machines, seeders, rollers, etc. are used. (c) Planting  
Each step requires a set of operations to be performed. Op-  
erations can be performed by various units at different costs,  
performance, energy efficiency, and technical availability. An  
assembly will be considered as a set of machines and equipment  
designed to perform a specific operation. Depending on the soil  
type, contamination, and target species, a set of operations is  
assigned to each stage. A set of possible machine units and  
equipment is assigned for each operation.  
Figure 6: The scheme of planting is one-row  
Figure 7: The twin-row planting scheme  
1
390  
Journal of Environmental Treatment Techniques  
2020, Volume 4, Issue x, Pages: 1385-1393  
Model for optimized selection of technological parameters  
The mathematical model describing the rationale of tech-  
nologies and the choice of parameters for the machine’s opera-  
tion at timber enterprises is based on the following assump-  
tions. Some works are seasonal, e.g., planting. The equipment  
for these works is idle most of the time. Other works are de-  
pendent on weather conditions and may continue most of the  
year. Accordingly, there can be several options for the selection  
and operation of machines and equipment. It should be noted  
that one operation can be performed by different units and one  
machine or equipment unit can be used to perform different op-  
erations. For example, it is possible to install different types of  
attachments on a tractor: plows, pullers, stump cutters, spray-  
ers, manipulators, mulching machines, etc. Consequently, dif-  
ferent operations can be performed with one machine [17]. The  
following designations are to be presented:  
where  is quite high constant (a number, which is higher than  
any other possible value of the variable  );  
푖푗  
푥 ≥ 푏 푧 , ꢗ ∈ 푄, ꢓ ∈ 푀, ꢔ ∈ 푁.  
(10)  
푞푖 푖푗  
In such a mathematical model, the target species for plan-  
tation are assumed as selected, and the amount of wood grown  
on the site is known accordingly. The cost of providing a suffi-  
cient percentage of profit should be determined as well. Other-  
wise, a change is required, e.g., in the target species.  
Principle of modular machine’s system construction  
Machines and technological equipment are used periodi-  
cally and consistently when creating target forest plantations.  
This, in turn, assumes that the system of machines in the pro-  
cess of target reforestation is optimally created according to the  
modular principle similar to the layout of machinery systems of  
agricultural production. It should be noted that different time  
intervals are allocated for different types of work in the same  
area, i.e., if to bring the productivity of all operations to a single  
denominator, hectares of the target forest area, their productiv-  
ity can be different. The principle of modular construction of  
the machine system consists of the division into three types of  
modules: energy, technological, and transport. Energy modules  
are tractors of different traction class, providing with energy the  
performance of workers, mixed, and transport operations. For  
the latter, the issue should be considered only within the area  
allocated for the target forest plantation with a loading platform  
 is number of stages;  is indices multitude of technological  
operations;  is indices multitude of technological operations  
for the stage ,  ⊂ 푁,  = ꢒ, … , ꢐ;  is indices multitude of  
machine’s assembly;  is indices multitude of machine and  
equipment units;  is relation that defines the connection be-  
tween technological operations and the units performing them,  
푅 ⊂ 푀 × 푁;  is relationship matrix , which consists of ele-  
ments  ,  ∈ 푀, ꢔ ∈ 푁, where  = ꢒ, if operation  can be  
푖푗  
푖푗  
performed by the equipment unit  and  ꢓꢕ ꢖ, otherwise;  is  
푖푗  
matrix, that consists of elements  ,  ∈ 푄,  ∈ 푀, where  
푞푖  
 = ꢒ, if the equipment unit  includes a machine or a facility  
 and  = ꢖ, otherwise. Exogenous variables (input parame-  
ters):  is square of the area (ha);  is unit efficiency  ∈ 푀 at  
(upper storage) at it. When creating and operating forest plan-  
tations, transport modules should carry out delivery of seeds or  
seedlings to the place of sowing (planting), as well as the deliv-  
ery and application of fertilizers, pesticides, etc., and skidding  
of harvested wood biomass and cuttings residue. Technological  
modules, in their turn, provide soil preparation, seeds or seed-  
lings embedding, loosening, as well as other necessary forestry  
operations like cutting and treatment of cultivated woody and  
shrub vegetation. Based on the different purposes of the mod-  
ules, the criteria for optimizing their parameters and perfor-  
mance will also vary.  
performing technological operation (ha/h)  ∈ 푁;  is critical  
time for one stage , 푡 = ꢒ, … , ꢐ;  is cost of one equipment  
unit  ∈ 푄. Endogenous variables (unknown models):  is  
number of units of type  used in technological cycle  ∈ 푄; 푗  
is binary variable equal to 1, if the equipment unit  is used for  
technological operation  ∈ 푁 and 0  otherwise,  ∈ 푀;  is  
number of units of type  used for technological operations  ∈  
,  ∈ 푀. Target function is minimal costs for equipment and  
machines:  
For the overall machine’s system layout, it is highly desir-  
able to have as few modules as possible, at least in terms of  
reducing the required capital investment. It is well known that  
one of the criteria for the optimal choice of machine system is  
that the most expensive machine, or equipment, would have the  
maximum load. That is, any equipment must pay off itself and  
still bring profit during the time of resource development. The  
criterion of the energy module optimality is the correspondence  
of power unit (engine) capacity and concentration of energy on  
the needs of technological and transport modules working with  
it. If a large and powerful tractor will be equipped with a small  
trolley to transport the necessary cargo, or cultivator with a  
small grip, the energy efficiency of such a system will be ex-  
tremely low, if not negative. Alternatively, by using a tractor  
with a small traction class and an engine power greater than  
required to perform the technological or transport operation at  
a given speed, the operation will either not be completed at all  
interrupting, thus, the entire process chain, or the operation will  
eventually be completed, but the operational schedule will be  
disrupted. In turn, the amount of power consumption of the  
technological or transport module will depend on the forces of  
resistance and speed of operations to be performed. The speed  
of executing the operations will depend on the required produc-  
tivity. Resistance forces will depend on several factors, and, of  
course, the type of operations performed. For example, when  
cultivating stumps - on the composition, moisture, and physical  
and mechanical properties of the soil, as well as the thickness  
of the cultivated soil layer, the width of the working surface of  
  푥 → min,  
(4)  
The scope of work on every stage should be performed  
completely:  
  푧 푇 ≥ 푆, ꢔ ∈ 푁 , 푡 = ꢒ, … , ꢐ,  
(5)  
푖푗 푖푗  
For every operation, one type of equipment should be cho-  
sen:  
  = ꢒ, ꢔ ∈ 푁,  
(6)  
All operations should be performed on specified equip-  
ment:  
ꢖ ≤ 푦  푎 , ꢓ ∈ 푀, ꢔ ∈ 푁,  
(7)  
(8)  
(9)  
푖푗  
The number of equipment used is integer:  
푖푗, ꢓ ∈ 푀,  ∈ 푁,  
Units are complemented only for planned operations:  
 푧푖푗  퐷푦 , ꢓ ∈ 푀,  ∈ 푁,  
푖푗  
1
391  
Journal of Environmental Treatment Techniques  
2020, Volume 4, Issue x, Pages: 1385-1393  
the site, the quality of execution and maintenance of the work-  
ing bodies of soil cultivation facilities. When harvesting the  
grown wood biomass - on the breed, moisture, wood tempera-  
ture, quality of execution, and service of technological equip-  
ment  chainsaws or disk cutter. The results of this work are  
original and valuable from a practical point of view and can  
help forest and farm households to assess the effectiveness of  
the target tree species in terms of soil type. It is also important  
to evaluate the choice of techniques and technological solutions  
that can be provided by the modeling considering the technical  
parameters of the equipment. The works Marinov and Jor-  
danova [18, 19] present the results of the study of some logging  
machines` characteristics with a multi-purpose forest cultivator  
during the excavation of poplar areas in north-western Bul-  
garia. As indicated, optimal conditions for high productivity at  
shredding stumps with a diameter of up to 65 cm, as well as  
cleaning debris and milling soil depths up to 0.5 m were estab-  
lished for a tractor PT-400 with a cultivator FAE 300 / S con-  
sidering technical parameters and fuel consumption. A similar  
study evaluated the costs and revenues of poplar plantations in  
Serbia, where trees were cultivated on different types of soils  
under similar planting conditions [20]. The results also demon-  
strate differences depending on soil type and socio-economic  
level in the region. These works are in good agreement with the  
results of this research, which also indicates the importance of  
different aspects in the target forest plantation to make this type  
of economy and environment more attractive.  
The sustainability of targeted plantations not only ensures  
a constant profit but also provides sustainable management of  
arid and semi-arid forests and areas to create new forests on  
barren landscapes. According to a study of dry forests in Tur-  
key [21], the increase in agricultural land, fires, and intensive  
deforestation have resulted in a 26% reduction of forest area  
between 1945 and 2014. The practice of target planting and re-  
forestation also demonstrates high economic development and  
ecological level in the abandoned farms of Brasilia [22], semi-  
arid areas of China [23], Spain [24], etc. Besides, according to  
Ersson [5], mechanized tree planting is a promising method in  
terms of economic efficiency through training, planting plan,  
and technology development. An analysis of the productivity  
of the Swedish and Finnish forest industries shows that the  
technical improvement of planting machines increases eco-  
nomic efficiency, even if yields do not increase. It points to the  
importance and value of developing the scientific and techno-  
logical potential to generate not only the energy value of the  
product but also the technologies and techniques for growing.  
this work provide a valuable contribution both from a scientific  
and experimental point of view. The obtained mathematical  
model of target planting optimization can be applied in forestry  
and agricultural complexes. The developed methods can be  
studied for other types of planting systems used in other coun-  
tries, which allows for further research in this area.  
Acknowledgments  
The work was carried out within the confines of the scien-  
tific school “Advances in lumber industry and forestry”.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
References  
1
.
Galik CS, Murray BC, Mitchell S, Cottle P. Alternative approaches  
for addressing non-permanence in carbon projects: an application  
to afforestation and reforestation under the Clean Development  
Mechanism. Mitigation and adaptation strategies for global  
change. 2016 Jan 1;21(1):101-18.  
2
3
.
.
Zhang Y, Liang S. Changes in forest biomass and linkage to cli-  
mate and forest disturbances over Northeastern China. Global  
change biology. 2014 Aug;20(8):2596-606.  
Murray BC, Galik CS, Mitchell S, Cottle P. Alternative Ap-  
proaches to Addressing the Risk of Non-Permanence in Afforesta-  
tion and Reforestation Projects under the Clean Development  
Mechanism. World Bank; 2012 Nov 20.  
4. Vagweldi А, Feher,Sh, Khorvat B, Koman S, Kovach G, Sabo L,  
Tsupi I, Grigoriev IV, Grigorieva OI, Danilov D, Kunitskaya OA,  
Krivash E. Cultivation and exploitation of forest plantations. Uni-  
versity of West Hungary Pres. 2016.  
5
.
Ersson BT, Laine T, Saksa T. Mechanized tree planting in Sweden  
and Finland: Current state and key factors for future growth.  
Forests. 2018 Jul;9(7):370.  
Conclusions  
6. Lundmark H, Josefsson T, Östlund L. The introduction of modern  
forest management and clear-cutting in Sweden: Ridö State Forest  
Thus, the results of this research allow drawing the follow-  
ing conclusion. The estimation of accumulating the energy  
value of trunk wood is presented, according to which deciduous  
trees accumulate more energy reserves by the age of ripeness  
compared to that of coniferous trees, whose ripeness is much  
higher. Considering the energy costs required for growing dif-  
ferent types of trees, two main types of target energy planta-  
tions were established, which differ in the number of seedlings  
and planting of trees at each rotation. According to the assess-  
ment of technical characteristics of machine systems, dimen-  
sional characteristics have been developed for single-row and  
twined rows of cuttings planting schemes and the technological  
cycle of forest plantation operation. A mathematical model has  
been established, which allows selecting equipment for the op-  
eration on the forest tree plantation to obtain maximum profit  
at the end of the growing cycle. The principle of modular divi-  
sion of machine’s system on power, technologic, and transport  
modules varying in purpose, optimization criteria of opera-  
tional parameters and indicators are offered. The findings of  
1
1
8322014. European Journal of Forest Research. 2017 Apr  
;136(2):269-85.  
7
.
Mola-Yudego B, Arevalo J, Díaz-Yáñez O, Dimitriou I, Haapala  
A, Ferraz Filho AC, Selkimäki M, Valbuena R. Wood biomass po-  
tentials for energy in northern Europe: Forest or plantations?.  
Biomass and Bioenergy. 2017 Nov 1;106:95-103.  
8. Larocque GR, DesRochers A, Larchevêque M, Tremblay F, Beau-  
lieu J, Mosseler A, Major JE, Gaussiran S, Thomas BR, Sidders D,  
Périnet P. Research on hybrid poplars and willow species for fast-  
growing tree plantations: Its importance for growth and yield, sil-  
viculture, policy-making and commercial applications. The  
Forestry Chronicle. 2013 Feb;89(1):32-41.  
9
.
Laarmann D, Korjus H, Sims A, Kangur A, Kiviste A, Stanturf JA.  
Evaluation of afforestation development and natural colonization  
on reclaimed mine site. Restoration Ecology. 2015  
a
May;23(3):301-9.  
10. Dubenok NN, Tanyukevich VV, Tyurin SV. State and reclamation  
efficiency of forest shelterbelts of Krasnodar krai. Russian  
Agricultural Sciences. 2017 Mar 1;43(2):170-2.  
1
392  
Journal of Environmental Treatment Techniques  
2020, Volume 4, Issue x, Pages: 1385-1393  
1
1. Krylov A, McCarty JL, Potapov P, Loboda T, Tyukavina A,  
Turubanova S, Hansen MC. Remote sensing estimates of stand-  
replacement fires in Russia, 20022011. Environmental Research  
Letters. 2014 Oct 10;9(10):105007.  
1
1
2. Shmulsky R, Jones PD. Forest products and wood science: an in-  
troduction. John Wiley & Sons; 2019 Mar 11.  
3. Shackleton CM, Pandey AK. Positioning non-timber forest prod-  
ucts on the development agenda. Forest Policy and Economics.  
2
014 Jan 1;38:1-7.  
1
4. Sheng J, Han X, Zhou H. Spatially varying patterns of afforesta-  
tion/reforestation and socio-economic factors in China: a geo-  
graphically weighted regression approach. Journal of Cleaner  
Production. 2017 Jun 1;153:362-71.  
1
1
5. Schirmer J, Bull L. Assessing the likelihood of widespread land-  
holder adoption of afforestation and reforestation projects. Global  
Environmental Change. 2014 Jan 1;24:306-20.  
6. Grigorev I, Khitrov E, Kalistratov A, Bozhbov V, Ivanov V. New  
approach for forest production stocktaking based on energy cost.  
International Multidisciplinary Scientific GeoConference Survey-  
ing Geology and Mining Ecology Management, SGEM.  
2
014;14:407-14.  
1
7. Grigoriev IV, Grigoriev MF, Stepanova DI. Perspectives of mod-  
ular systems of machinery for forest management in Yakutia. Rel-  
evant trends of scientific research in XXI century: theory and prac-  
tice. 2017;9(35):74-77.  
1
1
8. Marinov K, Jordanova V. Evaluation of forest milling machine  
performances for site preparation. Innovation in woodworking  
industry and engineering design. 2015 Feb;4(8):18-29.  
9. Marinov K, Jordanova V. Comparative Analysis of Site Prepara-  
tion Costs of Poplar Plantations Establishment by Various Tech-  
nological Schemes. Journal of Agricultural Science and Technol-  
ogy B. 2017;7(2):125-38.  
2
0. Keča L, Pajić S. Costs and revenues in poplar plantations estab-  
lished using full ground and soil preparation in Serbia. InInterna-  
tional Conference: Reforestation Challenges, Belgrade, Serbia, 3-  
6
June 2015. Proceedings 2015 (pp. 234-241). REFORESTA.  
2
2
1. Çalişkan S, Boydak M. Afforestation of arid and semiarid ecosys-  
tems in Turkey. Turkish Journal of Agriculture and Forestry. 2017  
Nov 10;41(5):317-30.  
2. Knoke T, Bendix J, Pohle P, Hamer U, Hildebrandt P, Roos K,  
Gerique A, Sandoval ML, Breuer L, Tischer A, Silva B. Afforesta-  
tion or intense pasturing improve the ecological and economic  
value of abandoned tropical farmlands. Nature communications.  
2
014 Nov 26;5(1):1-2.  
2
2
3. Mao R, Zeng DH. Changes in soil particulate organic matter, mi-  
crobial biomass, and activity following afforestation of marginal  
agricultural lands in  
a semi-arid area of Northeast China.  
Environmental Management. 2010 Jul 1;46(1):110-6.  
4. Vadell E, de-Miguel S, Pemán J. Large-scale reforestation and af-  
forestation policy in Spain: A historical review of its underlying  
ecological, socioeconomic and political dynamics. Land Use  
Policy. 2016 Sep 1;55:37-48.  
1
393