Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1521-1529  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/1529  
Development of Dry Mixtures for Protein-  
Carbohydrate Drinks Used for Sports Nutrition  
Tatyana Anatolyеvna Ershova*, Svetlana Dmitrievna Bozhko, Anna Nikolaevna Chernyshova,  
Julia Anatolyеvna Gavrilova  
Far Eastern Federal University, Vladivostok, Russia  
Received: 05/04/2020  
Accepted: 27/09/2020  
Published: 20/12/2020  
Abstract  
This work is aimed at developing mixtures of protein-carbohydrate drinks used in sports nutrition. Specialized protein-carbohydrate  
products are the powdered food mixtures with a high content of proteins and carbohydrates required for maintaining and increasing the  
muscle mass, restoring the glycogen levels in the muscles and the liver, and for correcting the diet of an athlete. At the first stage, theoretical  
work was carried out aimed at the generalization and analysis of scientific literature. Based on the literature review, biomedical and  
technological requirements for specialized protein-carbohydrate products for the nutrition of athletes were systematized. In accordance with  
the requirements, the components (Fonterra WPC 80 protein, skim milk, fructose, cocoa powder, egg albumin, maltodextrin, thickener,  
natural dyes, flavoring substances) were selected and justified, and the formulation of the developed products was calculated. Further research  
was aimed at studying the influence of product components and technological factors on the physicochemical properties of carbohydrates  
and proteins in the model "protein-polysaccharide-water" system. Calculation of the biological value of protein preparations was conducted,  
as well as the experimental studies of the dry mixing technology aimed at selecting the sequence of the introduction of components for the  
production of dry multi-component specialized products. Based on theoretical studies and generalizations, technological requirements and  
modes have been specified, and the technology of dry mixtures of protein-carbohydrate drinks for sports nutrition has been developed.  
Product optimization, its physicochemical, and organoleptic studies have allowed developing draft technical documentation for dry mixtures  
of protein-carbohydrate drinks for sports nutrition.  
Keywords: Protein-carbohydrate mixtures, maltodextrin, egg albumin, whey protein, drink concentrates  
1
molecular whey proteins, followed by high-molecular casein.  
1
Introduction  
This property of milk protein is especially important when it is  
used for dietary purposes and muscle recovery after workouts of  
various intensities [11, 12]. To better provide amino acids to the  
organism before, during, and after exercises, specialized protein-  
carbohydrate products for athletes should contain concentrates,  
isolates, and hydrolysates of whey protein. To further stimulate  
the synthesis of muscle fibers in the organism, various  
micronutrients, especially vitamins, minerals, etc. are usually  
added to specialized protein-carbohydrate food products. As a  
rule, they include well-chosen combinations of vitamins, mineral  
premixes, and other nutrients in certain ratios, rather than  
individual vitamins and minerals. This is because many chemical  
processes in the organism are catalyzed simultaneously by several  
interacting vitamins, macro- and microelements [13-17]. The  
carbohydrate complex in specialized protein-carbohydrate food  
mixtures for the nutrition of athletes is represented by several  
types of carbohydrates  maltodextrin, glucose polymers, and  
fructose [3, 14, 18-25].  
Currently, making specialized products for sports nutrition is  
an urgent task for the modern food industry [1-5]. The popularity  
of this group of food products in Europe, the USA, and Russia is  
shown by the statistics of the qualitative and quantitative changes  
in the food market. Highly skilled athletes often experience  
deficiency of the key macro- and microcomponents, which  
significantly impairs the athletic performance and the overall  
health, therefore, one of the solutions to this problem is including  
specialized protein-carbohydrate products with high biological  
value into the diet of athletes so that they can quickly restore the  
glycogen reserves in the muscles and the liver, respectively, and  
prevent the loss of muscle protein during intensive workouts.  
The range of specialized protein-carbohydrate products for  
sports nutrition is widely presented in the market by domestic and,  
for the most part, foreign manufacturers. In recent years rapid  
advances have been seen in the development and use of  
specialized protein-carbohydrate food products for athletes.  
However, industrial production in our country is very limited [1,  
6
-10]. Currently, the best sources of high-quality protein are milk  
proteins. Milk proteins consist of casein (85 %) and whey proteins  
(
15 %). They are digested and absorbed evenly: first, low-  
*
Corresponding author: Tatyana Anatolyеvna Ershova, Far Eastern Federal University, Vladivostok, Russia. E-mail: ershova_t.a@mail.ru  
1521  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1521-1529  
product technology requires additional study of this aspect.  
3 Materials and methods  
3.1 General description  
2
Literature review  
Specialized protein-carbohydrate products are powdered food  
mixtures with a high content of proteins and carbohydrates  
required for maintaining and increasing the muscle mass,  
restoring the glycogen levels in the muscles and the liver, and for  
correcting the diet of an athlete [26-28]. Most often, specialized  
protein-carbohydrate-enriched food products for athletes are  
available in the form of powders and are used as drinks. The  
content of glycogen in the muscles during intensive exercises may  
be reduced in less than an hour, but restoring it to the previous  
level using everyday diet takes several days [29]. The restoration  
of the glycogen levels and enhancing the synthesis of new muscle  
fibers are supported by additional intake of carbohydrates and  
proteins into the organism of an athlete, which is often achieved  
by including specialized protein-carbohydrate food mixtures with  
high biological value into the diet of the athletes [1, 20, 30].  
In developing this type of product, environmentally friendly  
raw materials of animal and plant origin must be used along with  
biologically active supplements that improve their functional and  
consumer qualities [31-36]. The technology of manufacturing  
specialized protein-carbohydrate products for sports nutrition  
should envisage highly efficient manufacturing processes that  
preserve the nutritional value of raw materials and ensure  
obtaining a product with desired functional properties. In this  
regard, the most promising is the use of dry mixing technology  
During the experimental part, the objects of the study were  
the components of the developed protein-carbohydrate product,  
and the Whey protein finished product. Considering their high  
biological value, whey proteins and egg albumin were used in the  
product as a source of protein: сoncentrate of dried egg albumin  
of the OVOPROT brand (production of OVOPROT  
INTERNATIONAL, Argentina), the dry concentrate of whey  
protein of the Fonterra 80 brand (production of Fonterra Ltd, New  
Zealand), the dry concentrate of whey protein of the Lactomin 80  
brand (production of Deutschland GmbH, Germany). The  
physicochemical properties of the components are presented in  
Tables 1-3.  
Whey proteins and egg albumin have the highest degradation  
and digestibility rates among whole proteins. The amino acid  
composition of the considered proteins is the closest to the amino  
acid composition of human muscle tissue, and in terms of the  
content of essential amino acids and branched-chain amino acids  
(BCAAs): valine, leucine and isoleucine, they surpass all other  
proteins of animal and vegetable origin. BCAAs are the main  
initiating factors in eliminating energy deficits during their  
metabolism and create the conditions for the favorable occurrence  
of energy-dependent synthetic processes, including glycogen  
formation. Skim milk powder in its composition contains amino  
acids essential for the body, B vitamins, vitamins A and D, as well  
as minerals: phosphorus, potassium, calcium, sulfur, magnesium,  
chlorine, and others. Proteins of milk powder are slowly  
absorbed, and for a long time, serve as a source of replenishment  
of the level of amino acids in the blood.  
[37, 38]. Optimization of the processes for the production of  
specialized dry products using the method of components dry  
mixing has several specific features since the issue discussed is  
biological systems and certain components mixing conditions,  
which may have a significant effect on their quality. Therefore,  
successful optimization of the mixing process to develop a  
Table 1: Physicochemical properties of protein-containing components  
Name of components  
Protein  
content,% not  
less  
Fat content,%  
min  
Mass fraction of  
moisture,% max.  
Ash,% max.  
Solution pH  
Concentrate of egg albumin of  
the OVOPROT brand  
Concentrate of whey protein of  
the Fonterra 80 brand  
Concentrate of whey protein of  
the Lactomin 80 brand  
Whey protein concentrate of the  
Milkiland 80 brand  
85.0  
0.02  
5.0  
3.0  
8.0  
6.0  
4.5  
5.5  
5.5  
4.5  
3.0  
4.0  
3.5  
5.0-7.5  
6.1-6.5  
6.5-7.2  
6.1-6.5  
80.0  
80.0  
80.0  
Table 2: Physicochemical properties of the components  
Carbohydrate  
Name of components  
Protein content,% Fat content,% max  
Mass fraction of  
moisture,% max.  
Ash,% max.  
not less  
content,% max.  
Skim milk powder  
Frima dry vegetable cream  
49.9  
2.0  
1.0  
26.0  
41.1  
62.0  
5.5  
4.5  
8.0  
3.5  
Table 3: Physicochemical properties of berry powders  
Name of components  
Protein content,%  
not less  
Fat content,%  
min.  
Carbohydrate  
content,% max.  
Sugar content,%  
max.  
Mass fraction of  
moisture,% max.  
Dried Raspberry Powder  
Dried Strawberry Powder  
8.2  
8.2  
4.0  
4.0  
55.1  
55.1  
54.0  
54.0  
4.0-5.0  
4.0-5.0  
1522  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1521-1529  
The use of a mixture of maltodextrin and fructose (a mixture  
of carbohydrates with high and low glycemic index) leads to an  
increase in the rate of oxidation of exogenous carbohydrates  
compared to using each carbohydrate separately [11, 13, 30, 39].  
As sources of carbohydrates, GLUSIDEX 19 maltodextrin  
was optimized. Specifically, the content of essential amino acids  
and their total balance in the studied protein concentrates were  
quantified. Not less important criteria for choosing protein  
concentrates used for creating protein-containing mixtures, in  
addition to their biological value, are their physicochemical  
characteristics. To determine the particle size distribution, the  
sieve analysis was used, based on the mechanical separation of  
the particles into size classes on sieves with holes of various sizes.  
The material that remained on the sieve after sieving is called  
BALANCE, and the material that has passed through the sieve is  
called THROUGHS.  
(
production of ROQUETTE, France), DE 18-20, and CornSweet  
fructose (ADM, USA) in a 1:3 ratio were used. Dry skim milk  
production of Lepel Dairy Canning Plant, JSC Vitebsk Meat  
(
Plant, Belarus) and dry vegetable cream Frima (production of  
DONGSUH, Korea) were selected as an additional source of  
protein. Xanthan gum (production of Deosen Biochemical Ltd,  
China), with the basic substance content of 80%, was used as a  
stabilizer for emulsions and suspensions, and also as a thickener  
increasing the viscosity of beverages. When creating the flavor  
and aroma range of the product being developed, natural berry  
powders (strawberry and raspberry) were used that provided high  
organoleptic properties of the finished product: dried raspberry  
In the work, the method of dispersion assessment in  
concentrates was used (GOST 1513.3-77). A sample taken from  
a pooled sample, weighing 40 g with the accuracy of not more  
3
than 0.1 g, was placed in a beaker, then 200 cm of water heated  
to a temperature of (60 ± 2)°C was added, and the mixture was  
mixed thoroughly until a fine suspension was obtained and set at  
rest. The higher the dispersion of the suspension particles was,  
and the longer they were kept in suspension, the higher the  
quality of the drink was. The suspension was considered  
sufficiently dispersed if, in two minutes after mixing, noticeable  
sludge did not form. The height of the sludge level was  
determined using the coordinate paper. The solubility index was  
determined by the method of determining the dry milk products'  
solubility index according to GOST 30305.4-95. The essence of  
the method consists in determining the amount of undissolved  
sediment in the sample of the analyzed preparation. To determine  
the dispersibility, the method of determining the dissolution rate  
was used, in which mixing continued until all lumps of the dry  
concentrate were completely dispersed; and the dispersibility was  
equal to the mixing duration in seconds until all lumps were  
dissolved [28]. The wettability of the dry concentrate was  
determined by the method of Moore. Dry concentrate in the  
amount of 1.7 g was poured into a special funnel closed from  
below with a glass plate. Under the funnel, there was a beaker  
filled with 25 ml of distilled water with a temperature of (20 ± 2)  
°C Then the plate was removed, the dry concentrate was poured  
into water, and the time of its complete immersion was recorded.  
Wettability was assessed by the time required to completely wet  
the dry concentrate. The results of the studies were processed in  
Microsoft Office Excel 2013. Studies were carried out in three- to  
five-fold repetition. The research results were processed using the  
methods of statistical analysis with the determination of the  
arithmetic mean value and mean square error.  
powder  
0 - 2 mm (production of YANTAI XUEHAI  
FOODSTUFFS CO., LTD China), dried strawberry powder 3 - 6  
mm (production of YANTAI XUEHAI FOODSTUFFS CO.,  
LTD China). Luxomix beta-carotene food dye (production of  
BARGUS TRADE, Russia); Luxomix carmine food dye  
(
production of BARGUS TRADE, Russia); and Vanilla,  
Chocolate, Strawberry, Raspberry food flavors (production of  
BARGUS TRADE Russia) were used as dye and flavoring  
agents. Food flavors met the requirements of TR TS 029/2012  
"Safety requirements for food additives, flavors, and  
technological aids." Based on the experimental studies of the  
functional properties of the product components, testing the  
sequence of introducing components for mixing and following the  
technological requirements for the product, the composition, and  
flowchart for the production of the dry protein-carbohydrate  
product named “Whey protein” for athletes nutrition was  
developed. The technological process of the developed product  
production was carried out according to the technological scheme.  
In conformity with the technological scheme, the production of a  
product in the form of dry powder included the following stages:  
acceptance and storage of raw materials; preparation of raw  
materials; dry mixing of components in the mixer; product  
packaging; packaging and labeling of the finished product.  
The production of Whey protein was carried out by dry  
mixing of the components. Since the final product is a multi-  
component mixture, to obtain a high-quality product, it was  
advisable to carry out the production by sequential mixing  
according to  
a three-stage scheme. At the first stage,  
microcomponents were mixed: skim milk, xanthan gum, dyes,  
food flavors. Mixed components were sent to a hopper for  
temporary storage. At the second stage, the mixture prepared at  
the first stage was mixed with maltodextrin, whey protein  
preparation, egg white preparation, vegetable cream, and fructose.  
In the third stage, the mixture prepared at the second stage  
was mixed with sublimated berries. Mixing time was 50-60  
minutes when rotating in a mixer at 50 rpm. After mixing, the  
finished product was put into a weighing batcher and then the  
filling machine. Products were packaged in consumer packaging:  
a jar or bag made of polymeric materials with a measuring spoon  
or in sachets intended for single use. In choosing the components  
and in developing the formulations of the mixtures for protein-  
carbohydrate drinks, the balance of essential amino acids relative  
to the chosen reference protein of FAO/WHO was taken into  
consideration [40]. With this aim in mind, the amino acid balance  
4
Result analysis  
The most important factors contributing to the enhancement  
of muscle protein synthesis required for ensuring high training  
level of the muscle system and its adaptation to power loads  
include the high biological value of food protein, which reflects  
the balance of essential amino acids with respect to the selected  
FAO/ WHO reference protein [40]. To this end, an amino acid  
balance optimization was carried out, namely, quantitative  
assessment of the correspondence of the content of essential  
amino acids and their total balance in the studied protein  
concentrates. The process of optimization involved such criteria  
as amino acid score, the ratio of the amino acid composition utility  
(
U), and the coefficient of comparable redundancy of the essential  
amino acid content (휎 ).  
1523  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1521-1529  
1
1
2
0
8
6
4
2
0
Fonterra 80  
Lactomin 80  
Milkiland 80  
FAO/WHO reference  
Figure 1: The comparative histogram of the essential amino acids content in the studied whey protein concentrates  
To characterize the rationality of using amino acids, proteins  
were qualitatively assessed by the coefficient of amino acid  
composition utility (U) and indicator of comparable redundancy  
the size depend on the process of obtaining the components and  
influence bulk density, flowability, and quick dissolution of the  
finished product. The results of analyzing the distribution of the  
actual particles in the components of maltodextrin and proteins  
are evidence of their different granulometric composition. It  
should be noted that particles of the Fonterra 80 brand whey  
protein dry concentrate and the OVOPROT brand dried egg  
concentrate of albumin represent rather large particles. At the  
same time, most particles in the concentrate of the Milkiland 80  
brand dry whey protein are also linked into agglomerates;  
however, the average size of individual particles in the  
agglomerates in the Milkiland 80 brand whey protein dry  
concentrate is less than the size of the particles in the Fonterra 80  
brand whey protein dry concentrate. Given the results of  
analyzing the actual distribution of particles and functional and  
technological properties (balanced carbohydrate composition and  
solubility), the most rational source of carbohydrates was  
determined to be the GLUSIDEX 19 maltodextrin.  
The high bulk density of the protein or polysaccharides  
concentrate may indicate the presence of a sufficiently large  
number of single particles and minor amounts of agglomerates,  
which, in turn, affects the product dissolution rate. The results of  
analyzing the actual particle distribution in the studied  
components of proteins and polysaccharides are shown in Table  
5. It should be noted that the granulometric composition, the  
shape and the size of particles, the degree of compaction, and their  
mutual arrangement determine important indicators of dry protein  
products such as the wettability and the dissolution rate. The  
change in the rate of protein solubility is shown in Figure 2.  
The obtained graphic dependencies show that the maximum  
dissolution rate of all studied components is observed upon  
increasing the share of maltodextrin in the composition, but given  
the functional orientation of the developed product, the best is the  
protein to carbohydrates ratio of 40:60. This combination of the  
components provides quick dissolution of the product without  
affecting its functionality.  
( ). The content of essential amino acids in the studied protein  
concentrates is shown in Figure 1. Analysis of the histogram of  
the amino acid composition shows that the most balanced relative  
to the reference FAO/WHO protein is dry whey protein  
concentrate of the Fonterra 80 brand. The indicators that  
characterize its amino acid balance (Cmin, U,  ) fully confirm the  
high biological value of protein. The indicators of the amino acid  
balance of the whey proteins are shown in Table 4.  
Table 4: The indicators of the amino acid balance of dry whey  
proteins  
Milkiland Lactomin  
Indicator  
Fonterra 80  
1.00  
80  
80  
The minimum  
score Cmin, share  
units  
The coefficient of  
utility U, share  
units  
0.83  
0.61  
22.92  
0.85  
0.63  
0.67  
The coefficient of  
comparable  
21.53  
18.25  
redundancy  , g  
The concentrates of dry whey proteins (Lactomin 80 and  
Milkiland 80) contain limiting amino acids  phenylalanine and  
tyrosine, which decrease the biological value of these proteins and  
reduce the possibility of their utilization by the organism.  
The factors that determine the solubility of dry protein  
concentrate include the physicochemical properties of particles of  
the product (dispersion, shape, and structure). Since the main  
components of the developed product are maltodextrin, whey  
proteins, and egg albumin, the granulometric composition of  
these components was studied. The particle size distribution and  
1524  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1521-1529  
Table 5: The results of analyzing the actual particles distribution in the studied components of proteins and maltodextrin  
Bulk density indicators, kg/m  
The volumetric  
bulk density  
Mass fraction of particles (in %) of the total weight with their size, µm  
Component names  
Bulk density  
< 5  
5 10  
10  20  
> 20  
Fonterra 80  
Lactomin 80  
Milkiland 80  
238.4 ± 1.2  
367.8 ± 1.1  
455.4 ± 1.4  
282.3 ± 1.3  
390 ± 1.3  
15.5 ± 2.1  
57.1 ± 2. 7  
30.2 ± 3.1  
20.7 ± 1. 5  
26.2 ± 1.8  
25.9 ± 2.0  
27.7 ± 2.4  
30.3 ± 2.4  
47.1 ± 2.3  
12.7 ± 2.7  
34.5 ± 1.8  
43.5 ± 1.1  
6.2 ± 1.7  
4.3 ± 2.4  
7.6 ± 2.1  
5.5 ± 2.0  
313.2 ± 0.9  
268.5 ± 1.4  
OVOPROT egg  
albumin  
GLUSIDEX 19  
Maltodextrin  
2
3
66 ± 1  
35 ± 1.5  
359 ± 1.2  
16.5 ± 2. 1  
30.2 ± 1.8  
50.1 ± 2.3  
7.2 ± 1.7  
50  
40  
30  
20  
10  
0
Fonterra 80+GLUSIDEX 19  
Lactomin 80+GLUSIDEX 19  
Milkiland 80+GLUSIDEX 19  
OVOPROT+GLUSIDEX 20  
20/80  
30/70  
40/60  
50/50  
60/40  
70/30  
The protein/polysaccharide ratio, %  
Figure 2: Change in the speed of proteins solubility depending on their ratio to polysaccharides (Maltodextrin GLUSIDEX 19)  
The highest dissolution rate was observed in the Fonterra 80  
dry whey protein concentrate and the OVOPROT dried egg  
albumin concentrate. This can likely explain the quantitative ratio  
between large and small particles and the presence of  
agglomerates in the composition of these components. The  
dissolution rate and the wettability are significantly affected by  
the temperature of the water in which the product is restored.  
Figures 3 and 4 show the curves that demonstrate the dynamic  
changes of wettability and the dissolution rate of the studied  
components of whey proteins, depending on the water  
temperature. The obtained graphical dependencies show that the  
minimum wetting time and the maximum dissolution rate of all  
studied components are observed in the temperature range  
between 40 and 50 °C. With the water temperature over 50 °C,  
the process of wetting and dissolution deteriorates due to the  
formation of a heavily soluble film on the surface of the product.  
At the same time, among the studied protein concentrates, the best  
values of the studied parameters in the entire temperature range  
were noted in the Fonterra 80 dry whey protein concentrate. This  
is primarily due to the ratio of fine and coarse particles and the  
presence of agglomerates in the concentrate. Thus, analyzing the  
data obtained in studying the physicochemical characteristics and  
the biological value of the studied protein concentrates, a  
conclusion can be made that the use of dry concentrate of the  
Fonterra 80 whey protein will ensure obtaining a product with the  
desired properties following the technological requirements.  
According to the results obtained and based on the chemical  
composition of the ingredients, the formulation of the protein-  
carbohydrate product named Whey protein was calculated, which  
is presented in Table 6.  
3
3
2
2
1
1
50  
00  
50  
00  
50  
00  
Fonterra 80  
Lactomin 80  
Milkiland 80  
5
0
0
1
0
20  
30  
40  
50  
60  
70  
Water temperature, ℃  
Figure 3: The effect of water temperature on the wettability of the studied concentrates of dry whey proteins  
1525  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1521-1529  
50  
40  
30  
20  
10  
0
Fonterra 80  
Lactomin 80  
Milkiland 80  
10  
20  
30  
40  
50  
60  
70  
Water temperature, ℃  
Figure 4: The effect of water temperature on the dissolution rate of the studied concentrates of dry whey proteins  
Table 6: Estimated formulation of dry mixtures of protein-carbohydrate drinks named Whey protein  
Mass fraction of components,%  
Raw material name  
Chocolate  
30.0  
11.0  
5.0  
Vanilla  
30.0  
-
9.0  
20.0  
18.0  
11.4  
0.2  
-
Strawberry  
Raspberry  
Fonterra WPC 80 protein  
Egg albumin  
30.0  
-
30.0  
-
Maltodextrin  
Skim milk  
Fructose  
Vegetable cream  
Xanthan gum  
Cocoa powder  
Carmine  
9.0  
20.0  
18.0  
10.0  
0.2  
-
9.0  
20.0  
18.0  
10.0  
0.2  
-
0.2  
-
-
20.0  
15.0  
6.6  
0.2  
12.0  
-
-
0.2  
-
0.2  
-
Carotene  
-
Chocolate food flavour  
0.2  
-
Vanilla food flavour  
-
0.2  
-
-
Strawberry food flavour  
Raspberry food flavour  
Strawberry Sublimated Powder  
Raspberry Sublimated Powder  
-
-
-
-
-
-
-
-
0.2  
-
1.4  
-
-
0.2  
-
1.4  
Following the developed formulation and production  
technology, samples of the specialized protein-carbohydrate  
product Whey protein have been developed. The nutritional and  
energy value of the developed product is shown in Table 7. The  
physicochemical and organoleptic characteristics of the finished  
product have been studied. The organoleptic characteristics of dry  
protein-carbohydrate products and ready drinks (cocktails) are  
shown in Tables 8 and 9. The samples of dry protein-carbohydrate  
concentrate and ready drinks have high organoleptic value. The  
main physicochemical characteristics of the product are shown in  
Table 10. The product is an easily soluble powder with the  
maximum duration of dissolution (without a stirrer) of 230  250  
sec.  
Table 7: Nutritional and energy value of the dry protein and carbohydrate product for athletes, per 100 g of the product  
Indicator name  
Indicator value  
401.5  
Calorific value, kcal  
Mass fraction of moisture, %, not more than  
Mass fraction of carbohydrates, g,  
Mass fraction of protein, g,  
Mass fraction of fat, g  
5.0  
59.8  
33.18  
3.23  
1526  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1521-1529  
Table 8: Organoleptic characteristics of dry protein-carbohydrate products  
Dry protein concentrates characteristic  
Name  
Appearance  
Taste and smell  
Color  
The smell of chocolate, the taste is sweet  
with a hint of chocolate, without foreign  
tastes and odors  
Whey protein with chocolate  
flavor  
Powdered. Easily crumbling lumps  
are allowed  
brown,  
homogeneous  
The smell of vanilla, the taste is sweet  
with a hint of vanilla, without foreign  
tastes and odors  
Whey protein with vanilla  
flavor  
Powdered. Easily crumbling lumps  
are allowed  
beige,  
homogeneous  
The smell of strawberries, the taste is  
sweet with strawberry flavor, without  
foreign tastes and odor  
Whey protein with  
strawberry flavor  
Powdered. Easily crumbling lumps  
are allowed  
light pink,  
homogeneous  
The smell of raspberry, the taste is sweet  
with raspberry flavor, without foreign  
tastes and odor  
Whey protein with raspberry  
flavor  
Powdered. Easily crumbling lumps  
are allowed  
light pink,  
homogeneous  
Table 9: The organoleptic indicators of ready protein-carbohydrate drinks  
The characteristic of ready protein concentrates  
Name  
Appearance  
Taste and smell  
Color  
Turbid liquid according to the  
recipe, without foreign  
inclusions.  
Turbid liquid according to the  
recipe, without foreign  
inclusions.  
The taste is distinct, sweet, or sour-sweet with  
the aroma of chocolate, according to the  
recipe, without foreign tastes and odors.  
The taste is distinct, sweet, or sour-sweet with  
the aroma of vanilla, according to the recipe,  
without foreign tastes and odors.  
Whey protein with chocolate  
flavor  
Brown,  
homogeneous  
Whey protein with vanilla  
flavor  
Pale yellow,  
homogeneous  
Turbid liquid according to the  
recipe, with the inclusion of  
strawberries  
Turbid liquid according to the  
recipe, with the inclusion of  
raspberries  
The taste is distinct, sweet, or sour-sweet with  
the aroma of strawberries, according to the  
recipe. Without foreign tastes and odors.  
The taste is distinct, sweet, or sour-sweet with  
the aroma of raspberries, according to the  
recipe. Without foreign tastes and odors.  
Whey protein with strawberry  
flavor  
Light pink,  
homogeneous  
Whey protein with raspberry  
flavor  
Light pink,  
homogeneous  
Table 10: The main physicochemical characteristics of the developed product  
Indicator Analysis result  
Mass fraction of moisture, %  
Mass fraction of protein, %  
Mass fraction of fat, %  
5.32 ± 0.2  
33.18 ± 0.1  
3.23 ± 0.19  
4.82 ± 0.13  
59.8 ± 0.13  
Mass fraction of ash, %  
Mass fraction of carbohydrates, %  
3
Solubility index, cm of the wet residue  
0.5  
± 0.08  
protein-carbohydrate food products for athletes, rapid progress  
has been outlined; however, industrial production in Russia is  
very limited, and the technology itself requires objective scientific  
justification of the principles of their creation. In connection with  
the foregoing, the development and practical implementation of  
the technology of dry mixtures of protein-carbohydrate drinks for  
sports nutrition is relevant.  
The composition of dry mixtures of protein-carbohydrate  
drinks is substantiated based on indicators of nutritional and  
biological value, as well as the functional orientation of the  
ingredients. The dissolution rate and viscosity of Whey and egg  
proteins were determined depending on the polysaccharide  
content in the model “protein-polysaccharide-water” system. The  
efficient ratio of 1:2 of the protein to the carbohydrate component  
5
Conclusion  
The nutrition problem is essential for athletes. The special  
physiological conditions that power and speed-power athlete  
experiences, lead to the increasing demands for nutrients, in  
particular, carbohydrates with different chain lengths, easily  
digestible proteins and basic micronutrients. However, daily  
nutrition does not ensure the intake of a sufficient amount of  
proteins and carbohydrates, and also does not guarantee their  
necessary ratio. One of the ways to solve this problem is the  
inclusion in the diet of athletes of specialized protein-  
carbohydrate products with the high biological value being able  
to quickly restore glycogen stores in the muscles and liver and  
prevent muscle protein loss during intense training. In recent  
years, in the field of development and application of specialized  
1527  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1521-1529  
was determined, at which the reduced product in a given ratio  
provided its functional properties. Changes in the basic  
physicochemical parameters of the finished product, based on a  
change in the particle size distribution and bulk density of the  
product during dry mixing, were investigated. The influence of  
technological production modes on product quality indicators was  
studied. The nutritional value of dry mixtures of protein-  
carbohydrate drinks for sports nutrition was determined.  
Enhancement of Sport Performance. Carmel, CA: Benchmark Press;  
1
991. p. 35-85.  
5
6
.
.
Zoorob R, Parrish ME, O’Hara H, Kalliny M. Sports Nutrition Needs:  
Before, During, and After Exercise. Primary Care: Clinics in Office  
Available  
from:  
Balykova LA, Ivansky SA, Piksajkina OA, Efimova YuA. Rationale  
for the use of L-Carnitine in sports medicine. Sports medicine:  
science and practice. 2011; 1:2229.  
The technological requirements for the developed product  
were selected and systematized. The mass fraction of  
carbohydrates in the product was 59.8%; the carbohydrate  
component of the product includes mono- and polysaccharides in  
a ratio of 1:5; the mass fraction of proteins in the product was  
7. Bonfanti N, Jimenez-Saiz SL. Nutritional Recommendations for  
8
.
Broughton D, Fairchild RM, Morgan MZ. A survey of sports drinks  
consumption amongst adolescents. British Dental Journal. 2016;  
Available  
from:  
3
3.2%; essential amino acids score in the protein complex is equal  
to or higher than one. The form of production of the product was  
a dry powder, which ensures the long-term preservation of the  
nutritional value and makes it possible to vary the calorie content  
and the number of incoming nutrients when consumed in the form  
of a drink.  
In terms of safety (the content of toxic substances, pesticides,  
antibiotics, radionuclides), as well as microbiological indicators,  
the product meets the requirements for food products and the  
requirements of the Technical Regulations of the Customs Union  
9. Khanferyan RA, Radzhabkadiev RM, Evstratova VS, Galstyan A,  
Khurshudyan SA, Semin VB, et al. Consumption of carbohydrate-  
containing beverages and their contribution to the total calorie content  
1
0. Jacob R, Lamarche B, Provencher V, Laramée C, Valois P, Goulet C,  
Drapeau D. Evaluation of a Theory-Based Intervention Aimed at  
Improving Coaches’ Recommendations on Sports Nutrition to Their  
Athletes. Journal of the Academy of Nutrition and Dietetics. 2016;  
Available  
from:  
On the safety of food products”, (TR TS 021/2011). According  
to the requirements, a daily serving of this product provides from  
0 to 60% of the athlete’s daily demand for complete protein and  
11. Artemova EK, Savko ID, Shahgeldyan FG. O metabolicheskoi  
reaktsii organizma na fizicheskie nagruzki razlichnogo kharaktera  
4
[About metabolic reactions of the organism to the physical loads of  
carbohydrates. Developed dry specialized protein-carbohydrate  
mixtures are suppliers of carbohydrates and proteins and also  
contain various flavoring substances.  
various nature]. In: Physiology of muscular activity. Papers presented  
at the International Conference "Physiology of Muscular Activity",  
held at Moscow, November 21-24, 2000. Moscow, Russia:  
Fizkul'tura, obrazovanie i nauka; 2000. p. 20-21.  
Ethical issue  
12. Voronoy A, Manko P, Yakovleva E. Obzor rynka sportivnogo  
pitaniya goroda Sankt Peterburga [Overview of the sports nutrition  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
market  
in  
St.  
Petersburg];  
2003.  
Available  
from:  
https://www.marketing.spb.ru/mr/food/sport_02.htm  
(
avoidance of guest authorship), dual submission, manipulation  
1
3. Davletova NH, Ivanov AV, Tafeeva TA. Analiz ratsionalnosti  
pitevogo rezhima studentov-sportsmenov razlichnykh spetsializatsii  
Analysis of the rationality of the drinking conditions of sports  
students of various specializations]. Hygiene and sanitation. 2016;  
95(10):988991.  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
1
1
4. Ershova TA, Bozhko SD, Chernyshova AN. Razrabotka sukhikh  
smesei napitkov dlya sportsmenov  
v
period sorevnovanii  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Development of dry mixtures for drinks for athletes during  
competition]. Food industry. 2018; 2:6468.  
5. Lavrinenko SV, Vybornaya KV, Kobelkova IV. Ispolzovanie  
spetsializirovannykh produktov dlya pitaniya sportsmenov  
v
podgotovitelnom periode sportivnogo tsikla [The use of specialized  
products for sportsmen nutrition during the preparatory period of the  
sports cycle]. Problems of nutrition. 2017; 86(4):99103.  
6. Lygina NI, Rudakova OV, Soboleva YP. Ekonomicheskie faktory  
razvitiya rynka funktsionalnykh pishchevykh produktov [The  
economic factors of the market of functional food products  
development]. Socioeconomic phenomena and processes. 2014;  
9(11):115121.  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing.  
1
References  
1
2
3
.
.
.
Blom PCS, Hostmark AT, Vaage O, Kardel KR. Effect of different  
post-exercise sugar diets on the rate of muscle glycogen synthesis.  
Medicine and Science in Sports and Exercise. 1987; 19:491496.  
Latkov NYu, Vekovtsev AA, Koschelev YuA, Bakaytis VI. Relevant  
problems of sports nutrition. Food and Raw Materials. 2015; 3(1):77-  
17. Yukendrup A. Rol uglevodov vo vremya dvigatelnoi aktivnosti  
(rezultaty issledovanii, voploshchennye prakticheskikh  
v
rekomendatsiyakh) [The role of carbohydrates during physical  
activity (the results of studies in practical recommendations)].  
Science in Olympic sports. 2014; 1:3136.  
8
5.  
Arenas-Jal M, Suñé-Negre JM, Pérez-Lozano P, García-Montoya E.  
Trends in the food and sports nutrition industry: A review. Critical  
18. Close GL, Hamilton DL, Philp A, Burke LM, Morton JP. New  
Strategies in Sport Nutrition to Increase Exercise Performance. Free  
4
.
Maughan RJ. Carbohydrate-electrolyte solutions during prolonged  
exercise. In: Lamb DR, Williams MH, editors. Perspectives in  
Exercise Science and Sports Science. Vol. 4. Ergogenics: The  
1528  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1521-1529  
1
2
2
2
9. Cordrey K, Keim SA, Milanaik R, Adesman A. Adolescent  
0. Coyle EF. Timing and method of increased carbohydrate uptake to  
copy with heavy training, competition and recovery. Journal of  
Sports Science. 1991; 9(S):2952.  
application, control]. Kemerovo, Russia: Kuzbassvuzizdat; 2011.  
275 p.  
36. Technical Regulations of the Customs Union 027/2012 “On safety  
of special foodstuff including dietic clinical and dietic protective  
nutrition” adopted by the Council of the Eurasian Economic  
Commission Decision No 34 on June 15, 2012, and came into force  
on July 1, 2013.  
38. Latkov NYu, Poznyakovskiy DV, Avstrievskyh AN.  
1. Diel F, Khanferyanb RA. Sports and energy drinks. Foods and Raw  
Available  
from:  
2. Granato D, Sávio Nunes D, Barba FJ. An integrated strategy  
between food chemistry, biology, nutrition, pharmacology, and  
statistics in the development of functional foods: A proposal. Trends  
3. Uluko H, Liu L, Lv J-P, Zhang Sh. Functional Characteristics of  
Milk Protein Concentrates and Their Modification. Critical Reviews  
in Food Science and Nutrition. 2016; 56(7):1193-1208.  
4. Khanferyan RA. Specialized sports and tonic drinks: pharmacology  
of the main components, safety. Sports medicine: science and  
practice. 2016; 6(4):6166 (in Russian).  
5. Shi X, Summers RW, Schedl HP, Flanagan ShW, Chang R-T,  
Gisolfi CV. Effect of carbohydrate type and concentration and  
solution osmolality on water absorption. Medicine and Science in  
Sports and Exercise. 1995; 27:16071615.  
6. Millard-Stafford M, Warren GL, Thomas LM, Doyle JA, Snow T.  
Recovery from run training: Efficacy of carbohydrateprotein  
beverage. International Journal of Sport Nutrition and Exercise  
Metabolism. 2005; 15:610624.  
7. Novokshanova AL, Ozhiganova EB. Sportivnye napitki:  
regidratatsiya organizma kak zhiznenno vazhnyi aspekt [Sports  
drinks: rehydration of the organism as a vital aspect]. Problems of  
nutrition. 2013; 6:67-70.  
Experimentalnoe obosnovaniye  
I
prakticheskaya realisatsia  
ratsionov pitanya dlya sportsmenov razlichnoy qualificacii  
[Experimental justification and practical realization of diet for  
2
2
2
sportsmen of various qualification]. Tekhnika  
i tekhnologiia  
pishchevykh proizvodstv [Food Processing: Techniques and  
Technology]. 2010; 3(18):77-81.  
39. Khanferyan RA. Tonic (energy) drinks: the main components,  
efficiency and safety. Doctor. 2016; 10:7275 (in Russian).  
40. Winnick JJ, Davis JM, Welsh RS, Carmichael MD, Murphy EA,  
Blackmon JA. Carbohydrate Feedings during Team Sport Exercise  
Preserve Physical and CNS Function. Medicine and Science in  
2
2
2
8. RBC. Market study. Analiz rynka funktsionalnykh napitkov v Rossii  
v 2008  2012 gg., prognoz na 2013  2017 gg. Analysis of the  
market of functional drinks in Russia in 2008  2012, forecast for  
2
013  
2017];  
02.09.2013.  
Available  
from:  
https://marketing.rbc.ru/research/28090/  
2
3
3
9. Van Loon LJ, Saris WH, Kruijshoop M. Maximizing postexercise  
muscle glycogen synthesis: carbohydrate supplementation and the  
application of amino acid or protein hydrolysate mixtures.  
AmJ.CIin.Nutr. 2000; 72:106111.  
0. Betts JA, Stevenson E, Williams C, Sheppard C, Grey E. Recovery  
of endurance racing capacity: effect of carbohydrateprotein  
mixtures. International Journal of Sport Nutrition and Exercise  
Metabolism. 2005; 15:590609.  
1. Avstrievskyh AN, Vekovcev АА, Poznyakovskiy VM. Produkty  
zdorovogo pitaniya: novye technologii, obespechenye kachestva,  
effectivnost’ primeneniya [Products of healthy nutrition: new  
technologies, quality assurance, application efficiency].  
Novosibirsk, Russia: Sib. Univ. Publ.; 2005. 416 p.  
3
3
2. Ejike CECC, Collins SA, Balasuriya N, Swanson AK. Prospects of  
microalgae proteins in producing peptide-based functional foods for  
promoting cardiovascular health. Trends in Food Science and  
Available  
from:  
3. Semenov VА, Latkov NU, Koshelev YuA, Poznyakovskiy VМ.  
Primenenye pantogematogena v sportivno-meditsinskoy praktike  
[Application of panthogematogen in sports medicine]. Tekhnika i  
tekhnologiia pishchevykh proizvodstv [Food Processing:  
Techniques and Technology]. 2014; 2:113-117.  
3
3
4. Master PBZ, Macedo RCO. Effects of dietary supplementation in  
sport and exercise: a review of evidence on milk proteins and amino  
5. Poznyakovskiy VМ, Gur’anov YuG, Bebenin VV. Pisheviye I  
biologicheski aktivniye dobavki: harakteristika, primeneniye,  
kontrol’ [Food and biologically active additives: characteristics,  
1529