Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1491-1497  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/1497  
Development of a Mathematical Model for Kinetics  
of Obtaining Isocyanate via a Non-Phosgene  
Method for Example Benzylisocyanate  
1
2
Dashkin R. R. , Shishanov M. V.  
1Head of the MUCTR Engineering center, D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia, 20 Geroyev Panfilovtsev str.,  
Moscow  
2
Leading engineer of the MUCTR Engineering center, D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia, 20 Geroyev  
Panfilovtsev str., Moscow  
Received: 02/07/2020  
Accepted: 08/10/2020  
Published: 20/12/2020  
Abstract  
The paper considers theprocess of developing a mathematicalmodel for kineticsof obtainingisocyanates via a non-phosgene method  
non-catalytic thermolysis of carbamates. A mathematical model is presented, kinetic parameters such as activation energy and a pre-  
exponential multiplier are ascertained.  
Keywords: Isocyanate production, non-phosgene technology, mathematical model, thermolysis of carbamates, kinetics of  
decomposition  
equilibriumof the decomposition reaction will shifttowards the  
1
Introduction  
formation of the target isocyanate, ensuringa satisfactory yield  
of the product. For today, the process of obtaining isocyanates  
by decomposing carbamates remains poorly understood, in  
particular, the kinetic data of the reaction are almost absent. In  
the conditions of growing demand for isocyanate raw materials  
both in Russia and on the world market, as well as the lack of  
industrially applicable phosphorless technology for producing  
isocyanates, the study of the method for obtaining isocyanates  
by thermal decomposition is an extremely relevant area of  
research. Due to the need to studythe kineticsof the carbamates  
decomposition, a mathematical model for the kinetics of the  
obtaining benzylisocyanate reaction was constructed with the  
determination of kinetic parameters  the pre-exponential  
Isocyanates are one of the most relevant products of the  
chemical industry, as they are primary products for the  
polyurethanes production, which are used in construction, in  
the production of automotive parts, insulation materials,  
paintwork products, adhesives, paints, fillers for upholstered  
furniture (1). The main method for obtaining polyurethanes is  
the interaction of isocyanates by nucleophilic addition of  
polyols (2). In addition, isocyanates are valuable intermediates  
in organic synthesis of pesticides and other biologically active  
substances (3). Despite the wide range of applications of  
isocyanates in the world practice, the main method of  
production is still the technology using phosgene (4-7), which  
makes production unecological, and modern standards and  
requirements for the protection of human health and the  
environment leads to an urgent need to develop an  
environmentally friendly method for obtaining isocyanates.  
It is known that esters of N-substituted carbamic acid can  
be precursors in the synthesis of isocyanates. The method of  
obtaining isocyanates (8,9), which consists in splitting alcohol  
from carbamate when heated or with various catalysts (Fig. 1),  
can be called one of the most promising.  
multiplier and the activation energy (k  
0 A  
and E ) from  
experimental data. The mathematical model will allow to scale  
the process and work out critical parametersat the design stage  
for a semi-industrial plant with non-isothermal conditions in  
the reactor.  
1
.1 Experimental part  
The mathematical model was constructed using  
experimental data obtained using a plant for thermal  
decomposition of carbamates. To develop the kinetic model,  
we conducted a series of experiments using an experimental  
setup, the flow diagram of which is shown in figure 2. The  
Decomposed carbamate was pre-mixed with an inert gas  
(
argon) and the mixture was heated to a predetermined  
Figure 1: The general scheme of the carbamates decomposition  
reaction  
temperature in unit 1. Further, the mixture was delivered in  
gaseous form to the unit 2 (reactor), where the process of  
carbamate decomposition took place and the formation of a  
products mixture with target isocyanate and alcohol. Then the  
reaction products were fed to the sorption unit 3, where the  
sorption solution was located. In this unit, the product of the  
carbamate decomposition reaction (isocyanate) reacted with N-  
methylbenzylamine to form urea, and the inert carrier gas  
partially together with alcohol went into the waste gases.  
The complexity of implementing this method in industry is  
related to the reversibility of the reaction. However, there are  
ways to shift the balance towards product formation by  
reducing the concentration of one of the products. So in  
practice, a promising solution to this problem can be the  
rectification of a products mixture, as a result of which the  
alcohol will be removed from the resulting mixture. Thus, the  
1491  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1491-1497  
Carbamate  
Urea  
Reagent mixing and  
heating (200 C)  
Isocyanate binding by  
Reactor  
Unit 2  
o
N-methylbenzylamine  
Inert gas and  
Inert gas (Ar)  
alcohol  
Unit 3  
Unit 1  
Figure 2: The block diagram of the experimental plant of carbamate thermolysis  
The inert gas in the carbonate decomposition was used to  
reduce the partial pressure in order to shift the equilibrium of  
the reaction towards the products. In addition, this method was  
able to reduce the vapor pressure of carbamate, which reduces  
its boiling point. This made it possible to conduct experiments  
in temperatureranges which were convenient and implemented  
in practice. The transformation of a substance into a gas phase  
in the heating unit is necessary to separate the processes of  
evaporation and decomposition in space, which allowed us to  
more accurately study the features of the decomposition  
reaction. The reaction was performed in a flow-through tube-  
type reactor. A sketch of the reactor used is shown in figure 3,  
indicating the dimensions and the designation of the inlet and  
outlet holes. The choice of this type of reactor is determined by  
the type of chemical reaction and the ability to conduct the  
process continuously.  
If the above conditions are met, the effect of reverse mixing  
can be ignored, since the temperature and concentration of the  
reaction mixture components do not change along the cross-  
section of the reactor. The hydrodynamic mode of the  
experimentalreactor was determinedby the abruptintroduction  
of the initial carbamate into it without external heating as a  
tracer (i.e., by the step perturbation method). Based on the  
measurement of its concentration at the reactor outlet, the  
system response curves were obtained (Fig. 5).  
The reactor was heated using an electric heating element  
located on the outer surface of the metal tube of the reactor. In  
this case, the temperature profile inside the reactor cannot be  
set constant along the length of the entire reactor, because there  
are zones of heating the gas phase entering the reactor and  
zones of cooling the reactor to the external environment at its  
ends. In addition, the temperatureprofile along the length of the  
reactor depends on the maximum temperature in the middle of  
the reactor and velocity of the carrier gas (Fig. 4).  
1
.2 A mathematical model for the kinetics of carbamates  
thermal decomposition  
To solve the problem of modeling the decomposition of  
carbamate, the necessary calculations of the material and heat  
balances were performed. The following conditions were used  
for the permanent section tube reactor:  
1. The operating mode must ensure uniformity of  
parameters across the reactor cross-section, this is provided  
either by the turbulent gas flow mode (high flow rates) or by  
using distribution nozzles inside the reactor;  
Figure 3: Sketch of an experimental reactor.  
2. The ratio of the reactor length to the cross-section  
diameter l/D must be more than ten units (in our case, the ratio  
is 18).  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
Tmax=600  
T
m
a
x
=500  
Tmax=400  
0
2
4
6
8
10  
l, cm  
12  
14  
16  
18  
20  
Figure 4: Profiles of temperature along the length of reactor at different temperatures and the carrier gas velocity.  
1492  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1491-1497  
0.01  
0.008  
0.006  
0.004  
0.002  
0
IV  
III  
II  
I
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Time,sec  
Figure 5: F-curves of response for the ideal displacement reactor (I) and the investigated reactor at different speeds of the carrier gas supply (II-IV)  
Figure 6: Diagram of flow modes in the reactor (a  an ideal displacement reactor, b  a laminar flow mode, c  a turbulent flow mode)  
The logarithmic nature of the obtained graph allows us to  
conclude that the most suitablemodel for describingthe reactor  
used is the ideal displacement reactor (Fig. 6). Therefore, this  
model was used for further calculations for the tube reactor  
used.  
i
where  is the concentration of the j-th product, mol/L; τ is  
astronomical time of the process, sec; w is linear flow rate,  
m/sec; υ is stoichiometric coefficient of the substance in the  
ij  
reaction; r is invariant speed of the i-th stage of the process,  
i
2
mol/sec; and D is diffusion coefficient of the substance, m /sec.  
j
In the framework of the model of an idealdisplacementreactor,  
it can be assumed that there is no transfer of the substance by  
diffusion and reverse mixing (푑푖푣(퐷 푔푟푎푑 ꢀ ) = 0). Thus,  
1
.3 Material balance for a perfect displacement reactor  
Schematically the decomposition reaction of the  
investigated carbamate can be represented as follows:  
j
the change in the concentration of the substance c occurs only  
in the coordinate l, and the material balance equation will have  
the form:  
휕푐푗  
휕(푐∙ꢆ)  
휕푙  
ꢂꢃ1  
+
= ∑ 푣  푟ꢂ  
1.2  
휕휏  
In the course of experiments, the steady temperature  
profile, the carrier gas flow rate and the ratio of reagents are  
maintained, and the data obtained after the process enters  
stationary mode are taken into account when processing the  
The general equation of a non-stationary mass transferwith  
sources (10):  
휕푐푗  
휕푐푗  
휕휏  
ꢂꢃ1  
+
푑푖푣(ꢀ ∙ 푤) = ∑ 푣ꢂꢁ  푟 + 푑푖푣ꢄ퐷 푔푟푎푑 ꢀ ꢅ  
1.1  
results, so we can assume 휕휏 = 0, then:  
ꢇ(푐∙ꢆ)  
ꢇ푙  
ꢂꢃ1  
=
  푟ꢂ  
1.3  
1493  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1491-1497  
푚ꢜ1  
푡표푡ꢐꢑ  
j
Assuming that c is the concentration of component A  
푋 = 푆 ∙ (ꢍ )  
∙ 푘 ∙푒푥ꢘ ꢊ−  
ꢋ ∙ ꢊ  
ꢈ  
ꢇ푙  
ꢙ  
푅푇ꢄ푙ꢅ  
푁 ∙푅∙푇ꢄ푙ꢅ  
 = 푉  
1.4  
̇
ꢄꢚ  푋 ꢅ푚  
2.6  
̇
А
where где N is the mole flow of component A, mol/sec and V  
is volume flow, L/sec. Hence, the material balance for a simple  
reaction with varying volume:  
Thus, we obtained a differential dependence of the degree  
of transformationof substanceA along the lengthof the reactor,  
taking into account the molar flow of the inert gas, the molar  
flow of substance A at the entrance to the reactor and the  
temperature profile.  
ꢇꢄꢆ∙ꢉꢅ  
=
−푣 ∙ 푟  
1.5  
ꢇ푙  
1
.4 Thermal balance for a perfect displacement reactor  
Due to the fact that the temperatureprofile along the length  
The equation for the rate of chemical reaction for substance  
A:  
of the reactor is ascertained and it does not depend on the flow  
of a chemical reaction inside the reactor, since the reaction is  
performed at high dilution, there is no need to compile a heat  
balance. To mathematically describe the temperature profile  
along the length of the reactor at different carrier gas flows, a  
polynomial function of the temperature of the reactor length  
and the volume flow of the inert gas is constructed (2.7). Then  
the resulting polynomial is substituted in (2.6).  
푟 = 푣 ∙ 푟 = 푘 ∙ ꢄ퐶 ꢅ  
1.6  
1.7  
where m is reaction order and substitute in (1.3).  
ꢈ  
ꢊ푤 ∙ ꢋ = −푘 ∙ ꢄ퐶 ꢅ푚  
ꢇ푙  
̇
where = 푆 is a cross sectional area.  
ꢟ = ꢟꢄꢠ, ꢍꢅ  
2.7  
1
ꢇ푁ꢈ  
=
−푘 ∙ ꢄ퐶푚  
1.8  
ꢇ푙  
1.5 Determination of kinetic parameters based on  
experimental data  
Under process conditions, the volume flow depends on  
temperature and can be expressed using the ideal gas law with  
a correction compressibility coefficient, since  ≫ ꢍ (the  
In equation (2.6),  (an activation energy),  (a pre-  
exponential multiplier) and  (the reaction order) remain  
unknown. These parameters are unique for each carbamate. In  
this paper, the kinetics of N-benzyl-O-methylcarbamate  
decomposition at different temperature profiles is considered.  
Due to the fact that the decomposition reaction of carbamate is  
reversible, to determine the concentration of the formed  
benzylisocyanate at the exit from the reactor, it is bound by  
interaction with a secondary amine (methylbenzylamine),  
which leads to the urea formation.  
ꢎ  
ratio  
in experimental conditions from 29 to 1760). This  
ꢈ  
allowed us to get the function of the volume flow from the  
temperature.  
푡표푡ꢐ∙푅∙푇  
푍∙푃푡표푡ꢐꢑ  
∙푅∙푇  
̇
ꢏ =  
=
2.1  
푍∙푃푡표푡ꢐꢑ  
where Z is a compressibility factor, Z is equal of 1 for  
incompressible gas;  is the mole flow rate of the carrier gas,  
mol/sec;  is the gas constant; and  is the pressure in the  
reactor, Pa. The concentration of component A in terms of  
molar flows and temperature at a given temperature profile  
along the length of the reactor, dependingon the velocity of the  
carrier gas:  
Figure 7: Reaction of the urea formation in the sorption unit  
ꢈ  
∙푃푡표푡ꢐꢑ  
∙푅∙푇ꢄ푙ꢅ  
A sample was taken from the resulting solution, and the  
concentration of urea and unreacted carbamate was determined  
using the HPLC method. Based on the results of the analysis,  
the degree of carbamate transformation was calculated for a  
seriesof experimentswith different volume flow of an inertgas  
and at different temperature profiles. Time, when the mixture  
was in the reactor, was derived from the ideal gas law equation,  
representing the internal volume of the reactor as the  
composition of the cross-section area by the length ꢄ푑ꢏ =  
푆푑퐿ꢅ:  
 = 푉  
=
2.2  
The dependence of the reaction rate constant on the  
temperature according to the Arrhenius equation:  
푘 = 푘 ∙푒푥ꢘ ꢊ−  
2.3  
푅푇ꢄ푙ꢅ  
The molar flow of a substance in terms of the degree of  
transformation:  
ꢌꢇ푙  
ꢇ휏  
푅푇ꢄ푙ꢅ  
푡표푡ꢐꢑ  
ꢍ = ꢍ ∙ ꢄꢚ − 푋ꢅ  
2.4  
=
2.8  
ꢙ  
Substituting the obtained expressions (2.2), (2.3) and (2.4)  
in equation (1.7), we get:  
After separating the variables and integrating both parts of  
the equation, we get:  
1
ꢇ푙  
푅  
ꢊꢍ  ꢄꢚ − 푋 ꢅꢋ = − ꢊ푘 ∙푒푥ꢘ ꢊ−  
ꢋ ꢋ ∙  
ꢇ푙  
푅푇ꢄ푙ꢅ  
= 푃  
∫ 푑ꢤ  
2.9  
푇ꢄ푙ꢅ  
푡표푡ꢐꢑ  
ꢊ푁∙ꢄ1ꢜꢅꢋ∙푡표푡ꢐꢑ  
∙푅∙푇ꢄ푙ꢅ  
2.5  
Then, the residence time of the mixture in the reactor is ,  
which will depend on the temperaturefunction along the length  
of the reactor.  
Open the brackets and make the equation clear:  
1494  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1491-1497  
Table 1: Dependence of the transformation degree on the temperature mode of the reactor  
Maximum temperature in the  
The molar flow of the carrier  
gas, N (mol/sec)  
Time when the mixture was in the  
Degree of  
transformation, X  
reactor, Тreactor (˚C)  
reactor, τ (sec)  
1
0
0
2
0
2
0
2
0
2
0
2
0
0
0
0
0
0
0
0
0
0
0
1
2
,880  
,948  
,540  
,703  
,322  
,577  
,164  
,577  
,078  
,363  
,045  
,272  
,036  
,043  
,054  
,072  
,109  
,145  
,218  
,273  
,364  
,546  
,729  
,367  
,188  
1
2
3
4
5
6
7
8
9
250  
300  
350  
350  
400  
400  
450  
450  
500  
500  
550  
550  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
0,08  
0,15  
0,25  
0,05  
0,4  
0,664  
0,547  
0,691  
0,878  
0,589  
0,897  
0,791  
0,923  
0,732  
0,964  
0,611  
0,987  
0,755  
0,797  
0,962  
0,786  
0,901  
0,923  
0,948  
0,965  
0,979  
0,985  
0,991  
0,998  
0,994  
0,05  
0,75  
0,05  
1,50  
0,05  
2,50  
0,05  
3,00  
2,5  
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
2,00  
1,5  
1,00  
0,75  
0,50  
0,40  
0,30  
0,20  
0,15  
0,08  
0,05  
ꢌ푃푡표푡ꢐꢑ  
푅  
ꢇ푙  
푚ꢜ1  
퐸∙13  
ꢤ =  
3.0  
 = 푋 + ꢊ푆 ∙ (ꢍА)  
∙ 푘 ∙ 푒푥ꢘ ꢊ−  
ꢋ ∙  
푅∙ꢄ푇ꢄ1ꢗꢗ∙푙 ꢅꢪ27ꢫꢅ  
ꢗ 푇ꢄ푙ꢅ  
푡표푡ꢐꢑ  
∙ ꢄꢚ − 푋 ꢅ ꢋ ∙ ℎ  
3.1  
As a result, the degree of transformation data was obtained.  
∙푅∙ꢄ푇ꢄ1ꢗꢗ∙푙ꢅꢪ27ꢫꢅ  
This conversion rate corresponds to the conversion rate at the  
end of the reactor:  
푖 = 0. . ꢬ − ꢚ  
. . = 푋 푓.ꢅ  
where  =  and  = 0. Assuming that the order of the  
carbamate decomposition reaction is =1, it is possible to find  
the remaining kinetic parameters by determining the minimum  
deviation of the function from the experimental data. Data for  
other orders of reaction  are not included due to the  
inadequacy of the data obtained. For this purpose, the  
minimization function (3.3) was established, which allows to  
To determine the kinetic parameters, it is necessary to  
represent the degree of transformation of А as a finite-  
difference approximation by means of Taylor series expansion.  
To solve this problem, it is necessary to represent the length of  
the reactor as a set of n segments of finite length and to  
determine the degree of transformation  on each segment. In  
ꢧ  
A 0  
find the values of E and k using the gradient descent method  
this case, as a result of numerical integration of a nonlinear  
differential equation with the parameter:  
based on experimentaldata (the reactor temperatureprofile, the  
carrier gas flow, and the degree of transformation). A  
difference scheme is an explicit Euler scheme.  
1495  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1491-1497  
ꢄꢡ, 푘ꢅ  
The error of the obtaineddata was estimatedusingthe mean  
square error (MSE) (3.5) and was 0.009.  
 = 0  
ꢍ = ꢚ000  
ℎ =  
푀푆ꢡ =  
ꢥꢦ푝  푋푚ꢕꢇ2  
ꢭꢮ푟 ꢯ = 0 … ꢍꢥꢦ푝  ꢚ  
ꢭꢮ푟 ꢯ = 0 … ꢍ − ꢚ  
ꢂꢃ1  
 = 푖 ∙ ℎ  
=
ꢡ ∙ ꢚ0ꢫ  
푚ꢜ1  
= 1.84·105  
a 0  
Thus, the values of E = 54.22 kJ/mol and k  
were obtained. The reaction rate constant was calculated from  
the Arrhenius equation.  
푆 ∙ (ꢍ )  
∙ 푘  exp ꢛ−  
ꢔꢕꢔꢖ푙  
ꢞ ∙  
ꢒ ∙ ꢄꢟꢄꢚ00 ∙ ꢠ + ꢳꢴꢵꢅ  
ꢭ푋 = 푋 +  
 − 푋푚  
  ꢒ ∙ ꢄꢟꢄꢚ00 ∙ ꢠ + ꢳꢴꢵꢅ  
 = 푋푗  
2
2 Conclusion  
 푋ꢾꢿ  
ꢄꢵ.ꢳꢅ  
During the work, kinetic data for the thermal  
decomposition of N-benzyl-O-methylcarbamate were obtained.  
Good convergence of the results indicates that the system of  
differential equations describes the process of carbamate  
decomposition quite accurately. Based on the results a  
mathematical model was developed. It allows to carry out  
engineering calculations of reactors for obtaining isocyanates  
by non-phosgene method. For the reaction of thermal  
decomposition of N-benzyl-O-methylcarbamate, the values of  
As a minimization criterion in this function, the quadratic  
loss function of two vectors was used: the vector of the  
transformation degree for experimental data and the vector of  
calculated data. As a result, the following values are obtained:  
Experiment #  
ꢇ  
0,651  
0,588  
0,703  
0,863  
0,693  
0,863  
0,692  
0,899  
0,641  
0,963  
0,638  
0,951  
0,731  
0,787  
0,988  
0,92  
0,977  
0,925  
0,933  
0,966  
0,988  
0,992  
0,995  
0,999  
1
ꢥꢦ푝  
1
2
3
4
5
6
7
8
9
0,664  
0,547  
0,691  
0,878  
0,589  
0,897  
0,791  
0,923  
0,732  
0,964  
0,611  
0,987  
0,755  
0,797  
0,962  
0,786  
0,901  
0,923  
0,948  
0,965  
0,979  
0,985  
0,991  
0,998  
0,994  
the activation energy and the pre-exponential multiplier were  
5
obtained: Eакт = 54.22 kJ/mol and k  
0
= 1.84·10 .  
Acknowledgment  
Scientific work with the support of the ministry of science  
and higher education of the russian federation - federal target  
program no. 075-15-2019-1856 of 12/03/19 (unique project  
identifier rfmefi60719x0315).  
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
1
.1  
References  
1
.
Bukharkina TV, Verzhichinskaya SV, Digurov NG, Kozlovsky R  
A Fundamentals of design and calculation of devices for chemical  
technology of fuel and carbon materials. M: MUCTR, 2015: 136  
p.  
1
b
a
0.9  
0.8  
0.7  
0.6  
0.5  
2
.
Dai Y, Wang Y. Yao J, Wang Q, Liu L. Phosgene-Free synthsis of  
phenyl isocyanate by catalytic decomposition of methyl N-phe;  
2
008;123: 307-316.  
Fukuoka S, Chono M, Kohno M. Isocyanate without phosgene,  
984;14: 670-676.  
3
4
.
.
1
Gorbatenko V I, Zhuravlev EZ, Samarai LI. Isocyanates. Methods  
of synthesis and physical and chemical properties of alkyl-, aryl-  
and heterylisocyanates. K., 1987: 444 p.  
0
5
10  
15  
20  
25  
30  
5
6
.
.
Lebedev, AV. Organosilicon synthesis of isocyanates: II.  
Synthesis of aliphatic, carbocyclic, and fatty-aromatic isocyanates  
Experiment #  
/
A.V. Lebedev et al. Russ. J. Gen. Chem. 2006;76(3):. 469-477.  
Figure 8: Graphical comparison of the experimentally obtained values  
a) of transformation degrees and calculated using the constructed  
model (b)  
Nagy L, Nagy T, Kuki Á, Purgel M, Zsuga M, Kéki S. Kinetics of  
Uncatalyzed Reactions of 2, 4′‐and 4, 4′‐Diphenylmethane‐  
Diisocyanate with Primary and Secondary Alcohols. International  
Journal of Chemical Kinetics. 2017 Sep;49(9):643-55.  
(
1496  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1491-1497  
7
8
9
.
.
.
Patent US 20040267047A1 Method for production of Isocyanates  
001  
Patent US 200702620070265465A1 Process for the production of  
isocyanates 2007  
Patent US 7547801 Int. Cl. C07C263/10. Process for the  
continuous preparation of isocyanates / F. Pohl et al.  Claimed:  
2
2
6.06.2006, published:16.06.2009.  
1
0. Saunders D, Frisch K. Chemistry of polyurethanes. Moscow:  
Chemistry, 1968: 87 p.  
1497