Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1530-1538  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/8(4)1538  
Equipment of the Aeromobile Group of the Main  
Department of the Emercom of Russia in the  
Republic of Karelia  
1
2
3
Khoroshilov K. , Pashkova A. , Zaitsev D.  
1Lecturer, Department of Life Safety and Health-Saving Technologies, Institute of Physical Education, Sport and Tourism, Federal State Budgetary  
Educational Institution of Higher Education «Petrozavodsk State University», Republic of Karelia, Petrozavodsk, Dzerzhinskoes Street, House 9  
2
Candidate of Historical Sciences, Associate Professor, Department of Life Safety and Health-Saving Technologies, Institute of Physical Education,  
Sport and Tourism, Federal State Budgetary Educational Institution of Higher Education Â«Petrozavodsk State University», Republic of Karelia,  
Petrozavodsk, Lesnaya Street, House 22 Apartment 7  
3
Deputy head of the Main Department, Main Department of EMERCOM in the Republic of Karelia, Petrozavodsk, Republic of Karelia, Petrozavodsk,  
Pravda Street, House 25 a, Apartment 301  
Received: 23/05/2020  
Accepted: 27/09/2020  
Published: 20/12/2020  
Abstract  
This article is devoted to the problem of using airmobile groups, the issues of evaluating their capabilities are considered, information  
is provided on the created airmobile group in the Republic of Karelia.  
Keywords: Airmobile group, Equipment, Emergency, EMERCOM of Russia  
in dry weather and whose total area can reach hundreds of  
1
Introduction  
thousands of hectares. At the same time, there is an immediate  
threat of destruction by fire of settlements and objects of the  
national economy (ONE) located in forests, as well as strong  
smoke and gas pollution of large settlements remote from  
forests (Kudrin & Podrezov, 2006). The main cause of forest  
fires is reckless or illegal actions of the population. So, in  
Russia, more than 75% of forest fires arose through the fault of  
a person. Massive foci of forest fires occur mainly in areas  
adjacent to settlements and transport routes, primarily on the  
territory of the most fire-hazardous forest areas (young  
conifers, pine forests, peat bogs, etc.). Fire hazard zones located  
within a radius of 5-10 km from the borders of cities and towns  
occupy very significant forest areas. The main damaging  
factors of landscape fires are: high temperature, causing the  
ignition of everything that will be in the area of the fire; Smoke  
in large areas, irritating people and animals, and in some cases  
poisoning them with carbon monoxide; limiting visibility;  
frightening psychological impact on people. Fires in forests and  
peat bogs are characterized by rapid development, a high rate  
of propagation of the fire front and the creation of vast zones of  
gas contamination and smoke with dangerous concentrations of  
combustion products. In case of massive fires in peatlands and  
forests, people in the open air and in structures will be affected  
by the following damaging factors, hazardous fire factors  
Fires in nature - the so-called landscape fires - pose a  
serious threat to the environment, economy and population.  
Depending on the place of origin, they are subdivided into  
forest, steppe, marsh, tundra, haze, savanna, steppe, reed, field  
and others. At its core, landscape fire is a spontaneously  
spreading combustion, as a result of which forests, shrubs, peat  
reserves and various types of vegetation that are in its path are  
destroyed. Despite the fact that 90% of landscape fires occur in  
connection with human activities, or because of their  
carelessness, most of them are classified as natural disasters.  
Landscape fires most often occur in the most "favorable"  
summer season for this, which is called the fire season. After  
the occurrence of a fire source, the development and spread of  
landscape fire begins. The continuously advancing combustion  
zone, on which the combustion of the main combustible  
material occurs with the maximum heat release density for a  
given fire, is called the edge of the fire. It distinguishes between  
external and internal boundaries (Sofronov & Volokitina, 2002;  
Ryapolova, Mikhalev & Zolotukhina, 2003). The inner edge of  
the edge faces the area covered by combustion, and the outer  
edge faces the area not covered by combustion. The part of the  
edge that propagates with the greatest speed is called the fire  
front, and the one moving in the opposite direction is called the  
rear. The portions of the moving edge between the front and  
rear of the fire are called flanks. In the presence of flammable  
combustible materials (for example, clumps of coniferous  
undergrowth), individual sections of the fire front move  
forward, forming protrusions (tongues, wedges), and in the  
presence of fire-resistant areas (hollows, clumps of fire-  
resistant vegetation), the formation of depressions (pockets) is  
observed.  
(
HFF): (a) direct exposure to fire; (b) high temperature of the  
gas environment; (c) heat radiation from the flame; and smoke  
and gas pollution in the area of the fire.  
The danger of peat fires is aggravated by the fact that they  
burn not only the peat layer, but also the roots of the trees. The  
fire spreads at a speed of up to several meters per day. When  
the soil under the trees burns out, the latter fall randomly. The  
burning depth of peat is limited only by the level of  
groundwater or the underlying mineral soil. Peat fire is not  
afraid of precipitation due to the hydrophobicity of bituminous  
peat particles. In this case, moisture goes into the groundwater  
All forest fires are extremely dangerous, since by the time  
the fight against them begins, as a rule, they already have time  
to develop over a large area and there are not enough means of  
fighting. Particularly dangerous are large mass fires that occur  
1530  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1530-1538  
past the peat particles, and the peat continues to burn until the  
deposit is completely burnt out. As a result of the action of  
damaging factors (fire, sparks, an increase in the temperature  
of the environment), the destruction and damage of forests  
occurs, a threat to human life is created, industrial facilities and  
settlements are destroyed. A forest fire also causes a decrease  
in the growth of wood, worsens the composition of forests, soil  
conditions, increases windblows and windbreaks, increases the  
amount of dead wood, and leads to a massive spread of harmful  
insects. The average temperature of combustion of forest  
combustible materials is 500-900°C. The combustion  
In addition to these measures, fire barriers are created in forests,  
that is, areas of the territory that prevent the spread and  
development of forest fires. Fire barriers specially created on  
the territory of the forest fund include: mineralized strips; fire  
breaks; screens; edges; ditches. In addition, all-natural barriers  
are taken into account, that is, rivers, lakes, rocky placers,  
swamps. Roads, paths, skid tracks, cleared glades, and power  
transmission lines are also used as fire barriers.  
Fire-hazardous areas in forests of groups I and II, as well as  
in developed forests of group III, are divided into blocks of the  
first order with an area of 2 to 12 thousand hectares. Firewalls  
are the boundaries of these blocks. The coniferous massifs  
within the blocks are, in turn, divided into blocks of the second  
order with an area of 400 to 1600 hectares, delimited by  
additional or internal barriers. At the same time, the width of  
the internal barrier from hardwood is 60-100 m, from  
coniferous - 200 m, excluding the gap width. In coniferous  
barriers, rubbish, coniferous undergrowth is cleaned, branches  
are cut to a height of 1.52.0 m, mineralized strips are laid every  
20-30 m. It is also recommended to divide large areas of  
coniferous crops and young stands in forests of green zones and  
forests of group I in areas of intensive farming into blocks with  
an area of 25 hectares. The width of the barrier with the road in  
the center is 30 m. To protect against possible underground  
fires, fire ditches are arranged along the borders of peat bogs  
and in plantations on peat soils. The depth of the ditches is to  
the mineral layer or to the groundwater level. The width along  
the bottom of the ditch is 0.2-0.4 m, the width along the top is  
1.5-2.8 m. In general, the approach to the fire-fighting  
arrangement of forest areas is determined by the "Guidelines  
for fire prevention in forests and the regulation of the work of  
forest fire services." However, the fundamental issues  
concerning the order of designing these measures, methods of  
analysis and making management decisions are not considered  
in them. The variety of forest areas, characterized by an  
extreme difference in natural, forest growth, forest pyrological  
conditions, does not allow using the same approaches to  
protecting them from forest fires. In the studies of V.V. Furyaev  
and L.P. Zlobina (2017), the principles and methods of  
increasing the fire resistance of both individual plantations and  
large forest areas are determined, which consist in regulating  
the factors that determine the degree of fire damage to forest  
stands. These include: reserves of combustible materials, the  
composition of the tree canopy, undergrowth, undergrowth,  
their structure and structure, the nature of the shrub cover.  
Scales for assessing the fire resistance of plantations using  
computer technology based on six factors are proposed: the  
composition of rocks, taking into account the admixture of  
deciduous (aspen, birch), the average diameter of the stand,  
admixture of deciduous trees in the undergrowth and  
undergrowth, the height of the undergrowth, the amount of  
undergrowth and the degree of litter.  
(
3
smoldering) temperature of peat is 500°C (at a humidity of 10-  
0%), 300°C (at a humidity of 65%). The height of the flame is  
determined by the type and strength of the fire, wind speed,  
edge width and has the following average values: for a ground  
fire - 0.05-3 m, for raised fires - 3-15 m (above the level of the  
stand). The depth of peat burning depends on the thickness of  
the peat layer, its moisture content and can be 0.25-3 m. The  
parameters of the gas content of the environment within the  
edge of the fire are characterized by the following average  
values: volumetric concentration of carbon monoxide - 1.2%,  
carbon dioxide - 4.5%, oxygen - 12.5%. Fires in the steppes are  
characterized by a very rapid development; the speed of fire  
propagation is especially affected by the wind speed. With high  
and dense grass cover, strong winds and dry weather, the speed  
of flame propagation through tall crops and grasses reaches  
5
00-600 m/min. With sparse and low vegetation and in the  
absence of wind, fires spread at a speed of 10-15 m/min. Fires  
in the steppe, as well as on grain fields, are usually detected  
late, as a result, it covers large areas of several thousand  
hectares. In the process of spreading a fire, a so-called "fire  
storm" is often formed, which throws fire over long distances,  
overcoming artificial and natural barriers up to 12-15 m wide.  
The main consequence of the impact of forest fires on  
settlements and ONE is the threat of their destruction. In this  
regard, the predicted parameters of the impact are: the time the  
fire front reaches the boundaries of the object, the possibility of  
transferring fire, and the ignition or loss of the properties of the  
object due to the impact of the HFF. The initial data for  
assessing the consequences of forest fires are: type and form of  
fire; type of combustible materials (nature of the planting);  
wind speed and direction; the speed of propagation of the fire  
front; parameters of damaging factors. The transition of a  
landscape fire to objects occurs in several ways: (a) due to the  
effect of heat radiation from the torch or the torch itself on the  
combustible materials of the object; (b) by spreading the  
combustion front to the ground cover (grass, construction  
waste, etc.); and (c) due to the throwing of sparks and burning  
smut on the site. The fire hazard of a forest is determined by the  
probability of the occurrence and spread of fires. It includes  
anthropogenic and natural fire hazard, as well as fire hazard due  
to weather conditions. Thus, in order to change the fire hazard  
of forests, it is necessary to influence any of its components.  
Since fire hazard due to weather conditions is an unregulated  
factor, the impact is possible only on the first two factors.  
Forests in regions with a significant population density and  
intensive human activities experience a great anthropogenic  
load, performing recreational functions, so there is a high  
probability of a high temperature source. Such forests primarily  
need a fire-fighting device, which is understood as a system of  
organizational, technical and silvicultural measures aimed at  
preventing forest fires, reducing the degree of fire hazard,  
increasing the fire resistance of forests, detecting fires at the  
beginning of their development and eliminating them. To  
increase the fire resistance of forests and reduce the degree of  
fire hazard, it is envisaged: cleaning forests from litter;  
regulation of the composition of forest stands; sanitary cuttings.  
The problem of protecting settlements and economic  
facilities from forest fires is also quite acute abroad. The growth  
of the urban population in the USA in previously inaccessible  
areas necessitates the development of means and methods of  
protection against the effects of wildfires. Here, three zones  
(lines of defense) are foreseen to protect against forest fires  
around households. Break lines are laid between the zones,  
making it difficult for the flame to advance. Within the zone, a  
fire-resistant plantation structure is formed by selecting tree  
species with an optimal crown height and distance between  
trees, and the following fire-prevention preventive measures  
are envisaged: cleaning up accumulations of ground-based  
combustible materials; cleaning branches; reduction of stocks  
of wood combustible materials; decrease in the total amount of  
vegetation; and increased moisture content in the leaves. A  
1531  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1530-1538  
different approach to this problem is observed in France. It  
consists in identifying "risk zones" around which the means of  
active and preventive struggle should be concentrated, and their  
mapping. The analysis of the spatial distribution of fires  
depending on the causes of their occurrence and the  
identification of "risk zones" required the creation of a  
methodology that allows the use of information sources already  
available in cartography in the form of an automated  
cartographic information system. Such a system was created in  
France and uses mathematically processed data on forest fires.  
The use of the capabilities of a geographic information system  
Mediterranean regions of France, it is proposed to use shrub  
cutting, which can reduce the mass of combustible material and  
prevent the spread of fire to the tops of the trees. However, this  
method is expensive and must be repeated every 3 years.  
Additionally, it is proposed to equip fire reservoirs. The  
division of the massifs into zones and the creation of forest  
plantations in the forms with the best fire resistance are  
envisaged.  
Recently, such an event as artificial target burning of forest  
combustible materials has become increasingly important in  
our country and abroad. Studies have shown that exposure to  
fire greatly affects the continuity and duration of many natural  
processes. Dichenkov N.A. (2003) indicates that one of the  
effective fire-prevention measures is the use of controlled fire  
in the forest area. With the development of human economic  
activity, natural fire regimes have changed significantly, and at  
present, the restoration of the original regimes and the  
corresponding complexes of vegetation and fauna is quite  
problematic. However, if the system of purposeful,  
strategically thoughtful fire management develops, then it can  
gradually fulfill the same role in ecosystems as natural fire  
regimes. In this regard, the future of many species of forest  
fauna depends on the successful development of just such fire  
management systems. Preventive firefighting can be used not  
only to reduce stocks of forest fuels, but also as a means of  
managing forest fires. However, their implementation requires  
careful consideration of a large volume of meteorological,  
forest pyrological, topographic and other data.  
(
GIS) for building fire hazard maps for forest areas is  
considered in the work. In this case, the fire hazard is assessed  
taking into account maps characterizing the type of combustible  
materials, topography, area availability and meteorological  
data. Regression relationships are presented for calculating  
indices characterizing the flammability of vegetable  
combustible materials, the danger of human activity. When  
carrying out calculations, the topographic map of a given area  
is conventionally divided into cells measuring 50 x 50 m  
(
Fedorov & Ryapolova, 2001). In practice, often only separate  
measures are taken to prevent forest fires (for example, laying  
mineralized strips). According to V.V. Furyaev and N.P.  
Kurbatsky (1972), mineralized strips 1.4 m wide have an  
efficiency of 62% for low and medium intensity ground fires;  
2
1
.8 m - 88%; 4.2 m - 100%. As you can see, a mineralized strip  
.4 m wide in 62% of cases prevents the spread of a ground fire  
with a flame height of 0.5 - 1.0 m. prevention of the spread and  
development of ground forest fires in their other forms.  
With the increasing role of the anthropogenic factor, the fire  
rate of forests has increased significantly. As a result, an  
increase in unforested areas, the share of deciduous plantations  
of derived forest types, and a deterioration in conditions for the  
restoration of conifers began to appear more and more  
intensively.  
In accordance with the Guidelines for the design of fire-  
prevention measures in forests, the pyrological properties of  
barriers are divided into 4 groups: practically incombustible fire  
barriers; fire barriers with a limited amount of combustible  
materials, insufficient to maintain intense combustion; fire  
barriers with the presence of combustible materials of low fire  
hazard; combined fire barriers. Such a classification makes it  
possible to rank the existing linear formations, but does not  
allow choosing the optimal forest growing conditions and  
technologies for creating new barriers (Gorbunov, 2009). As  
already noted, barriers on their own cannot ensure the  
prevention of the spread of a ground fire, and even more so its  
development in a top fire. To do this, it is necessary to take  
additional measures: increasing the width of the barriers,  
reducing the density and composition of conifers, undergrowth,  
young growth, regulating the admixture of deciduous species,  
etc. most contribute to its localization. In addition to the  
mineralized strips, it is recommended to create fire-prevention  
barriers, that is, wide forest strips, with the help of special  
measures brought to an incombustible state.  
Recently, heads of districts and forestry enterprises have  
proposed to use fire breaks to protect settlements from forest  
fires. These are strips with felled stands and a road built on  
them. This event is recommended to be carried out to separate  
large homogeneous fire hazardous forest areas into separate  
ones. However, a strip of felled forest increases the turbulence  
of air flows, and in the event of a fire, it can increase its  
intensity and the range of transport of burning particles. At  
present, a system of measures is known to increase the fire  
resistance of pine young stands. It includes: clearing clearings,  
clearing and rehabilitating forest roads, creating protective  
mineralized belts, arranging fire reservoirs and entrances to  
them, creating fire-resistant belts, creating fire-resistant edges,  
regulating the admixture of deciduous species, regulating the  
density of stands, undergrowth and undergrowth, regulating  
stocks combustible materials under the plantation canopy, the  
formation of fire barriers and barriers. These activities can also  
be used in older forests. As a preventive measure in the  
In 1963, in the report of the Committee on Wild Fauna of the  
United States, for the first time, the principles of treating fires  
as a natural evolutionary factor in maintaining natural  
biodiversity and ecosystems in general were formulated. In the  
Everglades National Park in 1953, it was discovered that  
protected pine stands, in the absence of fires, are gradually  
turning into a deciduous forest and losing their associated  
endemic plant and bird species. In 1958, the first artificial  
burning of vegetation was undertaken in the Everglades to  
preserve certain types of natural communities. Similar  
processes are observed in the boreal forests of Finland. The  
number of forest fires has sharply decreased here in recent  
decades. As a result, spruce gradually becomes the dominant  
species, which leads to negative microecological changes, a  
decrease in the number and species diversity of animals, and  
the productivity of forest ecosystems decreases.  
The US National Park Service abandoned its policy of  
unconditional fire control in 1967. The concept of ecosystem  
protection was adopted. A fire, as a natural phenomenon, can  
be allowed on the territory of a national park if it is under  
control, within the designated allotment and is important for the  
management of ecosystems and species. The main principles of  
the new policy were laid out in the Fire Management Guide. In  
Canada, fires have always played an important role in  
reforestation. They have formed the plant communities of  
modern Canadian landscapes. Fire suppression was confined to  
the southern most populated areas of the provinces, while fire  
control was limited in the Yukon and northern Canada. The  
areas of boreal forests, with their flat relief that does not prevent  
the spread of fire, have been exposed to large and numerous  
crown fires. The idea of prophylactic burning has received  
recognition in Russia, but the use of prophylactic burns has not  
yet received widespread use. Preventive burning of forest  
1532  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1530-1538  
combustible materials under the forest canopy is a complex  
silvicultural activity aimed at using the positive role of fire in  
the forest (Bokadarov & Polyakov, 2013).  
natural regeneration, as well as the presence of significant areas  
of burned areas in the northern regions of the country with the  
worst conditions for reforestation, the actual rates of forest  
formation processes on them can be 2-3 times lower than on  
clearings. Even in this case, the annual area of forest stands  
dying from fire should be at least 1.0 million hectares  
2
Materials and Methods  
One of the most serious problems in the fight against forest  
(
Information and reference system "Forest fires, means and  
fires, directly affecting not only the protection of forest  
resources, but also ensuring the safety of people is the  
organization of fire protection of settlements that are subject to  
the threat of destruction when the fire passes from the forest to  
buildings (Chervonny, 1973). According to Rosleskhoz, in  
methods of combating them, 2008).  
Emergency statistics show that in Russia the share of  
wildfires (forest, steppe, peat, landscape fires, as well as their  
possible combinations) and the emergencies caused by them is  
approximately 24% of the total number of emergencies  
2
011 the area of forest fires was 1,636,203 hectares. Compared  
(
Podrezov, 2004; Shchetinsky, 2011). Due to the insufficient  
to similar indicators in 2010, the area covered by fire decreased  
by 470 thousand hectares, the number of forest fires decreased  
effectiveness of the currently existing measures to protect  
settlements from forest fires, even if the requirements of  
regulatory documents in the field of fire safety are strictly  
observed, a fundamentally new comprehensive approach to the  
design of fire barriers is needed, taking into account the  
peculiarities of the location of each individual settlement. The  
modern organization of extinguishing landscape fires is a  
complex system that unites participants in operational and  
tactical actions and firefighting equipment, tools and  
equipment (Krektunov & Gainullina, 2012). A landscape fire is  
a fire that engulfs various components of a geographic  
landscape (GOST 17.6.1.01-83). The main task of organizing  
extinguishing landscape fires is to minimize the process of  
performing certain operational and tactical actions of the  
airmobile group while simultaneously obtaining high  
operational indicators, preserving the life and health of  
personnel. Achieving this goal is possible on a scientific basis.  
Airmobile grouping of the EMERCOM of Russia is a group of  
specially trained and equipped forces and means of the  
EMERCOM of Russia, which, depending on the classification  
of an emergency or fire, includes the necessary management  
bodies and units of the Ministry of Emergencies and is  
delivered to the disaster area using aviation, aviation  
technologies, and also others modes of transport to solve the  
tasks assigned to it (Guidelines for the creation, equipment and  
procedure for the use of airmobile groups of territorial bodies  
of the EMERCOM of Russia). Extinguishing a landscape fire  
is currently all types of work aimed at its localization and  
elimination in the shortest possible time. The key factors that  
the command and control of the airmobile group evaluates (the  
so-called extinguishing leadership triangle) are: (a) resources  
involved (quantity, quality, enough or not); (b) information  
about the fire (must be timely and complete); and (c)  
management (must be continuous and efficient).  
To improve the effective management of the airmobile  
grouping of the Ministry of Emergency Situations, one should  
have statistical information on the consequences of managerial  
decisions made, on the structure of time spent by managers and  
subordinates. The necessary data can be obtained in the course  
of carrying out one-time surveys, including questionnaires of  
employees, taking photographs and self-photographing of  
working hours, using the method of instant observations. The  
choice of the method of obtaining information, methods of its  
processing and analysis is individual. The indicators of the use  
of working time will give an idea of the effectiveness of the  
management of the airborne group. In general, working time is  
understood as the length of time during which an employee  
actually performs work, and is a measure of assessing various  
labor costs. The working time of an airmobile group is recorded  
in man-hours. The structure of working time expenditure  
during the conduct and organization of emergency rescue  
operations of the airmobile group on the ground, the reasons for  
its irrational use must be analyzed in the Main Directorate and  
conclusions should be drawn for making managerial decisions  
1
.6 times, and the area covered by crown fires - 4.5 times.  
According to the head of the forestry department Viktor  
Maslyakov, the damage caused by forest fires in 2011  
amounted to more than 20 billion rubles, which is almost 6  
times less than the same indicator for the last year. The largest  
number of forest fires was recorded in the Siberian and Far  
Eastern federal districts. 90% of the areas covered by fire fell  
on 11 constituent entities of the Russian Federation. These  
include the Republic of Sakha (Yakutia), Buryatia, Komi;  
Zabaikalsky, Krasnoyarsky, Khabarovsk Territories; Amur,  
Arkhangelsk, Irkutsk, Sverdlovsk regions and Khanty-Mansi  
Autonomous Okrug (Podrezov, 2004; Information and  
reference system "Forest fires, means and methods of  
combating them, 2008; Shchetinsky, 2011). In the zone of  
active forest protection, from 10 to 30 thousand forest fires are  
registered annually, covering an area of 0.5 to 2.1 million  
hectares. The number of fires per 1 million hectares of the  
Russian forest fund is several times less, and the average area  
of one fire is several times larger than in Europe and North  
America.  
As observations show (Shchetinsky, 2011;Valendik, 1990),  
the main organizational reasons contributing to the spread of  
forest fires are: untimely fire detection (20% of fires are  
detected at the end of the day or the next day); untimely start of  
extinguishing (15% of fires start extinguishing at the end of the  
day or the next day); insufficient amount of forces and means  
directed to extinguishing; non-professional management of the  
extinguishing organization. In this regard, tough centralized  
actions on the part of forestry authorities are needed to control  
fire prevention and compliance with fire safety rules in forests,  
monitor fire conditions, promptly assess the situation and  
coordinate the work of different departments to extinguish  
forest fires. The characteristic features of the spatio-temporal  
structure of forest fire, which are of fundamental importance  
for the organization of their protection and fire protection of  
settlements, is a sharp variation in the number and area of forest  
fires by regions of the country and periods of fire hazardous  
seasons. From 50 to 90% of the annual forest area covered by  
fire falls on 3-4 regions of the country with extreme weather  
conditions. The area of extremely flammable zones, where a  
significant part of fires gets out of the control of the security  
system and takes the character of a natural disaster, makes up  
only a few percent of the forest fund every year. Moreover, up  
to 95% of the entire area covered by fire falls on large forest  
fires, the number of which does not exceed 5% of the total  
number of fires in forests (Podrezov, 2004; Information and  
reference system "Forest fires, means and methods of  
combating them, 2008). With the annual area of clear felling  
from 1.5 to 2.0 million hectares and the same rate of forest-  
forming processes in burned-out areas and clearings, the annual  
areas of forest stand perishing from fire should be 3.04.0  
million hectares. Taking into account the forest cultivation  
work carried out in the clearings and measures to promote  
1533  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1530-1538  
to improve the use of working time and as a result increase  
labor productivity. In order to identify the reasons for the loss  
of working time or its irrational use, one-time statistical surveys  
are carried out. The information obtained will help to carry out  
the correlation of controllability standards and production rates,  
including many other issues related to the functioning of the  
airmobile group as intended. As is known from practice, the  
level of labor productivity depends on many factors. When  
analyzing the labor productivity of employees in the airmobile  
group, one of the primary tasks is to assess the influence of  
factors on the change in this indicator, which in turn allows  
obtaining material for making managerial decisions on  
planning to increase the productivity of emergency rescue  
operations. The productivity of rescue operations, especially  
when separated from a permanent location, is influenced by  
various factors: technical and technological; socio-economic;  
natural and climatic; organizational; structural; and motivating  
employees. The way the factors influence the performance of  
rescue operations is different. Some of them can be objective,  
since their action does not directly depend on the activities of  
employees, others are subjective, and their quantitative  
characteristics are amenable to regulation by the employee  
himself.  
The productivity of employees when extinguishing  
landscape fires is influenced by such a factor as the method of  
work. To this end, provide for specially organized observations  
on the study of methods of performing work, which will allow  
you to choose the best methods and teach these methods to  
other employees, which in turn will increase productivity. In  
any given emergency or landscape fire, developing a strategy  
to improve the performance of rescue operations involves  
quantifying the extent to which each factor affects employee  
productivity. Directly in management, it is possible to study the  
dependence of the average output on the qualifications of an  
employee, technical equipment, organization of emergency  
rescue operations and other factors. In order to solve such  
problems, it is proposed to apply correlation-regression  
analysis. In the scientific literature on statistics, labor  
productivity has a widespread model of the following type:  
together, all measures to eliminate steppe fires can be divided  
into several main categories. The first of these includes the so-  
called reconnaissance actions. The second is the localization of  
the source of fire, the third is the elimination of the fire. The  
last category, in turn, includes the guarding of the danger zone.  
Localization often consists of two phases. First of all, further  
spread of fire is prevented. This is achieved by direct and direct  
exposure to the flame edge. The second phase, in turn, includes  
the laying of the so-called barrage structures. Sand strips, dug  
ditches, and so on can act as such means. In addition, it is  
necessary to carry out processing of the peripheral areas of the  
fire in order to prevent as much as possible the possibility of  
renewed fire spread. It is important to remember that the  
definition of "localized fire" is understood to mean one around  
which there are barrier strips or other means that provide  
complete confidence that the flame cannot re-ignite.  
The so-called fire extinguishing is the elimination of fires  
that could remain in the territory captured by the fire. It is  
important to eliminate everything, even the smallest and most  
inconspicuous petals of the flame. Firefighting is designed to  
prevent the resumption of combustion processes. Due to the  
fact that in a steppe fire, the vegetation layer burns out  
completely - the possibility of re-ignition of already burned out  
areas is completely excluded, there is no need to guard the  
entire area covered by the fire. Therefore, guarding is carried  
out only along the border of the fire. The duration of the stage  
under consideration must be determined based on the predicted  
and current weather conditions. The main reserves for  
increasing the efficiency of the airmobile grouping lie in the use  
of reliable fire-fighting tools and equipment for their intended  
purpose, as well as in the elimination of losses of working time,  
which is largely determined by the level of organization of fire  
extinguishing.  
3
Results and Discussion  
At present, the introduction of promising methods based on  
a larger, but accurate quantitative analysis will make it possible  
to plan the effective work and well-coordinated interaction of  
the units that make up the airmobile group. With regard to the  
optimal option for extinguishing landscape fires on the territory  
of the Republic of Karelia, it is necessary to calculate the norms  
for the process of extinguishing forest fires, since this is more  
relevant, as can be seen from the statistical data on wildfires  
over the past 25 years given in Table 1. Emergency rescue  
operations to protect settlements from landscape fires are  
complex processes that consist of the following stages of  
actions of an airmobile group:  
Y = abcd,  
(1)  
where abcd - conventional designation of factors: a - average  
hourly output; b - the average duration of the working day  
(
shift), h; c - average payroll number of employees; d - the share  
of employees in the number of personnel of the main activity.  
The improvement of the system of operational-tactical actions  
of subunits must be carried out through their detailed analysis  
and design. Designing the organization of the use of an  
airmobile group should be based on a quantitative assessment  
and be reduced to the choice of the optimal option, which  
cannot be done without building a mathematical model and  
using the methods of applied mathematics. In relation to the  
optimal variant, the norms for extinguishing forest fires should  
be calculated. The correct organization of extinguishing  
landscape fires is designed to ensure a well-coordinated  
combination of actions of firefighters, mobile fire  
extinguishing equipment, fire equipment and tools within the  
established regulations for performing certain actions  
-
Receiving and processing messages about a landscape fire  
coordinates of the occurrence of a thermal point);  
(
-
Collection of the airmobile group - departure and following  
to the place of the landscape fire (coordinates of the  
occurrence of the thermal point);  
-
-
-
-
Reconnaissance of the focus of a landscape fire;  
Deployment of forces and assets;  
Localization of combustion in the zone of landscape fire;  
Supply of fire extinguishing agents (elimination of  
combustion);  
-
Organization of special works (protection of buildings from  
possible fires, disconnecting power lines by cutting  
electrical wires, organizing fire communications, plowing  
the edge of a fire, lighting the unit's workplace, lifting  
(
Shchetinsky, 2002). First of all, it should be noted that  
extinguishing a landscape fire is a complex of management  
decisions and operational-tactical actions aimed at eliminating  
combustion, ensuring the safety of people and saving material  
assets. In operation, the process of extinguishing a fire is  
conditionally divided into two periods: the first - before the  
moment of localization, the second - after this moment, i.e.  
when the fire is stopped, it is limited to some extent. Taken  
(
lowering) to a height, evacuating people and material  
values, etc.);  
-
Collection and transportation to the place of permanent  
deployment.  
1534  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1530-1538  
Table 1: Statistics on wildfires over the past 25 years  
Destroyed by  
fire  
Number of fires  
Suffered  
Period of  
passage of  
natural  
Material  
damage  
Note  
fires  
(million  
(
from __  
rubles)  
to __)  
1
46  
7
1
May-  
September  
114  
67  
Damage  
4253,71  
1995-2019  
0
0
0
0
0
0
for RK  
In accordance with the regulatory documents of the  
EMERCOM of Russia and the order of the Main Directorate  
dated January 29, 2016 No. 30 "On ensuring the readiness of  
the airmobile grouping of the Main Directorate of the  
EMERCOM of Russia in the Republic of Karelia to liquidate  
emergencies and fires", the composition of the forces and  
means of the airmobile group for extinguishing fires and  
emergency situations. The use of the airmobile group is planned  
according to the Plan for the Prevention and Elimination of  
Emergency Situations during the period of natural fires in the  
Republic of Karelia in 2020, shown in Figure 1. An increase in  
operational and tactical capabilities for extinguishing landscape  
fires with an airmobile group assumes the systematic  
introduction of the principles of efficiency and sufficiency of  
the use of forces and means of the Main Directorate of the  
Ministry of Emergencies of Russia in the Republic of Karelia  
in the organization of firefighting, as well as the introduction of  
advanced experience. When fighting landscape fires, it is  
recommended to use the following technical means.  
1) Tillage tools used for laying protective and supporting  
mineralized strips: single-body plows (PKB-75, PBN-75);  
PLN-135 strip forest plow; plow-trencher PKLN-500A;  
forest cutter FLU-0.8; bulldozer installation D-271; horse  
plow PG-25.  
2) Machines used for laying protective mineralized strips:  
bulldozer D-533; strip laying machine PF-1.  
3) Tools used for ditching: trencher LKN-600.  
Figure 1: Plan for the prevention and elimination of emergency situations during the period of natural fires on the territory of the Republic of Karelia in  
020  
2
1535  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1530-1538  
4
) Machines and equipment for extinguishing fires with water:  
fire-fighting tankers of various types; fire-fighting motor  
pumps (portable type MP-600, MP-600A, MP-800B,  
MPN-800/80, trailed type MP-1600, MP-16, MPP-1600,  
complex MVK-8 for external suspension of the MI-26  
helicopter; suspended containers P1-00 with a volume of 1000  
liters; helicopter discharge complex KSV-1 for the external  
suspension of the MI-8 helicopter;  
"GEYSER"); fire pumps MNPV-90/300, MMP-2400S,  
- Unmanned aerial vehicles for monitoring the forest fire  
mounted type NSHN-600M, fire nozzles (high-pressure  
spray gun with hose reel SRVD-2/400-60, manual high-  
pressure fireman barrel RSKU-20VD, fire monitors and  
manual firemen barrels with ejection of a foaming agent,  
for example, a manual combined universal fireman RSKU-  
situation.  
When fighting landscape fires, aviation performs the following  
tasks:  
- Direct extinguishing of fires by dumping extinguishing liquid  
on the hotbeds;  
5
Uo).  
0Ae, monitors with oscillators, for example LS-60 (40.50)  
- Patrolling the area, reconnaissance of fires, search and rescue  
of victims;  
5
) Special forest fire units for extinguishing fires with water  
and fire extinguishing chemicals: ATsL-147 - forest fire  
tank truck on the chassis of the GAZ-66 vehicle; ML-1/0.75  
- Creation of air control points for forces and fire extinguishing  
means;  
- Transportation of forces and means of fire extinguishing and  
evacuation of victims;  
-
small-sized portable fire-fighting motor-pump; forest  
tractor fire tank TsPLT-2; ĐśDP-0.2 motor-pump, light  
forest fire, floating type; MLV-1, MLV-2/12, MLV-  
- Ensuring the conduct of ASDNR (delivery of small-sized  
cargo, ensuring the advancement of operational reconnaissance  
groups, monitoring the implementation of the tasks assigned to  
them by firefighting forces, relaying communications, cellular  
communications with rescuers, commands for controlling  
robotic systems, etc.).  
22/0.25 - high-pressure forest fire motor pumps; forest  
firefighting set of DSP equipment, soft container for water  
delivery to forest fire sites RDV-1500, firefighting boat LS-  
52A; VPPL-149 is a forest fire all-terrain vehicle.  
6
7
) Special forest fire units of complex action: timber tanker  
ATsL-3 (66) -147; forest fire unit TLP-55; forest fire-  
fighting all-terrain vehicle VPL-149; TLP-4 forest fire  
tractor; (T-150K) -177 - forest fire unit based on the T-  
19) Robotic complexes.  
As the experience of extinguishing forest peat fires in the  
period of 2010-2014 in the Moscow, Vladimir, Nizhny  
Novgorod, Ryazan, Tver regions, Bashkiria and Udmurtia has  
shown, robotic systems are effective when conducting  
operations in difficult terrain, where the deployment of  
conventional wheeled and tracked vehicles is significantly  
difficult. In addition, their use is advisable when it is necessary  
to protect industrial facilities with the risk of radiation-chemical  
and high-explosive fragmentation in the event of a fire  
spreading to protected areas located in the forest zone. In the  
course of work on the elimination of these forest-peat fires, the  
following new samples of fire-fighting robotics were tested.  
- Remotely controlled fire extinguishing installation LUF-60;  
- Mobile robotic fire extinguishing systems EL-4 and EL-10;  
1
50K tractor, tracked fire engine GPM-10, forest fire  
tractor MSN-10 PM, fire engine on tracked chassis LHT-  
00A-12.  
1
) Knapsack fire extinguishers-sprayers: knapsack forest  
sprayer RLO-M; knapsack fire extinguisher ORM-1;  
chemical sprayer ORX-3; backpack pneumatic fire  
extinguisher ROOP-4A; backpack sprayer OP; OLU-16  
universal forest fire extinguisher (for water, solutions of  
fire-extinguishing salts, emulsions, foaming agents and  
fire-extinguishing powders).  
8
9
) Peat trunks (TS-1, TS-2).  
) Soil guns: GT-3 - tractor forest fire ground gun (based on T-  
-
Mobile installation robotic gas-water extinguishing  
1
8
50K); ALF-10 - forest fire milling unit (based on MTZ-  
2).  
(MRUGVT);  
- Robotic complex "KEDR" consisting of two machines for  
extinguishing grassland forest and peat fires.  
1
1
0) Installation for receiving and supplying gas-filled foam by  
the compression method UGNP.  
Based on the work, the following results were obtained for  
the considered RTC. Mobile remote-controlled fire  
extinguishing installation LUF-60. Installation LUF-60 allows  
you to create an intense flow of water and transport it over  
considerable distances in the air flow. Using these qualities,  
ground fires were extinguished in a forest area along a newly  
formed clearing - a mineralized strip. The water was supplied  
from a fire tank truck with a water supply of 2400 liters, the  
total total duration of the discrete supply was 150 s, while the  
estimated water flow was 16 l/s. Water was supplied through  
the central shaft in the operating fan mode (50% of the power),  
the elevation angle of the shaft was 10-40 degrees, which made  
it possible to change the effective distance of water supply from  
10 to 45 m. As a result, a 35x60 m surface was treated, on which  
everything visible open foci of combustion were extinguished,  
no swelling of foci of combustion was observed. Hidden  
burning areas (hemp, tree hollows, etc.) could not be  
completely extinguished. The entire surface in the installation  
area was saturated with water, which significantly reduced the  
likelihood of a secondary fire. Mobile robotic fire extinguishing  
systems EL-4 and EL-10 allow to carry out work on barriers in  
forest blockages, as well as to extinguish fires using water  
foam. In the course of the work carried out, the possibility of  
creating passages in the area of forest clearing with  
simultaneous firefighting was shown. The water consumption  
for the EL-4 was 20 l/s, which was supplied to a piece of wood  
1) Firefighting pumping stations (for example, PNS-100  
(
43114) -50VR).  
1
1
-
2) Fire pump and hose complexes ("Shkval", "Potok").  
3) Fire trucks based on MT-LB chassis:  
A floating fire truck based on the MT-LBu chassis;  
Multipurpose floating forest fire and tilling machine based on  
MT-LB chassis;  
Floating pump and hose machine based on the MT-LBu  
chassis.  
4) Two-link tracked snow and swamp vehicle TTM-  
-
-
1
1
4902ASM with rescue, fire and medical equipment.  
5) TTM 3930ASM wheeled all-terrain vehicle, manufactured  
on the chassis of the TTM 3930 wheeled all-terrain vehicle  
(
rescue vehicle based on the ASM-KPP wheeled snow and  
swamp vehicle).  
6) Light fire module "Ermak".  
7) Air blower - sprayer EFCO 2090.  
8) Aviation technology:  
Aircraft IL-76P (forest fire aircraft with two removable tanks  
1
1
1
-
with a total weight of 40 tons), amphibious aircraft Be-200ChS,  
AN-2; AN-2V; AN-26P (forest fire aircraft with two external  
tanks with a total volume of 4 tons), AN-32P;  
-
Helicopters MI-6, MI-8 with suspended pouring devices;  
modular helicopter complex MVK-2 for external suspension of  
the MI-17 helicopter (MI-8MTV, KA-32); modular helicopter  
1536  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1530-1538  
in the combat area, which is covered by the EL-4. The range of  
water supply in the sector of water supply with an angle of 90  
degrees was 35 m. It is advisable to use additives to the OTV.  
It is advisable to use a mobile robotic gas-water  
extinguishing unit (MRGWT) to prevent the development of  
forest fires by irrigating a forest. To increase the efficiency of  
this method, it is necessary to use additives that increase the fire  
resistance of wood. Carrying out work with the installation of  
MRUGVT on a real fire seems inappropriate due to the  
insufficient amount of water for the operation of MRUGVT in  
the fire zone. Particular attention should be paid in terms of  
solving the problems under consideration to the developed and  
successfully tested in the elimination of forest peat fires in the  
Tver region in 2014, the robotic fire complex "KEDR". The  
complex is located on the chassis of the MTLB-u floating  
lightly armored tracked carrier. The complex includes the  
- Watering machines (PM-13OB, etc.); used independently to  
extinguish ground fires or to supply water;  
- Spreaders of liquid fertilizers (RZhU, RZhT, RZh); can be  
used to supply water to the fire site; especially effective in  
fire extinguishing RZhT-8 and RZhT-16.  
Currently, RZhT is equipped with special nozzles for  
connecting pressure fire hoses.  
It is also advisable to note that in addressing the issues of  
extinguishing forest-peat fires, it is effective to use field trunk  
pipelines (PMT), which are equipped with the Armed Forces of  
the Russian Federation.  
4
Conclusions  
Due to the insufficient effectiveness of the currently  
existing measures to protect settlements from forest fires, even  
if the requirements of regulatory documents in the field of fire  
"KEDR-HP" pump and hose machine and the "KEDR-P" fire  
safety are strictly observed,  
a
fundamentally new  
extinguishing machine. Depending on the specific conditions,  
both vehicles can be controlled remotely or by the crew. The  
design of the pump and tube machine allows you to take water  
from natural sources in difficult terrain using a submersible  
pump, while the machine itself can be on the surface of the  
reservoir or, if it is impossible to enter the water, by lowering  
the pump into the water using a lifting device. The fire  
extinguishing machine provides extinguishing fires both with  
the help of a fire monitor and liquidation of ground fires using  
a special irrigation installation. Based on the results of work on  
fire extinguishing of forests and peat bogs, the following  
proposals and recommendations were developed. When  
extinguishing forest fires in order to successfully eliminate  
high-intensity fires, including raised ones, it is advisable to use  
an RTK with water supply through a hose line from an external  
source, including from a hose car. In contrast to fires at  
industrial installations, the specificity of a forest fire is  
characterized by the variability of the direction of the flame  
front, depending on natural conditions. In this case, the ability  
to maneuver the RTK is significantly limited, which can lead to  
their death. In such conditions, it is advisable to use not a single  
RTK, but in tandem with another in order to ensure their  
interaction for successful evacuation from the fire source by  
supplying a fire-extinguishing agent to cool the RTK and block  
its escape routes. The peat bogs were extinguished with the help  
of the KEDR robotic system with feeding the hose line with a  
pump with a capacity of 60 l/s. With the help of the complex, it  
is possible to extinguish and shed an area of about 10 hectares  
of peat bog within three days. The complex can also be used as  
a pumping station from reservoirs, to which it is impossible to  
send vehicles on wheels. It was installed at the end of the hose  
line to increase the pressure and supply water to the barrels; at  
the same time, 5-6 barrels operated from the pump with a  
pressure in the hose line after the pump from 4.5 to 7  
atmospheres. With the help of this machine, about 6.5 hectares  
were extinguished and shed. The results obtained allow us to  
conclude about the effective operation of the MRKP for the  
formation of passages in the conditions of forest fires and  
extinguishing minor foci of combustion (ground fires).  
comprehensive approach to the design of fire barriers is needed,  
taking into account the peculiarities of the location of each  
individual settlement.  
Thus, after conducting the research, we can conclude that the  
increase in operational and tactical capabilities for  
extinguishing landscape fires with an airmobile group  
presupposes the systematic implementation of the principles of  
efficiency and sufficiency of the use of forces and means of the  
Main Directorate of the Ministry of Emergencies of Russia in  
the Republic of Karelia in the organization of firefighting, as  
well as the introduction of advanced experience.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
References  
1. GOST 17.6.1.01-83: Nature protection. Protection and protection of  
forests.  
Terms  
and  
definitions.  
Retrieved  
from  
http://www.normative_reference_dictionary.academic.ru  
2
. Guidelines for the creation, equipment and procedure for the use of  
airmobile groups of territorial bodies of the EMERCOM of Russia  
(approved on 05/30/2014 by the Chief military expert E.N.  
Chizhikov). Retrieved from http://www.consultant.ru  
. Podrezov, Yu.V. (2004). Technology of fighting natural fires. Fire-  
fighting and rescue equipment, no 2, pp. 34-42.  
3
2
2
0) Stationary, flexible, soft fire tanks.  
1) Personal protective equipment (including a fire suit of a  
volunteer PKD "Chance").  
4. Information and reference system "Forest fires, means and methods  
of combating them." (2008). Krasnoyarsk.  
5
6
7
. Shchetinsky, E.A. (2011). Sputnik of the head of extinguishing forest  
fires. Moscow.  
. Valendik, E.N. (1990). Struggle with large forest fires. Novosibirsk:  
Science. Sib. Det.  
. Krektunov, A.A., & Gainullina, E.V. (2012). The main problems of  
organizing fire protection of settlements in the prevention and  
suppression of forest fires. Problems of ensuring safety in the  
elimination of the consequences of emergency situations, no 1, pp.  
77-79.  
2
2) Considering that the closest to the fires are agricultural  
enterprises that have at their disposal equipment that can be  
used to eliminate forest and peat fires. The following  
machines are especially often used:  
Semitrailer to the DT-75 tractor peat machine (PTM);  
Fire tanks with a capacity of 5000 # 10000 l together with  
MTZ tractors; serve to extinguish fires in places that are  
inaccessible for other equipment;  
-
-
1537  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1530-1538  
8
. Furyaev, V.V., Tsvetkov, P.A., Furyaev, I.V., & Zlobina, L.P.  
2017). Conditions for the occurrence and spread of fires in the  
(
forest regions of the Krasnoyarsk Territory. Conifers of the boreal  
zone, no 35 (1-2), pp. 66-74.  
9
. Furyaev, V.V. & Kurbatsky, N.P. (1972). The effectiveness of  
protective mineralized strips in young pine forests. Questions of  
forest pyrology. Krasnoyarsk: ILiD SO AN SSSR.  
1
1
0. Dichenkov, N.A. (2003). Forest protection. Russian Federation.  
Federal Forestry Service.  
1. Bokadarov, S.A., & Polyakov, R.Yu. (2013). Ways to reduce the  
fire hazard of forests. Modern technologies for civil defense and  
emergency response, no 1 (1 (4)), pp. 107-116.  
1
1
2. Gorbunov, S.V. (2009). Means of individual and collective  
protection in emergency situations. Novogorsk: AGZ.  
3. Fedorov, E.N. & Ryapolova, L.M. (2001). Geoinformation systems  
and technologies in the practice of fighting forest fires and their  
consequences. Forest and steppe fires: occurrence, spread,  
extinguishing and ecological consequences. Tomsk-Irkutsk.  
4. Sofronov, M.A. & Volokitina, A.V. (2002). About the fire-  
prevention device of the forest territory. Lesn. hozyayistvo, no 5,  
pp. 45-47.  
5. Ryapolova, L.M., Mikhalev, Yu.A. & Zolotukhina, L.P. (2003).  
Fire-prevention arrangement of forests adjacent to settlements and  
other objects in the forest. Forest protection from fires reforestation  
and forest management. Krasnoyarsk: IPC KSTU.  
1
1
1
6. Kudrin, A.Yu. & Podrezov, Yu.V. (2006). Analysis of modern  
means and methods of fighting natural fires Technologies of civil  
safety, no 4 (10), pp. 27-32.  
1
1
7. Shchetinsky, E.A. (2002). Extinguishing forest fires: A guide for  
forest firefighters. Moscow: VNIILM.  
8. Chervonny, M.G. (1973). Protection of forests from fires. Moscow:  
Forest industry.  
1538