Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1429-1433  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/8(4)1438  
General Trends in the Environmental State of the  
Atmosphere of the Industrial Territory of the Nizhny  
Novgorod Region and the Sanitary Protection Zone  
of Nizhny Novgorod's City-Forming Enterprise  
1
1
1
Andrey Vladimirovich Kozlov *, Nataliya Nikolaevna Koposova , Irina Pavlovna Uromova ,  
1
1
2
Aleksandra Viktorovna Volkova , Irina Rafailovna Novik , Lev Dmitrievich Kovler , Artyom  
3
4
Yurievich Zhadaev , Yuri Mikhailovich Avdeev  
1
Minin Nizhny Novgorod State Pedagogical University, Nizhny Novgorod, Russia  
Nizhny Novgorod State University of Architecture and Construction, Nizhny Novgorod, Russia  
2
3
Nizhny Novgorod State University of Engineering and Economics, Knyaginino, Nizhny Novgorod Region, Russia  
4
Vologda State University, Vologda, Russia  
Received: 13/06/2020  
Accepted: 21/09/2020  
Published: 20/12/2020  
Abstract  
The paper presents the trends in atmospheric pollution of the Balahna agglomeration (Nizhny Novgorod region, Russia), identified  
based on the ecological and chemical analysis of snow masses accumulated in 2019 and 2020, and also describes some features of the  
pollution of snow accumulated in 2020 in the protective zone of one of the city-forming enterprises of Nizhny Novgorod. Within Balahna-  
Pravdinsk, the presence of chlorides, sulfates, and hydrocarbonates in the snow waters was revealed, which may indicate the presence of  
corresponding ecotoxicants in the gas and dust emissions of the enterprise. Within Nizhny Novgorod, the presence of increased  
concentrations of ammonia, as well as the presence of nitrogen oxides and dust-like pollution in the atmosphere of an industrial area, was  
established.  
Keywords: Atmospheric pollution level, Ecological analysis of snow, Snow as a deposition medium of ecotoxicants from the atmosphere,  
Gas and dust emissions, Sanitary protection zone  
Introduction1  
air pollution often takes the form of increasing trends, in modern  
1
environmental monitoring, the dynamics of these negative  
processes are monitored not only by direct laboratory analysis of  
air masses but also based on the analysis of snow deposits in  
terms of acidity, the content of priority chemical substances and  
the presence of solid dusty suspensions [7-11]. Since the snow  
cover is a temporary depositing medium, for ecotoxicants, it can  
act as an object for monitoring atmospheric pollution, and its  
laboratory analysis allows establishing the composition of  
impurities in the air and tracking possible sources of emissions  
in the reviewed area [12-15].  
In modern urban ecology, there are several environmental  
problems inherent in almost all urban areas of industrial  
development type, which most often consists of a spectrum of  
the same factors of impact on the environment. These include  
chronic dusting of the local atmosphere over cities and adjacent  
territories (in the case of agglomeration frameworks), pollution  
of surface water bodies due to the discharge of both normatively  
clean and untreated wastewater of industrial, household and  
storm origin, degradation of the soil cover due to excessive  
opening and reclamation territories and many other problems [1-  
The territory of the Balahna-Pravdinsk agglomeration,  
located in the Nizhny Novgorod region (Russia), is characterized  
by the presence of pulp and paper (Volga JSC), motor transport  
6]. Industrial gas and dust emissions containing oxides of  
carbon, sulfur, and nitrogen, combining with atmospheric  
moisture, form carbonic, sulfuric, and nitric acids and, thereby,  
contribute to the acidification of precipitation. This leads to an  
increase in the general acidification of the atmosphere and its  
pollution by secondary pollutants. Since the problem of chronic  
(PKF Luidor LLC, RusKomTrans LLC), electrical and  
electronic (NPO Pravdinskiy radiozavod JSC, Uzola LLC),  
chemical (Biaxplen LLC, Real-Invest Group of Companies),  
mining and processing (Balkum LLC INESCO Company  
Group) and mixed (STP LLC) industries, which can potentially  
provide a certain impact on the local environment [1, 14, 16].  
The industrial territory of Nizhny Novgorod is characterized  
by the presence of micro-districts that are quite contrasting in  
*
Corresponding author: Andrey Vladimirovich Kozlov, Minin  
Nizhny Novgorod State Pedagogical University, Nizhny  
Novgorod, Russia. E-mail: kozlov.a_v@bk.ru  
1
429  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1429-1433  
terms of pollution, since in its urban planning it has many  
industrial centers, including those with various gas and dust  
emissions as waste. One of such industrial infrastructures of the  
city is GAZ OJSC, an automobile plant with a long-term  
successful history and a full-fledged production complex.  
However, like any city-forming enterprise, the plant in question  
is characterized by a chronic presence of gas and dust emissions  
into the atmosphere, which is known to make a certain  
contribution to the ecological state of the local atmosphere [12,  
of February 2020 in different districts of the cities of Balahna  
and Pravdinsk, as well as at the end of February 2020 from 7  
points tied to the border of the sanitary protection zone of the  
GAZ OJSC located in the Avtozavodskaya district of Nizhny  
Novgorod.  
Snow samples were taken manually using a plastic cylinder  
(ø = 10 cm, h = 20 cm) in opaque plastic bags. For tapping,  
visually clean and even areas of snow cover were selected; the  
2
area of each equaled 10 m . At one site, 5 spot samples were  
1
3, 17]. Our study aimed to assess the ecological state of the  
local atmosphere within the Balahna-Pravdinsk agglomeration  
Nizhny Novgorod region) according to the level of pollution of  
taken, which were subsequently mixed into 1 combined sample.  
In total, 10 combined samples were taken for each year of  
research on the territory of the Balahna agglomeration (Figure 1)  
and 8 combined samples on the territory of the sanitary  
protection zone of an industrial enterprise in Nizhny Novgorod,  
including 1 sample from the natural area (field) of the gully-  
ravine mesorelief near with Druzhba horticultural non-  
commercial association of citizens (SNT) located 1 km from the  
highway, taken as a conditional background object (Figure 2).  
The samples were delivered and analyzed at the Ecological-  
Analytical Laboratory for Monitoring and Environmental  
Protection at Minin University.  
(
snow masses accumulated in the zone of the potential impact of  
industrial territories, as well as to assess the ecological state and  
the level of pollution of snow cover accumulated at the sanitary  
protection zone of the city-forming enterprise of Nizhny  
Novgorod. The study of the snow cover was carried out in  
compliance with the requirements of regulatory and  
methodological documents.  
2
Materials and methods  
Tapping was carried out in mid-March 2019 and at the end  
Figure 1: The layout of snow masses tapping points within the Balahna-Pravdinsk agglomeration, Nizhny Novgorod region (2019-2020)  
Figure 2: Layouts of tapping points of snow masses within the sanitary protection zone of the industrial enterprise in Nizhny Novgorod (2020)  
1
430  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1429-1433  
In the snow meltwater, acidity was determined by a  
Air pollution from dust components, estimated based on the  
particulate matter index, can be considered insignificant. For  
both years of study, the level of snow dusting turned out to be  
approximately the same depending on the tapping location:  
minimal at points 5 and 6, average at points 1, 2, 4, and 8,  
relatively increased at points 3, 7, 9, and 10, the location of  
which is confined either to industrial areas or the passage of  
highways. It should also be noted that in 2020 the dust content in  
the snow masses was consistently lower than in 2019.  
potentiometric method using  
a
МАRК-903 pH meter-  
millivoltmeter according to RD 52.24.495-2005; the content of  
suspended particles  by a gravimetric method using Vibra  
HT224RCE analytical balance (Japan) according to GOST  
1
8164-72 (filtration of 1 l of snow water); the content of  
ammonium and nitrate forms of nitrogen  by ion-selective  
ionometry using an Expert-001-3 (0.4) ion meter and ELIT-021  
and ELIT-051 ion-selective electrodes according to GOST 4192-  
8
0
2; the content of hydrocarbonates  by acid-base titration with  
.1 M HCl solution using a titration device in accordance with  
Air pollution by ammonia and nitrogen oxides, estimated  
based on indicators of the content of ammonium cation and  
nitrate anion in snow water, turned out to be quite noticeable and  
especially concerning the ammonium cation. Thus, at points 1,  
2, and 10 during the two years of the study, an excess of the  
level of permissible concentration for ammonia was observed,  
and in 2020 it was observed additionally at points 5 and 9. It  
seems that local enterprises are characterized by the presence of  
ammonia impurities in emissions. The level of ammonium  
concentration was higher during the snow accumulation period  
in 2020 almost at all tapping points, and for nitrate anion, it was  
higher at all tapping points. However, no trend in the territorial  
distribution of nitrates in the snow waters was revealed.  
GOST  
R
52407-2005; the content of  
chlorides by  
argentometry with 0.48% solution of AgNO3 in accordance with  
GOST 4245-72; the content of sulfates by iodometry with 0.05  
M Na2S2O3 solution in accordance with GOST 4389-72 [18].  
To determine the conditionally background ecological state  
of the snow cover in the area under study, the snow meltwater  
sampled from a field located in a ravine mesorelief near the  
Druzhba horticultural noncommercial association of citizens  
(
SNT) of the Prioksky district of Nizhny Novgorod at the end of  
February 2020, was analyzed.  
Regarding the acidity of the snow masses accumulated  
within the sanitary protection zone of the industrial enterprise in  
Nizhny Novgorod, it should be noted that they were not  
3
Results  
The study of the acidification of atmospheric precipitation in  
the Balahna-Pravdinsk territory, estimated based on the acidity  
index of local snow masses, showed that, in general, they had a  
certain acid reaction in the weakly acidic interval. Almost all  
tapping points showed a downward trend in snow acidity by  
characterized by  
a
scattered range of values or an  
underestimation of indicators. The hydrogen index of meltwater  
varied in the range of weak reactions and reactions close to  
neutral.  
2
020, except for the sample from point 2 (industrial area).  
Table 1: The content of chemicals in the water of snow masses accumulated within the Balahna-Pravdinsk urban agglomeration  
Acidity  
pH, pH units)  
Weighted  
substances, g/l  
Nitrate nitrogen  
Ammonium nitrogen  
Tapping  
point  
+
(
(NO  
3
, mg/l)  
(NH  
2019  
4
, mg/l)  
2020  
2
019  
2020  
6.65  
6.60  
6.64  
6.29  
6.98  
6.34  
6.83  
6.47  
6.55  
6.86  
2019  
2020  
0.016  
0.018  
0.024  
0.016  
0.004  
0.012  
0.022  
0.016  
0.064  
0.036  
2019  
2020  
1
2
3
4
5
6
7
8
9
6.61  
6.77  
6.48  
6.16  
6.06  
6.29  
6.31  
6.42  
6.06  
6.04  
0.019  
0.026  
0.033  
0.018  
0.007  
0.015  
0.029  
0.020  
0.078  
0.047  
0.29  
0.26  
0.24  
0.16  
0.22  
0.11  
0.17  
0.19  
0.26  
0.17  
0.82  
1.05  
0.99  
0.97  
0.88  
0.81  
0.96  
0.63  
0.64  
0.77  
2.15  
23.0  
1.38  
1.88  
1.60  
0.90  
1.52  
0.98  
1.40  
2.53  
3.18  
2.05  
1.81  
1.47  
2.10  
1.27  
1.86  
1.60  
2.10  
2.16  
1
0
MPC*  
6.5-8.5  
45  
1.9  
*
 normative values are taken for waters related to water bodies used for drinking water and amenities (GN 2.1.5.1315-03 "Maximum permissible  
concentrations (MPC) of chemicals in the water of water bodies used for drinking water and amenities")  
Table 2: The content of chemicals in the water of snow masses accumulated within the sanitary protection zone of the Nizhny Novgorod  
industrial enterprise  
Snow tapping points  
Indicator  
1
2
3
4
5
6
7
C*  
pH, pH units  
Suspended solids,  
mg/l  
7.12  
6.96  
6.91  
6.81  
6.83  
6.87  
6.93  
6.12  
0
.0022  
0.0138  
0.0075  
0.0010  
0.0054  
0.0100  
0.0064  
0.0060  
HCO  
3
, mg / l  
39.6  
6.5  
29  
35.2  
5.5  
28  
22.0  
5.0  
21  
17.6  
5.2  
20  
26.4  
4.3  
23  
17.6  
6.1  
20  
22.0  
5.0  
24  
13.2  
0.5  
6
Cl , mg/l  
SO  
4
, mg/l  
C* control  
1
431  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1429-1433  
The tapping and analysis of the sample at the control point  
showed a lower pH value in comparison with the samples from  
the study area (Table 2). The content of dust particles, in  
general, turned out to be at the minimum level and most tapping  
points, below the control level. An exception was shown by  
samples from points 2 and 6, where the detected dust  
accumulation was higher than the rest.  
forms of nitrogen and hydrocarbonates. It should be emphasized  
that environmental studies of snow deposits from industrial  
areas, on the one hand, allow us to identify trends in the level of  
pollution of the local atmosphere. On the other hand, to confirm  
these findings and acquire a full understanding of the quality and  
ecological state of atmospheric air, annual long-term research on  
the indicator dynamics is required.  
Atmospheric pollution with carbon oxides, estimated based  
on the indicator of the content of bicarbonate anion in the water  
of the snow, had some trends in the distribution: its highest  
concentrations were found in the snow accumulated in the  
western and northwestern directions, which could be due to with  
the wind pattern of the city territory. Air pollution with chlorine-  
containing substances, estimated based on the chloride anion  
content in snow samples, did not have clear distributions in the  
prevalent wind directions. However, as such, it attracts attention,  
since it is known that the background level of chlorine content in  
the atmosphere is quite low. A tendency in the accumulation of  
sulfates in the snow masses, which indicates the content of  
sulfur oxides in the atmospheric air, was observed in a similar  
way to the content of hydrocarbonates. There was also a certain  
tendency for the concentration of sulfate anions in the snow to  
increase from the northwestern and northern directions.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors contributed to data collection, study design, data  
analysis, interpretation, and writing of this article.  
4
Discussion  
Nizhny Novgorod and the adjacent territories of its  
References  
agglomeration are considered one of the largest industrial  
centers in the Volga Federal District and Russia as a whole with  
a wide urbanization infrastructure and a high degree of air  
pollution from the operation of car engines. Besides, in the  
Nizhny Novgorod region, automobile production and machine  
tool engineering, as well as chemical, pharmaceutical,  
petrochemical, and other types of industry are actively  
developed. For these reasons, air pollution by many ecotoxicants  
within the city limits remains one of the main environmental  
problems of metropolitan cities [2, 13].  
Although snow is not an ecologically standardized system as  
an object for assessing the state of the environment, many  
researchers point out its high importance in ecological studies of  
the environment. The reason for this is the many physical and  
chemical factors of snow formation, air transport of its masses,  
and pollution processes. Due to the natural processes of  
concentration of pollutants in snow, the content of pollutants in  
it is considered one of the significant criteria when assessing the  
ecological state of the atmosphere [7, 8, 9, 16]. Pollutants and  
aerosol particles accumulated in snow masses are practically not  
affected by chemical reactions, preserving their primary state,  
which is important when assessing pollutants entering the  
atmosphere. The high ability of the snow cover to adsorb  
pollutants and suspended matter makes it possible to consider  
the state of snow as a definite indicator in assessing the spatial  
distribution of industry-related pollution in the city air  
environment.  
1
.
Kozlov AV, Uromova IP. Ekspertiza territorialnykh razlichii v  
urovne kontsentratsii legko podvizhnykh form prioritetnykh  
ekotoksikantov v urbanozemakh Nizhnego Novgoroda i analiz ikh  
integralnoi toksichnosti [Examination of territorial differences in  
the concentration level of easily mobile forms of priority  
ecotoxicants in urban soils of Nizhny Novgorod and analysis of  
their integral toxicity]. Uspekhi sovremennogo estestvoznaniya  
[The successes of modern natural science]. 2019; 12:57-62.  
2
.
Koposova NN, Kozlov AV, Sheshina IM. Analiz territorialnykh  
razlichii  
veshchestv v atmosfernom vozdukhe goroda Nizhnego Novgoroda  
Analysis of territorial differences in the levels of concentrations of  
v
urovnyakh kontsentratsii zagryaznyayushchikh  
[
pollutants in the atmosphere of Nizhny Novgorod]. Sovremennye  
problemy nauki i obrazovaniya [Modern problems of science and  
education]. 2015; 3:581.  
3. Miroshnichenko AA, Merzlyakova DR. Podgotovka magistrantov  
formirovaniyu komand obuchayushchikhsya dlya proektnoi  
k
deyatelnosti [Preparation of master students for the formation of  
student project teams]. Vestnik of Minin University. 2020;  
8
(1(30)):1.  
4
5
.
.
Khanova TG, Byvsheva MV, Demidova EE. Ispolzovanie  
ekologicheskogo kalendarya v protsesse oznakomleniya starshikh  
doshkolnikov s sezonnymi izmeneniyami v prirode [Using the  
ecological calendar in the process of familiarizing older  
preschoolers with seasonal changes in nature]. Vestnik of Minin  
University. 2018; 6(2(23):11.  
Shchukova IV, Kivileva, ZV. Kachestvo vody vodozabornykh  
skvazhin  
v
raionakh maloetazhnoi zastroiki gorodskikh  
aglomeratsii [Water quality of water wells in low-rise areas of  
urban agglomerations]. Uspekhi sovremennoi nauki. 2016;  
1
0(11):87-89.  
5
Conclusion  
6. Hamitova SM, Avdeev YM, Babich NA, Pestovskiy AS, Snetilova  
VS, Kozlov AV, et al. Toxicity assessment of urban soil of  
Vologda oblast. International Journal of Pharmaceutical Research.  
Thus, based on the study carried out, the meltwaters of the  
snow masses accumulated in the industrial zones of the Nizhny  
Novgorod region were characterized by a significant presence of  
suspended impurities, sulfates, chlorides, ammonium, and nitrate  
2
018; 10(4):651-654.  
7
.
Kupchik EYu. Khimicheskii monitoring snezhnogo pokrova g.  
Chernigova [Chemical monitoring of snow cover in Chernigov].  
1
432  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1429-1433  
Naukovii vіsnik Uzhgorodskogo natsіonalnogo unіversitetu. Serіya  
Khimiya [Scientific Bulletin of Uzhhorod National University.  
Chemistry series]. 2014; 2(32):84-90.  
8
9
.
.
Letenkova IV, Litvinov VF, Smorzhok VG. Khimicheskii analiz  
snezhnogo pokrova Novgorodskoi oblasti [Chemical analysis of  
the snow cover of the Novgorod region]. Vestnik Novgorodskogo  
gosudarstvennogo universiteta [Bulletin of Novgorod State  
University]. 2014; 76:73-76.  
Yanchenko NI, Yaskina OL. Osobennosti khimicheskogo sostava  
snezhnogo pokrova i atmosfernykh osadkov v gorode Bratske  
[
Features of the chemical composition of snow cover and  
atmospheric precipitation in Bratsk]. Izvestiya Tomskogo  
politekhnicheskogo universiteta [Bulletin of the Tomsk  
Polytechnic University]. 2014; 324(3):27-35.  
1
1
1
0. Kozlov AV, Vershinina IV, Volkova AV, Uromova IP, Novik IR,  
Zhadaev AYu, et al. Environmental performances and biological  
toxicity of snowpack water. International Journal of Engineering  
and Advanced Technology. 2019; 9(1):4967-4971.  
1. Popov YP, Avdeev YM, Hamitova SM, Tesalovsky AA, Kostin  
AE, Lukashevich VM, et al. Monitoring of green spaces’ condition  
using GIS-technologies. International Journal of Pharmaceutical  
Research. 2018; 10(4):730-733.  
2. Kozlov AV, Mironova YuI, Mashakin AM, Kondrashin BV,  
Dedyk VE, Tarasov IA, et al. Otsenka ekologo-khimicheskogo  
sostoyaniya  
i biologicheskoi toksichnosti snezhnogo pokrova  
avtomagistralei Nizhnego Novgoroda [Assessment of the  
ecological and chemical state and biological toxicity of the snow  
cover of the highways of Nizhny Novgorod]. Uspekhi  
sovremennogo estestvoznaniya [The successes of modern natural  
science]. 2017; 3:92-96.  
1
1
1
3. Koposova NN. Nizhnii Novgorod: issledovanie goroda kak  
sotsialno-ekologicheskoi sredy [Nizhny Novgorod: a study of the  
city as a socio-ecological environmen]: author's abstract of a PhD  
in geography thesis. Russian State Pedagogical University named  
after A.I. Herzen, St. Petersburg; 1997. 19 p.  
4. Koposova NN. Formirovanie professionalnykh kompetentsii pri  
izuchenii kursa "Tekhnogennye sistemy i ekologicheskii risk"  
[
"
Formation of professional competencies when studying the  
Industry-related systems and environmental risk" course]. Vestnik  
of Minin University. 2015; 2(10):16.  
5. Perevoshchikova EN. Formirovanie sposobnosti magistrantov  
pedagogicheskogo obrazovaniya k komandnoi rabote v protsesse  
proektirovaniya obrazovatelnogo produkta [Formation of the  
ability of master students enrolled into a pedagogical program for  
teamwork in the process of designing an educational product].  
Vestnik of Minin University. 2020; 8(1(30)):3.  
1
6. Shumilova MA, Sadiullina OV, Petrov VG. Issledovanie  
zagryaznennosti snezhnogo pokrova na primere goroda Izhevska  
[
Investigation of the pollution of the snow cover on the example of  
Izhevsk]. Vestnik Udmurtskogo universiteta. Seriya: fizika  
i
khimiya [Bulletin of the Udmurt University. Series: physics and  
chemistry]. 2012; 2:83-89.  
1
1
7. Kozlov AV, Koposova NN, Uromova IP, Volkova AV, Vershinina  
IV, Avdeev YuM, Veselova AYu. Environmental assessment of  
minor rivers flowing within the boundaries of Nizhny Novgorod.  
International Journal of Advanced Research in Engineering and  
Technology. 2020; 11(4):100-107.  
8. Kozlov AV. Otsenka ekologicheskogo sostoyaniya pochvennogo  
pokrova i vodnykh obektov [Assessment of the ecological state of  
soil cover and water bodies]. Nizhny Novgorod: Minin university;  
2
016. 146 p.  
1
433