Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1556-1562  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/8(4)1562  
Life-Cycle Maintenance Management Strategies for  
Bridges in Kuwait  
1
2
Hesham Almomani *, Omar Naser Almutairi  
1
Department of Industrial Engineering, Faculty of Engineering, the Hashemite University  
2
Ministry of Kuwait Municipality, Civil Engineer, Kuwait  
Received: 06/01/2020  
Accepted: 13/04/2020  
Published: 20/09/2020  
Abstract  
st  
To meet the requirements of 21 century, Kuwait ministry of public works have realized that they should use modern technologies  
and management system to face challenges of modern world. So, they maintenance Administration has launched a massive program  
which helps to meet development needs and helps to maintain the infrastructure’s sustainable growth. Thus, it is very necessary to  
develop appropriate bridge maintenance strategies to meet serviceability criteria and life cycle cost optimization of new bridges. And  
main purpose was to meet the requirements of development needs. Bridge management system (BMS) is a software or we can say a  
management tool which helps us to maintain or manage the bridges. These are the following main points which helps decision makers  
to make a best decision. Defines bridge condition, identifies bridge needs for like if we need replacement of any material or renovation  
can be identified by BMS, cost of bridge during maintenance and management of the bridge, identifies bridges for Replacement and  
rehabilitation programs (MR & R) and also identifies for the assessment of bridges. According to replacement and rehabilitation  
programs minor changes or maintenance of the bridges is done by Work management system (WBS). This paper proposes a framework  
that can enhance the effectiveness of Kuwait’s Integrated Maintenance Management System (KIMMS). A survey for bridge contractors  
around the world was used as the research method for this study. This contains questions regarding their current bridge management  
system (BMS) and what are the input and output parameters it considers in the process. BIM (Bridge information modeling) technology  
is used to reduce the errors in designing and construction of the bridges by using BMS, BRIDGE OWNER may have a sustainability in  
the maintenance and enhancement of its bridge. We can determine the cash flow to be used in future for the replacement and repairment  
of bridge. It helps to adopt maintenance program to maintain life-cycle costs for the community. Helps to review the replacement and  
rehabilitation strategies. Helps to improve the economic life of infrastructure assets. After evaluating the BMSs used by the respondents,  
it turned out that the most effective procedure should have three main processes to be followed; maintenance planning, maintenance  
optimization, and maintenance decision support. Overall, the conceptualized framework considers an optimized procedure for  
maintenance management considering the balance in cost and quality of the process.  
Keywords: Bridge Management System; Engineering Constraints; Kuwait’s Integrated Maintenance Management System;  
Sustainability, serviceability, Bridge information model  
1
Americas, efficient management of bridge stocks is very  
1
Introduction  
important for the country. These structures bring traffic volume  
which plays a big part in the economy, allowing populations to  
reach capitals and other areas through these diversional routes.  
However, several challenges are being faced by society and one  
of them is that there are still structures within densely populated  
areas that pose a problem of accessibility (Wong, et al. 2001).  
Furthermore, there is a scarcity of materials for retrofitting and  
repair of these structures in some regions. Thus, maintenance  
management of bridges is necessary in order to provide a  
sustainable level of functionality and serviceability of the  
structure in its entire life span. Coherent and well-structured  
techniques and procedures for continuous and cyclical  
maintenance are very important.  
In summary, highway bridges in Kuwait can be  
differentiated into two classifications. The first one considers  
long-span bridges (LSB) like Sheikh Jaber Al-Ahmad Al-  
Sabah Causeway for example, and these can be either  
suspension bridge or cable-stayed bridges. Most of these are  
built with modern technology equipped with monitoring  
systems that can see the current structural behavior of the  
Within the country of Kuwait, there are 3 notable highway  
bridges which are considered part of the history, wherein  
Sheikh Jaber Al-Ahmad Al-Sabah Causeway is considered one  
of the longest bridges in the world spanning for about 48.5  
kilometers (Naser, 2019; Ahmad & Ahmad, 2018). There are  
also approximately 150 unnamed short spans to medium span  
highway bridges and 540 pedestrian bridges. These structures,  
especially the highway bridges, sustain a large volume of  
vehicular traffic considering that the population continues to  
grow. These structures are vital to maintaining the mobility and  
transportation of goods and services of the people, and they also  
provide strategic connections within the different areas of the  
country. As the country’s governmental agency for the  
management of roads and highways, the Ministry of Public  
Works and the Public Authority for Roads & Transportation are  
those that responsible for the conceptualization, design,  
construction, operation, and maintenance of roads and  
transportation systems.  
Even though bridge stock in Kuwait is quite new in  
comparison with the stock of bridge structures in Asia and the  
Corresponding author: Hesham Almomani, Department of Industrial Engineering, Faculty of Engineering, The Hashemite University,  
E-mail: oalmut220@gmail.com  
1
556  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1556-1562  
bridge. The second classification is composed of the short span  
or medium highway bridges (SMB). Some of them created in  
the recent decade until today are made using prestressed  
concrete, while those that are 25 years ago and further are made  
of reinforced concrete. Considering that both stated concrete  
configurations are prone to deterioration especially when  
exposed to changing humidity and weather, the maintenance  
management system would enhance the functionality of the  
structure for extended years. In this paper, the conceptualized  
preliminary framework for the strategic maintenance  
management of bridges is focused on SSMB bridges in Kuwait  
since the maintenance for long-span bridges is most likely well  
studied during the design phase.  
using their BMS. Lastly, most of the BMSs consist of  
maintenance management tools for systematic inspection,  
planning, evaluation, and prioritization. Based on the results,  
the majority of the respondents utilize their BMS to discern  
various maintenance and repair works. For the respondent (B),  
the decision is mainly focused on the conditions of the  
components of the bridge. For respondent C, their maintenance  
process depends on the available budget, and also the amount  
and current condition of the bridge components. For respondent  
E, the computations for present economic costs are utilized in  
order to produce a detailed set of inspections.  
Moreover, most of the respondents have a certain tool that  
can determine and predict the necessity for the maintenance of  
a bridge structure. Respondent A has a database of recorded  
defects from which the maintenance work for existing bridges  
can be decided. Respondent B considers the provided risk  
assessment and present condition of the bridge. Respondent C  
has an established framework in general to determine the  
current condition rating of the bridge. Respondent D has  
developed its IT-related techniques for conceptualization and  
prioritization of maintenance works. Respondent E, they have  
provided a set of modules that can be used to determine the  
classification and condition of the damage based on the  
inspection report, which can then be used to create a strategic  
prototype of the optimal strategy for maintenance works.  
Respondent F decides based on their inhouse maintenance  
programming. Furthermore, to determine the best option for  
2
Review of Related Literature and Studies  
2
.1 Review of Existing Bridge Management Systems  
In order to have a benchmark about the condition of present  
Bridge Management Systems, the result of research conducted  
by Yang et. al. (2006) regarding BMS in some chosen countries  
was utilized. The review is mainly based on a questionnaire  
survey form wherein most of the questions came from a 1999  
Questionnaire. These questions were part of the technical  
deliverables of a bridge project known as “BRIME” in Europe  
(
FEHRL, 1999). Listed below is the scope of the questionnaire  
form: (a) bridge management system description, (b) database  
information, (c) bridge condition, (d) other necessary  
information, (e) forecast on condition of the bridge, (f) cost  
analysis, (g) allocation and other details for maintenance, (h)  
quality control, and (i) information on administration. The  
survey forms were priorly delivered to 28 bridge private  
contractors and government administration departments in  
selected regions and states in countries within America,  
Eurasia, and Oceania. Among these target respondents, only 7  
were able to submit their answers in the given deadline. Code  
names through the use of alphabet letters were used in order to  
hide the company name and keep them confidential  
information.  
maintenance management, respondent  
A utilizes value  
management based on the results of risk assessments.  
Respondent B uses their experience and also utilizes the  
Strengthening Guidelines Manual’. Respondent C determines  
the best maintenance management option by balancing the  
budget and also the professional engineering preferences.  
Respondent E decides on the lowest cost of the provided set of  
alternatives. Respondent F most of the time combines the result  
of site investigation, engineering perception, and cost analysis  
to select the most suitable maintenance strategy (Ahmad &  
Sahar, 2019). In many countries, ranges of condition ratings for  
bridges are used to recommend maintenance strategy. For  
respondent B, preliminary information comes from the  
inspector who also initially recommends what he thinks is the  
best treatment option. For respondent C, specific activities are  
done during inspection to determine such maintenance needs.  
The output reports from the inspection are then reviewed by the  
head which then draws the plan of maintenance works to be  
done. Most of the BMS included in this study does not have a  
function that can generate the most cost-efficient maintenance  
strategy which considers different constraints on the condition  
of the bridges. However, most of the respondents have BMSs  
that can produce a strategy for maintenance prioritization based  
on some design parameters such as traffic vehicle volume, the  
significance of freight route, analysis of risks, etc.  
2
.1 Analysis of the Survey Responses  
The following tables 2, 3, and 4 gives a summary of the  
results of the survey. The tables show the general attributes,  
functions, components, and other information of the BMS’s of  
the respondents. In this, the analysis and evaluation of the  
responses are focused on the general information of the bridge  
maintenance management utilized by the respondents. More  
than half of the contractors who replied to the survey have used  
BMS’s for more than 10 years, considering that the latest  
version of BMS was provided in the year 2000. All of the  
respondents use technologically integrated BMS with  
automatic production of the database. BMS is usually utilized  
for bridges that are considered to be national connections.  
Almost all the respondents go through life cycle cost analysis  
Table 1: General Information on the Bridge Management Systems of the Respondents  
Responses of the Respondents  
Questions  
A
SMB  
Y
B
Both  
Y
C
Both  
Y
D
Both  
Y
E
Both  
Y
F
Both  
Y
G
SMB  
Y
What is the bridge classification within the BMS?  
Is it a digital BMS?  
How long in years has the BMS been used?  
Is it connected to the road management system?  
How many bridges are there in the Database?  
Does it include special documentation for BMS?  
Is there a Life Cycle Cost Analysis?  
6
N
9000  
Y
Y
9
Y
3000  
Y
Y
>10  
Y
12000  
Y
15  
N
4600  
Y
Y
19  
N
30000  
Y
Y
>15  
Y
3000  
Y
5
Y
896  
Y
N
N
Y
1
557  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1556-1562  
Table 2: Functions and Components of the Bridge Management Systems of the Respondents  
As recording database for structure stock inventory, capacity, and condition;  
Conceptualization and procedure for maintenance works;  
Scheduling for site inspections;  
A
B
Documentation of Defects.  
Database for bridge location, structural type, and dimensions;  
Data regarding current condition and upcoming inspection;  
Detailed cost data;  
Database for reports and correspondence;  
Prioritization and scheduling or repair works.  
Module for inspection;  
Module for Programming;  
Module for Preservation;  
Module for Results;  
C
Module for Gateway (Import and export information linked different BMS systems);  
Module for configuration and software customization.  
Database and inventory of bridges, including current condition and maintenance process;  
Inspection organization;  
Maintenance management model.  
Overall maintenance strategy;  
D
E
Set of activities;  
Database of the structure;  
Database of information;  
Modules for procedures.  
Database and inventory;  
F
Inspection organization;  
Evaluation and Conceptualization of Maintenance Procedure.  
G
Database and inventory.  
Table 3: Additional Information Regarding Maintenance Strategy in the Respondents’ BMSs  
A
B
C
D
E
F
G
Does the BMS utilize a certain method to determine whether to repair,  
strengthen, or replace the components of the bridge considering that  
it is damaged already?  
N
Y
Y
Y
Y
N
N
Does the BMS utilize a certain method in order to determine it is  
necessary to do the maintenance work already for a specified bridge  
aside from professional judgment?  
Does the BMS utilize a certain method in order to determine the most  
optimal choice for maintenance procedures aside from professional  
judgment?  
Does the BMS contain certain options for maintenance process  
recommendation which depend on criteria such as type of damage,  
level of damage, or other factors?  
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
N
N
Y
Y
N
Y
Y
N
N
N
N
Does the BMS provide an optimized or cost-efficient maintenance  
strategy considering different levels of conditions of the bridge?  
Does the BMS provide a prioritized strategy for maintenance works  
in the bridge stock considering that the budget is scarce?  
N
N
N
Y
N
Y
Y
Y
Y
Y
N
N
N
N
2
.2 Review of Current Bridge Maintenance Management  
depending on the maintenance requirements, and these are  
organized in the IPP to determine the most cost-efficient  
maintenance strategy. Data for more than 260 highway and  
pedestrian bridges, together with 5000-kilometer road  
pavements are maintained and kept in KIMMS (Karan et. al.,  
2001). This database is utilized by six departments for  
maintenance management of the Ministry of Public Works,  
which are divided by project budget constraints, and each of  
these departments is responsible for various types of structural  
components (Elis et. al., 2010). Although this system is very  
promising to have in any country, there are still disadvantages  
that can be found not just on the system, but on the way how  
the maintenance management is being implemented. One  
disadvantage of this system is that the chosen maintenance  
strategy sometimes does not fit well with the provided budget,  
considering that there are many factors and parameters  
included in the selection phase. Thus, the optimal maintenance  
Practice in Kuwait  
Kuwait is one of the countries that has utilized its unique  
bridge maintenance management system, named as Kuwait  
Infrastructure Maintenance Management System (KIMMS)  
which was completed in the year 2000. This integrated  
maintenance management program can be utilized to determine  
the current condition, forecast repair necessities and  
recommend optimal solutions and alternatives for various  
infrastructure components such as highway bridges and road  
pavements (Baumgardner, n.d.). One of the distinct features of  
this system is that it has an Integrated Priority Program (IPP)  
which evaluates the alternatives for maintenance strategy, and  
which can also give recommendations for the time interval of  
implementation. Moreover, it also provides a list of projects  
that needs to be prioritized for maintenance works. Budgeting  
can be done by considering groups of structural components  
1
558  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1556-1562  
planning strategy should be cost-efficient and must be within  
the budget. Another disadvantage is the lack of professional  
judgment which should come from the designated engineers.  
Most of the decision making is done in the system to make  
everything digital, setting aside the perception of the  
professionals which is very important for the structure (Ahmad  
& Ahmad, 2019). A good example of this aspect is that as years  
go by, there is newly discovered repair condition for a certain  
structure which is not recorded in the database. Thus, the final  
decision for the most applicable maintenance strategy must  
have both the insights of the integrated system and the  
recommendations of the professionals.  
Figure 1: This is how BMS Works  
1
559  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1556-1562  
2
.3 Interim Objectives  
of KIMMS mainly for the short span to medium span bridges  
in Kuwait is proposed based on these collected principles,  
which focuses on providing a strategic maintenance plan that  
considers the life-cycle costs of the structure, without  
compromising the serviceability, safety, and sustainability of  
the bridge during its life span.  
Based on the review of existing BMSs of the respondents  
which comprise of selected countries, and comparing them  
with Kuwait’s own maintenance management system KIMMS,  
the following functions for bridge maintenance system can be  
proposed to enhance the current maintenance strategy used for  
the country. (a) Planning. This pertains to the conventional way  
of how the BMS chooses the most suitable maintenance method  
for such damage to a bridge component. (b) Optimization. This  
pertains to determining the most suitable maintenance strategy,  
which is at the same time considering cost analysis to have the  
most cost-efficient choice during the lifespan of the structure.  
3.3 Primary Objective of the Existing BMS in Kuwait  
For the proposed enhancement of the current BMS used in  
Kuwait, the following set of objectives is utilized which are  
based on research conducted by Wong et. al. (2001).  
1. Performance: this pertains to the continuous service of  
bridges with the least disruption considering the codes and  
standards accepted in the local community.  
2. Prediction: this refers to the understanding and monitoring  
of bridge stock with adequate information to effective and  
efficient maintenance planning.  
(
c) Decision support. This pertains to maintenance planning  
with professional judgment taking into account both the result  
of the BMS and professional opinions.  
3
3
Methodology  
.1 Bridge Management System  
These are the following methods by which we can do  
3.  
Funding: this ensures that the budget provided by the client  
produces a reasonable result.  
4.  
Social: this takes into account other responsibilities of the  
bridge such as sustainability and safety.  
bridge maintenance and management. First of all, we are going  
to do discuss “Bridge management software” or BMS. Since  
from several decades, operations of bridges are managed by  
local labor. But by the 1980s, significant interest taken by  
bridge management system at the state and federal level. There  
are many functions can be done with BMS. Some of them we  
are going to describe here like: (a) BMS helps BRIDGE  
OWNER to have a sustainability in the maintenance and  
enhancement of its bridge; (b) determines the cash flow to be  
used in future for the replacement and repairment of bridge; (c)  
it helps to adopt maintenance program to maintain life-cycle  
costs for the community; (d) helps to review the replacement  
and rehabilitation strategies; (f) helps to improve the economic  
life of infrastructure assets; (g) it helps to review bridge  
management system which is used bridge owner’s bridge  
assets; (h) level of service and condition can be managed very  
effectively. Now let’s have some discussion about components  
of bridge management system. The most important and most  
effective component of bridge management system is  
inspection module and inventory module. For the database to  
be functional, it must have input in it. And this data is collected  
by inspection module. Similarly, some other components are  
here with names like maintenance module, Database module,  
Maintenance optimization module and Life cycle cost (LCC).  
These modules are used to solve issues related to them. This is  
how BMS Works (Figure 1).  
To address these primary objectives while taking into  
consideration the three functions provided for the enhancement  
of BMS in Kuwait, namely, maintenance planning,  
optimization, and maintenance decision support, it is  
appropriate to formulate suitable life-cycle strategies for  
maintenance management. The resulting strategies take into  
consideration various criteria and parameters other than the  
economical aspect, but also the technical aspects. The main aim  
of the economical aspect is to reduce the present value of the  
entire life-cycle cost which includes the maintenance works.  
The objective of the technical aspect is to make sure that the  
safety, serviceability, and aesthetic appearance of the bridge is  
not compromised. Thus, the cost objective must be well-  
balanced with the expected performance and quality of the  
structure.  
3
.4 Constraints Considered in Strategic Maintenance  
Management  
All the constraints considered in coming up with the best  
strategic way for maintenance management are discussed in  
this section. These constraints are mainly based on a study  
conducted by Yang, et. al. (2006).  
3
.4.1 Technology - Safety and Serviceability  
The primary objective of maintenance management is to  
guarantee the safety and serviceability of the bridges in their  
projected life span, considering the required maintenance  
works and damage repairs. To reiterate the review in the  
previous section, Liu and Frangopol (2004) evaluated the  
performance of damaged bridges by utilizing indices named  
condition and safety. In this study, the condition index has a  
total of more than 350 data, with 0 to 3 as a value representing  
the bridges’ damage condition based on visual inspection. The  
following are the characteristics of each numerical  
representation.  
3
.2 Proposed Framework for Enhanced KIMMS for Kuwait  
In recent years, combined mathematical and engineering  
methods were developed for the optimization of structural  
maintenance for bridges considering multiple constraints and  
parameters. The fundamental concept of these methods is to  
reduce the life-cycle cost of the structure sacrificing the  
serviceability and performance of the bridge structure. One  
good example is research conducted by Itoh and Liu (1999),  
wherein they utilized the technique of genetic algorithms to  
propose an optimized rehabilitation development plan for  
bridge decks which was designed based on the maintenance  
cost and degree of damage, simultaneously. Liu and Fangopol  
0  no chloride contamination  
1  the onset of corrosion  
2  the onset of cracking  
3  loose concrete or significant delamination  
There are still higher condition indices made for those  
(
2004) also researched with the same objective but with a  
different framework as they utilized three different objective  
parameters for coming up with the best tradeoff for  
maintenance management. These functions are safety index,  
condition index, and cumulative life-cycle maintenance cost.  
Inagaki et. al. (2005). Moreover, a strategic cycle for  
maintenance works was proposed Inagaki et. al. (2005)  
considering indicators for the current condition of the structure  
and renewal costs. The initial framework for the enhancement  
damages that are worse than the enumerated conditions. The  
safety index pertains to the ratio of the actual to the calculated  
live load resistance of the bridge, which takes into account the  
degree of reliability of the damaged element of the bridge.  
However, the safety index is quite different from the condition  
1
560  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1556-1562  
index because higher safety levels describe damages that are  
safer.  
3.4.3 Sustainability  Environmental, Social, and Economic  
Impact  
Economic, environment, and community are three aspects  
that are utilized internationally to define the extent of  
sustainability as a constraint. The stability of the environmental  
aspect along with industrial developments must be well-  
established which is the main principle of sustainability. KPIs  
or also known as key performance indicators are applied in  
modern designs to balance the environmental, social, and  
economical aspects of the maintenance management strategies  
for bridges.  
3
.4.2 Economy  Present Value of Cumulative Life-Cycle  
Maintenance Cost  
The accumulated life-cycle maintenance cost is the total  
costs of every repair or retrofitting works done during the  
functionality period or service lifespan of the bridge, which are  
reduced to the present economic value considering the present,  
and this is can be presented in the equation below,  
푖  
1 + 푣)푖  
 = ∑  
3.5 Life Cycle Cost Optimization  
(
ꢁꢂ  
Life cycle cost optimization is one of the main objectives  
of the framework to be proposed and it obtained based on the  
requirements of VFM or “value for money”. VFM is defined as  
a parameter that circulates three E’s, namely, economy,  
efficiency, and effectiveness (Rutter and Gidado, 2005). Each  
is defined as follows depending on their usage in this paper.  
where CPV is the present value of the combined cost of  
maintenance works, N is the total number of maintenance  
periods, v is the discount rate, and Ct is the cost of maintenance  
work required. The optimal problem for maintenance  
management deals with the cost-efficient budgeting not just the  
maintenance cost but also the maintenance efforts so that there  
will be an equity and that the objectives for all the constraints  
described can be attained, and this problem is briefly described  
as follows provided on the results of the study conducted by  
Liu and Frangopol (2004). (a) Coming up with the smallest  
possible condition index during the lifespan of the bridge; (b)  
coming up with the largest possible safety index during the  
lifespan of the bridge, and; (c) coming up with the lowest  
possible present value of total maintenance cost during the  
lifespan of the bridge.  
The economy pertains to minimizing the total cost of raw  
materials and resources used for the maintenance works of  
the bridge.  
Efficiency means maximizing the output to input ratio of  
the bridge maintenance management procedure, wherein  
the output pertains to the performance and quality of the  
work, while input pertains to the life cycle cost.  
Effectiveness refers to maximizing the utility value, which  
is described as the welfare provided by the client to a  
certain project with a particular profit, as well as risk.  
Figure 2: Proposed Framework for the Enhanced KIMMS  
1
561  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1556-1562  
3
.6 Proposed Framework  
2. Ellis, R. M., Cheetham, A., Hong, K., & Thompson, P. D. (2010,  
July). Integration of bridge management systems (BMS) and  
pavement management systems (PMS). In Bridge Maintenance,  
Safety, Management, and Life-Cycle Optimization: Proceedings  
of the Fifth International IABMAS Conference, Philadelphia,  
USA, 11-15 July 2010 (p. 233). CRC Press.  
The development of the framework for Life-cycle  
Maintenance Management of short span to medium span  
bridges in Kuwait consists of three different steps as shown in  
Figure 2. The summary of this procedure is listed as follows:  
(
a) maintenance planning  determination of a ranked list of  
3
. FEHRL (1999), “Deliverable D4 under the ‘BRIME’ project -  
Review of existing BMS and definition of inputs for the proposed  
BMS”, The UK's Transport Research Laboratory (TRL), Forum of  
maintenance management strategies based on the current  
conditions of the damaged bridge component considering  
different alternatives; (b) maintenance optimization  the  
generated list of maintenance strategies are then assessed using  
cost analysis, which is then balanced with technological and  
sustainability constraints; and (c) maintenance decision support  
European (FEHRL),  
Highway  
Research  
Laboratories  
<
http://www.trl.co.uk/brime/d4.pdf> (accessed in April 2006).  
4
. Inagaki H., Fujino Y., Kitagawa K. and Kawamura K. (2005), “The  
maintenance and management strategy of bridges for local  
government in Japan”, Proceedings of the 5th International  
Conference on Bridge Management, Apr. 11-13, Guildford, 377-  
the optimized maintenance management strategy together  
with proposed alternatives is then reviewed by the  
administration and the professionals to decide whether to stick  
with the optimized strategy or the select from the alternatives.  
3
84.  
5. Itoh Y. and Liu C. (1999), “Multiobjective optimization of bridge  
deck maintenance”, Case Studies in Optimal Design and  
Maintenance Planning of Civil Infrastructure, 136-151.  
6
. Karan, M. A., Al-Kulaib, A. A., & Haas, R. (2001, August). An  
Overview of Kuwait’s Integrated Infrastructure Maintenance  
Management System (KIMMS). In Fifth International Conference  
on Managing Pavements Washington State Department of  
4
Conclusions  
In this study, a proposed enhancement for KIMMS, or the  
current bridge maintenance management system utilized in  
Kuwait, is developed focusing on a balanced decision making  
for the maintenance management strategy by adding up some  
constraints for consideration such as cost optimization and  
decision support from professionals. This would satisfy almost  
all the constraints in bridge engineering design such as  
economic, safety, serviceability, and sustainability. The output  
strategy represented by the framework takes into account these  
general constraints without compromising the existing methods  
and practices utilized by the KIMMS. This proposed  
framework provides certain features that can identify whether  
the objectives and requirements of all the constraints are met  
with a balanced maintenance program and life-cycle cost.  
Transportation Foundation for Pavement  
Preservation  
International Society for Asphalt Pavements Federal Highway  
Administration Transportation Research Board.  
7
. Liu M. and Frangopol D.M. (2004), ”Optimal bridge maintenance  
planning based on probabilistic performance prediction”,  
Engineering Structures, 26(7), 991-1002.  
. Rutter, D., & Gidado, K. (2005). PFI projects: their scope for  
delivering VFM. In The 21st Annual ARCOM Conference"(F.  
Khosrowshahi, ed.) (Vol. 1, pp. 591-9).  
8
9. Wasmi, N. A. (2019, May 2). Kuwait inaugurates the fourth longest  
bridge in the world for new megacity. Retrieved from  
a
https://www.thenational.ae/world/gcc/kuwait-inaugurates-the-  
fourth-longest-bridge-in-the-world-for-new-megacity-1.856527  
0. Wong P.C., Wong C.Y., and Darby J. (2001), “Bridge Management  
in Hong Kong: the selection of appropriate techniques”, Current  
and future trends in bridge design construction and maintenance 2:  
safety, economy, sustainability and aesthetics, proceedings of the  
international conference organized by the Institution of Civil, Apr.  
1
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
2
5-26, Hong Kong, 3-12.  
(
avoidance of guest authorship), dual submission, manipulation  
1
1
1. Yang, Y. N., Pam, H. J., Kumaraswamy, M. M., & Ugwu, O. O.  
(2006, November). Life-cycle maintenance management strategies  
for bridges in Hong Kong. In Proceedings of the Joint International  
Conference on Construction Culture, Innovation and Management  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
(pp. 26-35).  
2. Mirzaei, Z., et al. The IABMAS bridge management committee  
overview of existing bridge management systems. Technical  
Report, Institute for Construction and Infrastructure Management,  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
1
4.  
References  
Ahmad, I., & Ahmad, S. (2019). The Mediation Effect of Strategic  
Planning on The Relationship Between Business Skills and Firm’s  
Performance: Evidence from Medium Enterprises in Punjab,  
Pakistan. Opcion, 35(24), 746-778.  
Ahmad, I., Sahar. (2019). Waste Management Analysis From  
Economic Environment Sustainability Perspective. International  
Journal Of Scientific & Technology Research 8(12), 1540-1543.  
Ahmad, I., & Ahmad, S. (2018). Multiple Skills and Medium  
Enterprises’ Performance in Punjab Pakistan: A Pilot Study.  
Journal of Social Sciences Research, 7(2010), 44-49.  
Baumgardner, R. (n.d.). “Kuwait Infrastructure Maintenance  
Management System.” Kuwait Infrastructure Maintenance  
Management System (KIMMS), ITX Technologies/Soor  
Engineering  
https://proceedings.esri.com/library/userconf/proc96/to300/pap2  
6/p276.htm> (Apr. 7, 2020).  
Bureau,  
<
7
1
562