Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1258-1267  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/8(3)1267  
Physicochemical Characterization of Moroccan  
Natural Clays and the Study of their Adsorption  
Capacity for the Methyl Orange and Methylene Blue  
Removal from Aqueous Solution  
1
1
1
2
Meryem Assimeddine , Mohamed Abdennouri , Noureddine Barka , Elhossein Rifi , M’hamed  
Sadiq1  
,*  
1
Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA),  
FP Khouribga, B.P. 145, 25000 Khouribga, Morocco  
Ibn Tofail University of Kenitra, Research Group in Organic Synthesis and Extraction Process, Faculty of Sciences,  
2
University Campus, BP 133, Kenitra, Morocco  
Received: 04/05/2020  
Accepted: 24/8/2020  
Published: 20/12/2020  
Abstract  
The objective of this work was the physicochemical characterization of a Moroccan natural clay from the Jorf Arfoud region (Lampert  
Coodinates: x = 595610, y = 101578) and its valorization in the elimination of organic pollutants (methyl orange MO and methylene blue  
MB) from aqueous solutions, with the adsorption technique on raw and calcined clay at 500°C. The clay was characterized by chemical  
analysis such as X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning electron  
microscopy (SEM). Crude and purified clays, consisting essentially of silica and alumina, are a characteristic property of phyllosilicates and  
also contain amounts of quartz, kaolinite and calcite as associated minerals. The experiments were performed after optimization of the  
parameters influencing the system, such as pH, adsorbent mass, initial dye concentration and temperature. The clays used absorb better the  
MB than MO, for an initial concentration of 10 mg/L and 20 mg/L respectively. Langmuir and Freundlich models of adsorption isotherms  
were applied to fit experimental equilibrium data. Results have showed that the adsorption of MB and MO followed very well the second  
order kinetic model on raw clay. The adsorption process was found to be exothermic in the case of MB. However, the adsorption of MO was  
endothermic.  
Keywords: Natural Clay; Adsorption; isotherm and kinetic studies; Dye removal  
Introduction1  
refractory organics and emerging contaminants from industrial  
1
effluents using the microbial electrochemical technologies is a  
sustainable proposition as discussed in review paper [9]. The  
adsorption technique is one of the more favorable method for the  
removal of dyes. It has become an analytical method of choice,  
very effective and easy to use [10].  
This work focuses on the use of a locally available natural  
clay as adsorbent, low cost, biodegradable and made from natural  
sources [11]. The clays play an important role in some areas, such  
as the manufacture of therapeutic and cosmetic products [12-14]  
and treatment of wastewater, for example in adsorption of toxic  
organic compounds. It is a no polluting material that can be used  
as a depleting agent for wastewater and heavy metal laden water,  
due to its lofty adsorption capacity [15]. The adsorption and  
desorption process of organic dyes by clays are principally  
controlled by the surface property of the clay and the chemical  
properties of the molecules [16]. goethite blended natural  
Water is the most important natural resource made available  
to the future of humanity. It is essential for existence of life and  
maintaining ecological balance of planet. Amongst the growing  
impact caused directly or indirectly by humans, science and  
technology development are made the environmental mess with a  
big pollution problem. Dyes industrials are one of the main  
pollutants. From recent years, the textile industry emissions are  
heavily loaded with most organic dyes. These are often used in  
excess to improve dyeing; hence discharge water is highly  
concentrated dyes whose low biodegradability makes their  
treatments difficult, which is  
degradation [1, 2].  
Several authors used physical, chemical and biological  
methods to treat and discolor polluted effluents, such as  
coagulation and flocculation [3], biodegradation [4], membrane  
filtration [5], photodegradation and adsorption [6-8]. Removal of  
a source of environmental  
Corresponding author: M’hamed Sadiq, Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences  
and Applied Materials (SEMA), FP Khouribga, B.P. 145, 25000 Khouribga, Morocco. Tel: +212 666 24 81 96; Fax: +212 523 49 03 54 and  
E-mail: m.sadiq@usms.ma ; sadiqmhamed@hotmail.com  
1
258  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1258-1267  
clayware-based membranes have been previously reported as a  
low-cost alternative proton exchange membrane in microbial fuel  
cell application [17]. They showed that Natural clay-based  
membranes have significantly lower proton conductivity than  
Nafion 117 membrane. Microbial Fuel CellMembrane  
Bioreactor developed system by Bhowmick et al. [18]  
demonstrated the best treatment of medium-strength organic  
wastewater; Overall chemical oxygen demand (COD) and total  
Kjeldahl nitrogen (TKN) removal efficiency of around 98% and  
sampled, air-dried, and then crushed, calcined at 500°C, in a  
tubular furnace for 4 hours.  
2.3 Characterization techniques  
Adsorbent diffractograms were recorded at room temperature  
using a D2 PHASER powder diffractometer, equipped with a  
α
copper anticathode (CuK line, λ=1,5406 Å) operated at 30 kV  
and 10 mA. Bragg-geometry-Brentano has been employed. The  
samples were irradiated in a 2θ angular range from 5° to 80°, with  
a 0.01° measurement pitch and a 0.5 sec/step count time. Infrared  
spectroscopy measurements were obtained using a Fourier  
transform spectrometer, type Perkin Elmer (FTIR-2000). The  
samples are packaged as pellets, consisting of 1mg of the test  
substance, diluted in 100 mg KBr. The results are presented in  
8
2% were achieved from the combined process, respectively. In  
one other work of Bhowmick et al. [19], Conductive ink printed  
Co and Fe were used as cathode catalyst, which  
3
O
4
3 4  
O
demonstrated an improved electrical performance and wastewater  
treatment efficacy of microbial fuel cell.  
-
1
The purpose of this study was to test the capacity of  
Moroccan natural clay as a low-cost adsorbent for the removal of  
methyl orange and methylene blue from aqueous solution to  
replace the current expensive methods of waste water. The effect  
of deferent parameter such as the adsorbent dose, pH, initial  
concentration of dye and temperature were studied.  
absorbance for wavenumbers between 4000 and 400 cm . We  
used a scanning electron microscope JEOL JSM 6400. This  
device has an acceleration voltage of up to 40 kV, the images are  
usually made at 20 kV. Chemical analysis by X-ray fluorescence  
makes it possible to determine precisely the overall chemical  
composition of a solid sample. The device used is a wavelength  
dispersion spectrometerType Axios and the method of  
preparation is pastille (PROT -ELE03-v01).  
2
Materials and methods  
2
.1 Materials  
2
2
.4 Adsorption kinetics  
.4.1 Pseudo-first-order model  
All the reagents chemicals used in the study were of analytical  
grade. Methylene blue and methyl orange ware provided by the  
Sigma-Aldrich chemicals and used without further purification.  
The chemical formula and some physicochemical properties of  
these dyes are summarized in table 1. Methylene blue is a cationic  
dye. It causes in man, in case of ingestion, an increase in heart  
rate, vomiting, quadriplegia, and tissue necrosis [20]. Methyl  
range is an anionic dye soluble in water, widely used in the  
chemical, textile and paper industries. It is an anionic dye that  
poses a serious risk to the environment [21-23].  
This model assumes that the sorption rate at the moment ‘t’ is  
proportional to the difference between the amount adsorbed at  
equilibrium (q ), and the amount adsorbed at the moment ‘t’ (q ),  
e
t
and that the adsorption is reversible [24]. The equation of the law  
of speed is written:  
푑푞  
=
푘 (ꢀ − ꢀ )  
(1)  
1
푑푡  
where; q  
t
and q  
e
are the adsorption capacities at time t and  
is the pseudo-first order  
2
.2 Sampling  
equilibrium respectively, in (mg/g), k  
velocity constant (min ) and t is the contact time (min).  
The integration of equation (1) gives:  
1
The clay samples used in this study were mineralogical  
-
1
mixtures dominated by Silica and Alumina. The chemical  
composition of the clay sample was determined by X-ray  
fluorescence. The results are given in table 2. The clay was  
= ꢀ (ꢁ − ꢂ )  
(2)  
Table 1: Physicochemical characteristics of used dyes  
Name  
Molecular structure  
Nature  
M
W
(g/mol)  
λ
max (nm)  
661  
Methylene blue  
Basic blue 9)  
Cationic  
319,85  
327,33  
(
Methyl orange  
Anionic  
461  
1
259  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1258-1267  
2
.4.2 Pseudo-second-order model  
The adsorption kinetics can be described by the pseudo-  
isotherms into four types: Linear type C (1/n = 1), Convex type S  
(1/n > 1), Concave type L (1/n < 1) and type H (1/n << 1).  
second order model. The differential equation is generally known  
and described as [25]:  
2.6 Adsorption studies  
The required initial dye concentrations were prepared by  
dissolving the desired weight of each dye in distilled water. The  
sorption processes were carried out in a series of 200 mL beakers  
containing the desired clay weight and 200 mL of the colouring  
solution at a given concentration. These experiments were carried  
out with constant agitation by varying the clay mass from 1 to 4  
g/L, the contact time from 0 to 360 min, the pH of the solution,  
the initial dye concentration from 10 to 50 mg/L and the  
temperature from 10, 30 and 50°C. The pH of the solution was  
adjusted by adding NaOH (0.1 N) or HCl (0.1 N) and using a  
푑푞ꢆ  
2
=
푘 (ꢀ − ꢀ )  
(3)  
2
푑푡  
The integration of equation (3) gives:  
  푡  
 = 1  
(4)  
+ꢄ푡  
2
where k (g/mg. min) is the rate constant of pseudo-second order  
adsorption.  
+
sensION pH meter. Temperature was controlled using a  
Cryothermostat. After each adsorption test, the solid phase was  
separated from the liquid phase by syringe filters, and the  
concentration was determined from its UVVis absorbance  
characteristic with the calibration curve method at the maximum  
absorption wavelength at 461 nm for methyl orange and 661 nm  
2
.5 Adsorption isotherms  
The relationship between the quantity fixed of adsorbate and  
the equilibrium solution concentration have been described by  
theoretical or empirical models proposed by several authors.  
These are non kinetic relationships, called isotherms. In general,  
such isotherms are processed by several models, including  
Langmuir, Dubinin-Radushkevich, Freundlich, Temkin, Elovich,  
BET etc.  
for methylene blue.  
A
TOMOS V-1100 UV-Vis  
spectrophotometer was used. The adsorption capacity was  
calculated using the following equations:  
The Freundlich and Langmuir isotherms are the most commonly  
used models in the literature.  
(퐶0ꢃ퐶)  
=
(7)  
and the removal efficiency (%) can be calculated as follows:  
2
.5.1 Langmuir isotherm  
The adsorption model of Langmuir [26] is based on the  
(
0ꢃ퐶)  
0  
following assumptions: uniform energetic adsorption sites,  
single-ply coverage, and no lateral interaction between adsorbed  
molecules. Graphically, a tray characterizes the isotherm of  
Langmuir. Therefore, at equilibrium, a saturation point is reached  
where no further adsorption can occur. A theoretical expression  
of the Langmuir isotherm is given by the following equation:  
% ꢋꢂꢌ표푣푎푙 =  
× ꢁꢍꢍ  
(8)  
Where q is the adsorbed quantity (mg/g), C  
concentration (mg/L), C is the dye concentration at a time t  
mg/L) and R is the mass adsorbents per liter of solution (g/L).  
0
is the initial dye  
(
퐾 퐶  
3 Results and discussions  
3.1 Characterization  
 = 1  
(5)  
+퐾 퐶  
3
.1.1 Chemical analysis by X-ray fluorescence  
The value of K  
L
is related to the interaction force between the  
The analytical results obtained by X-ray fluorescence are  
adsorbed molecule and the surface of the solid, the value of q  
m
grouped in table 2. It can be seen from these values that the  
percentage of silica and alumina is very high, indicating the  
expresses the quantity of solute fixed per gram of solid the surface  
of which is considered to be totally covered by a monomolecular  
layer [27].  
presence of Kaolinite (Al  
2
Si  
2
O
5
(OH)  
4
). As well as for calcium  
).  
which is relatively high, so this material is rich in calcite (CaCO  
3
The Alumina/Silica ratio provides information on the  
permeability of the material vis-à-vis moisture, the greater this  
ratio the greater the permeability [31]. In our case, this ratio is  
2
.5.2 Freundlich isotherm  
In this model, the number of sites likely to adsorb the  
small Al  
the low percentage of moisture. The overall composition of the  
other oxides (Fe , MgO and K O) reaches a percentage of 8.353  
2 3 2  
O /SiO =0.38 for both samples; this low value indicates  
compound is unlimited. Thus, the Freundlich isotherm has no  
maximum unlike that of Langmuir. This empirical model is  
widely used for the practical representation of adsorption  
equilibrium. Freundlich isotherm can be given as follows [28]:  
2
O
3
2
for the raw clay not calcined and of 9.987 for the calcined which  
shows that our clays are not pure [32]. After the treatment  
thermic, an increase of composition of clay is observed, due  
mainly to the loss of physically adsorbed water and departure of  
structural OH from Kaolinite (confirmed by XRD).  
1
/푛  
 = ꢉꢊ푒  
(6)  
q
e
is amount adsorbed per gram of solid, C  
e
is concentration of  
adsorbent at adsorption equilibrium, K and n being two constants  
where K is a parameter essentially related to the maximum  
capacity, and n is a parameter related to coefficients of variation  
of the energies interacting with the overlap rate [29]. The shape  
of obtained isotherms may suggest the interfacial interaction type  
between the adsorbent and the adsorbate. Giles [30] classified the  
3
.1.2 X-ray diffraction  
The mineralogical composition evolution of the raw and  
calcined clay sample is illustrated by figure 1. X-ray diffraction  
analysis indicates that the both samples have almost the same  
2
composition. They are composed of Quartz (SiO ), Calcite  
Ca(CO )), and reveal the presence of a weak line that can be  
(
3
1
260  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1258-1267  
attributed to the Illite ((NH  
Montmorillonite ((Na0.3(Al,Mg) Si  
the presence of the Kaolinite phase (Al  
clay not calcined. This later phase decomposes under effect of  
calcination at 500°C. The diffractograms show the presence of a  
more intense peak, corresponding to the Quartz. The clay fraction  
of our materials consists of Quartz and Calcite as a major  
compound in our samples, this confirms the results of  
4
,K)(Si,Al)  
4
Al  
.8H  
(OH)  
2
O
2
10(OH)  
2
)
and  
O) phases, with  
) in the raw  
OH units in their mineral structure [33]. A band centered at 1450  
-
1
2−  
antisymmetric stretching mode  
2
4
O10(OH)  
2
cm is attributed to the ν  
of carbonate, where as the band at 880 cm is assigned to the  
binding vibration of carbonate ν . These bands confirm the  
presence of calcium carbonate CaCO [34]. Langford et al. [35]  
3
(CO  
3
)
-
1
2
Si  
2
O
5
4
2
3
-
1
show that the peaks from 900 to 1150 cm could be the  
characteristic bending of Al-OH and stretching of Si-O vibrations  
of weathered sheet silicates, principally illite and kaolinite.  
However, an intense and wide absorption band centered at 1052  
Fluorescence X which show high proportions of SiO (Quartz).  
2
-
1
cm characterizes the valence vibrations of the Si-O bond [36].  
-
1
Table 2: Mineralogical composition of clays  
The doublet peak observed at 802 and 799 cm are attributable to  
the Si-O link elongation vibrations of quartz mineral, where as the  
Composition  
SiO  
Al  
CaO  
Fe  
% Raw clay  
30,552  
11,846  
9,409  
% Calcined clay in 500°C  
-
1
peak at 695 cm is assigned to the Si-O perpendicular vibration  
2
36,741  
14,254  
10,574  
5,929  
2,682  
1,376  
0,905  
0,799  
**  
VI  
of silicates minerals [35]. The vibration bands of the Si-O-M  
2
O
3
bonds (M denotes the Al, Mg and Fe metals located in the  
-
1
octahedral position) appear in 538 and 486 cm . Therefore, the  
absorption bands found by infrared confirm the results obtained  
by X-ray diffraction.  
2
O
3
4,878  
K
2
O
2,294  
3
.1.4 Scanning electron microscope SEM  
MgO  
TiO  
SO  
1,181  
The surface morphology of the raw and calcined clays was  
2
0,769  
observed by scanning electron microscope SEM. This technique  
makes it possible to highlight the "macroporosity" character of the  
samples. The resulting images are shown in figure 3. The  
morphologies observed by scanning electron microscope of the  
different phases are in the form of clusters of fine aggregates with  
irregular contours. On the other hand, the morphology of the  
natural clay not calcined is more compact than that of the  
calcined, this is explained by the efficiency of the calcination by  
allowing to increase the specific surface of the clay by pores  
creation. In addition, we observe that the interparticular pores of  
uncalculated clay are smaller than those in calcined clay.  
3
0,231  
P
2
O
5
0,405  
3
.1.3 FTIR spectroscopy  
The IR spectra of raw and calcined clays (figure 2) show the  
different characteristic absorption bands of clays recorded  
-
1
between 4000 and 400 cm . For both clay samples (raw and  
-
1
calcined), we observe a broad absorption band around 3650 cm  
characterizing the O-H bond, indicating the presence of water and  
Figure 1: Clay diffractograms: Quartz (Q), Calcite (C), Illite (I), Montmorillonite (M) and Kaolinite (K)  
1
261  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1258-1267  
Figure 2: FT-IR spectra of raw and calcined clays  
Figure 3: SEM image of raw clay (a) and SEM image of calcined clay (b)  
3
3
.2 Adsorption study  
.2.1 Adsorbent mass  
Figures 4 and 5 represent, respectively, the variation in the  
On the basis of the results obtained from the adsorption of  
methylene blue, we note that the adsorption capacity of the raw  
clay is almost the same as that of the calcined clay. The maximum  
adsorption capacity is recorded for gross with 98% removal and  
96% for the other with a mass of 1g per liter of solution. the  
residual concentration of MB in the solution was 0,17 mg/L and  
0,4 mg/L after the adsorption over the raw and calcined clay,  
respectively. the optimum value of the residual concentration  
amounts adsorbed by clay to MB and MO and the percentage of  
removal. The curves show that the quantities retained are  
maximum for the low ratios and decrease with the increase in this  
ratio. This variation is due to an increase in the free surface area  
of clay grains for low ratios.  
(0,07 mg/L) was obtained after 180 min of adsorption of MB on  
1
262  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1258-1267  
-
1
1
g/L of raw clay, this corresponds to 99,4% optimum removal of  
MB.  
For the adsorption of orange methyl, the adsorption capacity  
initial (20, 30, 40, 50 mg L ) dye concentrations. The recorded  
curves show that the amount of adsorbate fixed on the material  
increases with the increase in the content of the methylene blue  
solution. In fact, the increase in concentration induces an increase  
in the driving force of the concentration gradient, thus increasing  
the diffusion of dye molecules in solution through the adsorbent  
surface [37].  
is very low compared to methylene blue. This result can be  
interpreted by the anionic nature of MO, and the cationic nature  
of BM which gives it a great affinity with the clays. Both types of  
clay give almost the same results with a removal percentage equal  
to 8% with a mass of 4g per liter of solution. in this case, the final  
concentration of MO in the solution was 18 mg/L for both  
supports raw and calcined clay.  
3
.2.2 pH effect on methyl orange adsorption  
We have limited ourselves only to the study of MO just to  
improve the percentage of elimination, because in the case of MB  
the percentage is reached 99% without modifying the working  
conditions. Figure 6 shows the influence of pH variation on the  
adsorption of methyl orange (MO) on uncalcined raw clay.  
In our study, for the MO dye, there is a low adsorbability  
regardless of the pH value (acid or basic), this is due to the anionic  
nature of the MO which in its anionic form is repelled by the clay  
surface due to the electrostatic effects (electrostatic repulsion  
phenomenon).  
0
Figure 6: pH effect on adsorption of MO. C =20mg/L, R=4 g/L,  
Contact time = 180 min, RT  
We also notice a rapid adsorption at the beginning instead in  
5 minutes, then a spreading with saturation. The first phase  
1
constitutes the main part of the adsorption phenomenon because  
the fixation kinetics are limited by the low residual dye  
concentration. In the second stage, the occupation of the deep  
adsorption sites requires the diffusion of adsorbent within the  
adsorbent micropores. After this phase we observe a saturation  
step.  
0
Figure 4: Effect of adsorbent mass on MB adsorption. C = 10 mg/L,  
Contact time = 180 min, RT  
Figure 7: Change in the amount of BM adsorbed at equilibrium as a  
function of contact time and initial dye concentration  
3
.2.4 Adsorption kinetics  
The adsorption kinetics of methylene blue and methyl orange  
on the crude clays were carried out at initial pH of the solution  
8,3 for MB and 6,6 for MO) and at an initial concentration of 10  
(
mg/L, with a clay mass of 1 g/L for methylene blue and an initial  
concentration of 20 mg/L, with a clay mass of 4 g/L for methyl  
orange. The results are presented in figure 8. The latter indicates  
that the removal of cationic dye (BM), from the solution, is very  
rapid. During the first 10 to 15 minutes of contact, more than 98%  
dye was removed. For methyl orange, the kinetics were much  
slower, and the percentage of elimination is 8% observed after 30  
min of contact between the dye and the clay. In order to  
characterize the kinetics involved in the adsorption process, the  
0
Figure 5: Effect of adsorbent mass on MO adsorption. C = 20 mg/L,  
Contact time = 180 min, RT  
3
.2.3 Effect of initial MB dye concentration  
Figure 7 shows the evolution of the adsorbed amount of BM  
dye per gram of raw clay as a function of contact time at different  
1
263  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1258-1267  
pseudo-first-order and pseudo-second-order parameters were  
estimated using non-linear regression. The data obtained and the  
2
correlation coefficients, r , are given in table 3 and figures 9 and  
1
0.  
Figure 9: Adsorption kinetics, pseudo-first order and pseudo-second  
0
order of MB, C =10mg/L, R=1g/L, pH = 8.3, RT  
Figure 8: MB and MO adsorption kinetics  
3
.5.5 Adsorption isotherms  
The adsorption isotherms were made with different initial  
concentrations for a ratio of R = 1 g/L for MB, and R = 4 g/L for  
MO, a contact time is 3 hours at RT and at initial pH.  
e
The adsorbed amounts of each dye at equilibrium (q ) as a  
function of the equilibrium concentration of each dye were  
determined in figures 11 and 12. The experimental results  
obtained were compared with the models of the adsorption  
isotherms of Langmuir and Freundlich and the constants  
appearing in each equation of these models were determined by  
nonlinear regression analysis. The constants characterising each  
of the systems were determined and given in table 4.  
Figure 10: Adsorption kinetics, pseudo-first-order and pseudo second-  
order of MO, C =20mg/L, R=4g/L, pH= 6,6, RT  
0
The adsorption isotherm of methylene blue is the type H in  
the Giles classification [30]. Generally, isotherms of this type H  
are the result of the dominance of strong adsorbate-adsorbent  
interactions [38]. A chemical adsorption of the functional groups  
of the MB positively charged on the negatively charged groups  
on the clay surface is proposed. The experimental data for MB are  
best described by the Langmuir model. This result suggests that  
the adsorption process of BM on clay is a single-ply adsorption,  
and the maximum adsorption capacity was estimated at 15,82  
mg/g. This result showed that methylene blue is uniformly  
adsorbed by ionic adsorption from the negatively charged surface  
of the clay.  
The adsorption isotherm of methyl orange is the type S. The  
isotherms of this class correspond to an adsorption in which the  
adsorbate-adsorbent interactions occur, but also adsorbate-  
adsorbate. Thus, a cooperative adsorption of molecules can be  
observed. Type S isotherm occurs when the binding energy of the  
first layer is less than the binding energy between water  
molecules. This is due to the fact that methyl orange is an anionic  
molecule that has the same surface charge of clays.  
Table 3: Kinetic adsorption parameters of BM and MO on raw clay  
pseudo-first-ordre  
(1/min)  
pseudo-second-ordre  
Dyes  
q
e (exp)  
q
e
(mg/g)  
k
1
r2  
q
e
(mg/g)  
k
2
(g/mg min)  
0.79591  
r2  
MB  
MO  
10,01597  
0,395021  
9.98299  
0.37727  
0.76544  
0.07142  
0.99997  
0.99195  
10.0147  
0.41154  
0.99999  
0.99907  
0.27514  
Table 4: Constants for isothermal models of dye adsorption on clays  
Langmuir  
Freundlich  
n
Dyes  
q
m
(mg/g)  
K
L
(L/mg)  
r2  
K
F
(mg11/n/L1/n.g)  
r2  
BM  
OM  
15.82816  
13.7147  
2.48567  
0.00243  
0.9055  
0.99169  
9.51471  
3.62124  
0.97771  
0.84616  
0.9936  
0.02808  
1
264  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1258-1267  
Therefore, a low adsorption affinity is observed. This  
suggests a physisorption provided by Van der Waals bonds.  
Linearity shows that the number of free sites remains constant  
during adsorption, this means that the sites are created during  
adsorption.  
The adsorption of methyl orange on clays depends mainly on  
working conditions (pH, temperature, pressure, etc.). Other  
authors [15,39] have shown that the adsorption of methyl orange  
on other clays from the Safi region is greater at low temperatures  
and the adsorption capacity is high in acidic medium. They  
showed that kinetic parameters strongly influence adsorption.  
the covalent bonds are high, make their breakup very difficult.  
The slower decrease in the adsorption capacity of the MO with  
the increase in temperature is due to the measurement of the  
desorption step in the adsorption mechanism indicating that the  
process is exothermic. It is known that, the decrease in adsorption  
capacity with the increase in temperature is mainly due to the  
attenuation of adsorptive forces between the active sites on  
natural clay and dye molecules; anionic compound, and also  
between dye molecules adjacent to the adsorbed phase [41].  
Figure 13: Effect of temperature on adsorption of MB and MO  
For such equilibrium reactions, K  
can be expressed as:  
D
, the distribution constant,  
Figure 11: MB adsorption isotherms: V = 200 mL, R = 1 g/L,  
pH = 8,3, RT  
ꢈ  
=
ꢈ  
퐷  
(9)  
Gibbs free energy is defined as:  
°
훥퐺 = −ꢋ푇푙ꢎ(ꢉ )  
(10)  
where R is the universal gas constant (8.314 mole J/K), and T is  
the temperature of the solution in (K). The enthalpy (ΔH°) and the  
entropy (ΔS°) of adsorption were estimated from the slope and  
D
the ordinate at the origin of the curve of ln(K ) function of 1/T,  
respectively.  
°
°
°
ꢏꢐ  
ꢏ퐻  
푅ꢑ  
ꢏ푆  
푙ꢎ(ꢉ ) = −  
= −  
(11)  
푅ꢑ  
The constants calculated are illustrated in Table 5. We can  
Figure 12: MO adsorption isotherms: V = 200 mL, R = 4 g/L,  
pH = 6,65, RT  
.2.6 Effect of temperature  
conclude that the adsorption process was judged to be exothermic  
°
(
ΔH negative) in the case of the both dyes MB and MO. In the  
3
The effect of temperature on the adsorption of dyes plays a  
case of MO, the value of the entropy is negative this suggests a  
decrease in the randomness at the solid/solution interface during  
very important role in the application of adsorption of various  
textile effluents such as organic dyes. In fact, the temperature  
favours the diffusion of the molecules through the outer boundary  
layer to the internal pores of the adsorbent particles, probably  
because of the decrease in the viscosity of the solution [40].  
Figure 12 represents the variation of the percentage sorption of  
MO and MB on the clay as function of the temperature. The  
curves indicate that the temperature has no effect on the  
adsorption of the MB to the clay, which confirms what happened  
previously, that the adsorption of the MB is chemically similar,  
°
adsorption. Gibbs energy (ΔG ) increases as the temperature  
°
increases from 10 to 50 C indicating a decrease in the feasibility  
of adsorption at higher temperatures. In the case of MB, the  
°
adsorption is accompanied by a decrease in the values of ΔG with  
the increase in temperature. This result indicates an increase in  
°
the feasibility of adsorption at higher temperatures. The value ΔS  
was found positive, which suggests an increase in the randomness  
at the solid / solution interface during adsorption.  
1
265  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1258-1267  
Table 5: Thermodynamic parameters calculated for the adsorption of dyes by clays  
BM OM  
T(°C)  
q
e
ΔG°  
(KJ/mol)  
ΔH°  
(kJ/mol)  
ΔS°  
(J/K mol)  
q
e
ΔG°  
ΔH°  
(kJ/mol)  
ΔS°  
(J/K mol)  
K
D
K
D
(
mg/g)  
9,914 115,35  
9,907 107,6  
9,901 100,81  
(mg/g)  
0,591  
0,564  
0,451  
(KJ/mol)  
7,9597  
8,6554  
9,8974  
1
3
5
0
0
0
-11,177  
-11,791  
-12,394  
0,034  
0,032  
0,025  
-25,61  
30,43  
-56,69  
-47,85  
4
.
Hossen MZ, Hussain ME, Al Hakim, Islam K, Uddin MN, Azad  
AK. Biodegradation of reactive textile dye Novacron Super Black  
G by free cells of newly isolated Alcaligenes faecalis AZ26 and  
Bacillus spp obtained from textile effluents. Heliyon 2019; 5(7):  
e02068.  
Yang C, Xu W, Nan Y, Wang Y, Hu Y, Gao C, Chen X.  
Fabrication and characterization of a high performance polyimide  
ultrafiltration membrane for dye removal. J. Colloid Interf. Sci.,  
4
Conclusion  
In summary, we have characterized the natural clay from the  
south-east of Morocco and studied its adsorption capacity in the  
elimination of organic pollutants from aqueous solutions.  
Adsorption was rapid and complete in the case of methylene blue  
and the pseudo-second-order model is the most suitable to  
describe the adsorption dynamics. The rate of adsorption can be  
controlled by a chemical absorption process, making this type of  
adsorption irreversible. The adsorption isotherm can be well  
described by the Langmuir equation and the optimal mass of the  
adsorbent evaluated is 1 gram, corresponding to a yield of 98%.  
The increase in temperature does not affect the amount of  
methylene blue adsorbed. In the case of methyl orange, the  
adsorption reaction is slower, reaching only 8% dye removal, at  
different pH of the solution. The adsorption dynamics are  
described by the pseudo-second order model and the adsorption  
isotherm can be well described by the Freundlich equation.  
Increased temperature reduces the amount of dye adsorbed.  
5.  
2
020; 562(7): 589-597.  
6
7
8
.
.
.
Basha CA, Selvakumar KV, Prabhu HJ, Sivashanmugam P, Lee  
CW. Degradation studies for textile reactive dye by combined  
electrochemical, microbial and photocatalytic methods. Sep. Purif.  
Technol., 2011; 79(3): 303-309.  
Herrera-González AM, Caldera-Villalobos M, Peláez-Cid A.  
Adsorption of textile dyes using an activated carbon and  
crosslinked polyvinyl phosphonic acid composite. J. Environ.  
Manage., 2019; 234: 237-244.  
Mahjoubi FZ, Khalidi A, Elhalil A, Barka N. Characteristics and  
mechanisms of methyl orange sorption onto Zn/Al layered double  
hydroxide intercalated by dodecyl sulfate anion. Sci. African 2019;  
6
: e00216.  
9
1
1
.
Das I, Das S, Chakraborty I, Ghangrekar M.M. Bio-refractory  
pollutant removal using microbial electrochemical technologies: A  
short review. J. Indian Chemical Society, 2019; 96(4): 493-497.  
Barka N, Assabbane A, Ichou Y, Nounah A. Decantamination of  
textile wastewater by powdered activated carbon. J. Appl. Sci.  
Aknowledgment  
The authors would like to thank University Sultan Moulay  
Slimane of Beni Mellal for supporting this study.  
0.  
1.  
2
006; 6: 692695.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
Kausar A, Iqbal M, Javed A, Aftab K , Nazli Z, Bhatti HN, Nouren  
S. Dyes adsorption using clay and modified clay: A review. J.  
Molec. Liquids 2018; 256: 395407.  
Gomes C, Silva JB. Minerals and Clay Minerals in Medical  
Geology. Appl. Clay Sci., 2007; 36: 4-21.  
Carretero MI, Pozo M. Clay and non-clay minerals in the  
pharmaceutical industry: Part I. Excipients and medical  
applications. Appl. Clay Sci., 2009; 46: 73-80.  
Williams L, Hillier S. Kaolins and Health: From First Grade to  
First Aid. Elements, 2014; 10: 207-211.  
1
1
2.  
3.  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
1
1
4.  
5.  
Elmoubarki R, Mahjoubi FZ, Tounsadi H, Moustadraf J,  
Abdennouri M, Zouhri A, El Albani A, Barka N. Adsorption of  
textile dyes on raw and decanted Moroccan clays: Kinetics,  
equilibrium and thermodynamics. Water Resour. Ind. 2015; 9: 16–  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
2
9.  
Authors’ contribution  
16.  
Yariv S, Cross H. Organo-clay Complexes and Interaction, Marcel  
Dekker New York, 2002, viii +688 pages.  
Das I, Das S, Dixit R, Ghangrekar M.M. Goethite supplemented  
natural clay ceramic as an alternative proton exchange membrane  
and its application in microbial fuel cell. Ionics (2020).  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing  
1
1
7.  
8.  
References  
Bhowmick G.D, Das S, Ghangrekar M.M, Mitra A, Banerjee R.  
Improved Wastewater Treatment by Combined System of  
1
.
Bagane M, Guiza S. Removal of a dye from textile effluents by  
adsorption. Ann. Chim. Sci. Mat. 2000; 25: 615-625.  
Microbial Fuel Cell with Activated Carbon/TiO Cathode Catalyst  
and Membrane Bioreactor. J. Inst. Eng. India: Ser. A, 2019; 100:  
675682.  
2
2
.
Rajumon R, Anand JC, Ealias AM, Desai DS, George G,  
Saravanakumar MP. Adsorption of textile dyes with ultrasonic  
assistance using green reduced graphene oxide: An in-depth  
investigation on sonochemical factors. J. Environ. Chem. Eng.  
19.  
20  
Bhowmick G.D, Das S, Verma H.K, Neethu B, Ghangrekar M.M.  
Improved performance of microbial fuel cell by using conductive  
ink printed cathode containing Co O4 or Fe O . Electrochimica  
2
019; 7(6): 103479.  
3
3
4
3
.
Abu Hassan MA, Li TP, Noor ZZ. coagulation and flocculation  
treatment of wastewater in textile industry using chitosan. J. Chem.  
Natural Resources Engi., 2009; 4(1): 43-53.  
Acta 2019, 310: 173-183.  
Wang L, Zhang J, Wang A. Removal of methylene blue from  
aqueous solution using chitosan-g-poly(acrylic  
1
266  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1258-1267  
acid)/montmorillonite superadsorbent nanocomposite. Colloids  
Surf. A:Physicochem. Eng. Asp. 2008; 322: 4753.  
1. Rastogi SC, Barwick VI, Carter SV. Identification of organic  
colourants in cosmetics by HPLC-diode array detection.  
Chromatographia, 1997; 45: 215228.  
40. Elhalil A, Barour M, Tounsadi H, Elmoubarki R, Lemdek EM,  
Sadiq M, Abdennouri M, Mahjoubi FZ, Qourzal S, Barka N.  
Physicochemical characterization of natural sand from the south-  
east of Morocco and its potential use as sorbent for dyes removal.  
Desalin. Water Treat. 2019; 146: 362372.  
2
2
2. Zhang L, Hu P, Wang J, Liu Q, Huang R. Adsorption of methyl  
41.  
Panday KK, Prasad G, Singh VN. Use of wollastonite for the  
treatment of Cu(II) rich effluents. Water Air Soil Pollut. 1986; 27:  
287296.  
orange (MO) by Zr  
chitosan/bentonite composite. Int. J. Biol. Macromol. 2015; 81:  
18827.  
Kou T, Wang Y, Zhang C, Sun J, Zhang Z. Adsorption behavior  
(IV)-immobilized cross-linked  
8
2
2
2
2
2
3.  
4.  
5.  
6.  
7.  
2
of methyl orange onto nanoporous core-shell Cu@Cu O  
nanocomposite. Chem. Engi. J. 2013; 223: 7683.  
Lagergren S. About the theory of so-called adsorption of soluble  
substance, Kungliga Svenska Ventenskapsakademiens Handlingar  
1
898; 24: 139.  
Ho YS, Mckay FG. kinetic models for the sorption of dye from  
aqueous solution by wood. Trans IChemE, Part B, 1998; 76: 183–  
1
91.  
Langmuir I. The constitution and fundamental properties of solids  
and liquids. Part I. Solids. J. Am. Chem. Soc. 1916; 38: 2221–  
2
295.  
Pignatello JJ. The Measurement and Interpretation of Sorption and  
Desorption Rates for Organic Compounds in Soil Media.  
Advances in Agronomy 1999; 69: 173.  
2
2
8. Freundlich H and Heller W. The Adsorption of cis- and trans-  
Azobenzene. J. Am. Chem. Soc. 1939; 61: 22282230.  
9. Tóth J. Thermodynamical Correctness of Gas/Solid Adsorption  
Isotherm Equations. J. Colloid and Inter. Scie. 1994; 163: 299–  
3
02.  
3
0.  
Giles CH, MacEwan TH, Nakhwa SN, Smith D. Studies in  
adsorption. Part XI. A system of classification of solution  
adsorption isotherms, and its use in diagnosis of adsorption  
mechanisms and in measurement of specific surface areas of  
solids. J. Chem. Soc. 1960; 846: 3973-3993.  
3
3
1. Jarraya I, Fourmentin S, Benzina M. Adsorption de COV par un  
matériau argileux tunisien organo-modifié. J. Société Chimique de  
Tunisie 2010; 12: 139149.  
2.  
3.  
4.  
5.  
6.  
Sadki H, Ziat K, Saidi M. Adsorption dun colorant cationique  
dun milieu aqueux sur une argile locale activée (adsorption of  
dyes on activated local clay in aqueous solution). J. Mater.  
Environ. Sci. 2014; 5: 20602065.  
Farmer VC. Transverse and longitudinal crystal modes associated  
Spectroscopy 2000; 56: 927930.  
Lahsini A, Bentama J, Addaou A, Rafiq M. Caractérisation  
physico-chimique et étude du frittage d'une argile destinée à  
l'élaboration de membranes de filtration tangentielle. J.  
Chim.Phys. 1998;95: 10011019.  
Langford H, Hodson A, Banwart S. Using FTIR spectroscopy to  
characterize the soil mineralogy and geochemistry of cryoconite  
from Aldegondabreen glacier. Appl. Geochem. 2011; 26: S206–  
S209.  
3
3
3
3
Ramseyer K, Miano TM, D’Orazio V, Wildberger A, Wagner T,  
Geister J. Nature and origin of organic matter in carbonates from  
speleothems, marine cements and coral skeletons. Organic  
Geochemistry 1997; 26 (5-6): 361378.  
3
3
7.  
8.  
Deniz F, Saygideger SD. Investigation of adsorption  
characteristics of Basic Red 46 onto gypsum: Equilibrium, kinetic  
and thermodynamic studies. Desalination 2010; 262: 161-165.  
Giles CH, D’Silva AP, Easton IA. A general treatment and  
classification of the solute adsorption isotherm part. II.  
Experimental interpretation. J. Colloid Interf. Sci. 1974; 47: 766-  
7
78.  
3
9.  
Elmoubarki R, Moufti A, Tounsadi H, Mahjoubi FZ, Farnane M,  
Machrouhi A, Elhalil A, Abdennouri M, Zouhri A, Barka N.  
Kinetics and thermodynamics study of methylene blue adsorption  
onto Aleppo pine cones. J. Mater. Environ. Sci. 2016; 7: 2869-  
2
879.  
1
267