Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1568-1573  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/1573  
Physicochemical and Sorption Properties of  
Anionites Based on Aromatic Amines,  
Epichlorohydrin and Polyethylenimine with Regard  
to Strontium (II) Ions  
Edil Ergozhin, Tulegen Chalov, Tatyana Kovrigina, Yevgeniy Melnikov*  
A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov Str., Almaty, 050010, Republic of Kazakhstan  
Received: 27/06/2020  
Accepted: 27/09/2020  
Published: 20/12/2020  
Abstract  
Multifunctional anion exchangers based on aromatic amines, epichlorohydrin and polyethylenimine have been synthesized. Their  
composition, structure, and thermal stability have been studied using IR spectroscopy, elemental and thermogravimetric analyses. Extraction  
of strontium ions has been studied using classical polarography, and sorption of strontium (II) ions in static regime has been determined as a  
2
function of solution acidity, metal ion concentration, and contact duration of ionites with SrCl solution. It has been established that the  
obtained ion exchangers are characterized by high sorption properties with regard to strontium ions. The novelty of these studies is that the  
sorption dependence of synthesized ionites with regard to Sr2+ ions has been studied for the first time. The practical importance of this work  
is the development of anion exchangers with higher extractability, which could successfully solve the issues of elimination of strontium (II)  
ions from process wastes of nonferrous metallurgy.  
Keywords: Sorption, Strontium, Sorption capacity, Anion exchanger, Extraction  
1
and readily recovered sorbents [7]. A significant number of  
1
Introduction  
publications are devoted to studying the features of separation and  
extraction of strontium and its purification from the impurities  
using anionites of various structure [3, 810]. In [3], the authors  
studied the sorption capacity of new adsorbent obtained from  
almonds in relation to strontium ions, where the sorption capacity  
Development of nuclear power engineering and  
accompanying industries results in contamination of  
environmental objects by radioactive metal ions, which poses a  
health risk, since long-living radionuclides tend to accumulation,  
can easily be transferred to high distances and quite often  
participate in the biological cycle [1]. In this regard it is very  
important to develop efficient sorbents produced by simple and  
inexpensive process as well as characterized by high capacity and  
selectivity with regard to extracted cations and reliably holding  
radionuclides extracted from contaminated solutions in the form  
suitable for long-term storage, processing, or disposal [2].  
Strontium is one of the main contaminants of radioactive  
waste waters widely occurring in nuclear fuel, medicinal and  
industrial radioactive wastes [3, 4]. It is well known that strontium  
is characterized by long half-life, high solubility, and high  
bioaccessibility. After penetration with contaminated food into  
organism strontium will accumulate in bones and marrow, which  
can cause cancer of adjacent tissues and leukemia. Therefore,  
systematic and efficient methods of elimination are especially  
important to provide steady development of humans and  
environmental protection [36].  
-1  
SC) reached 11.45 mg·g at pH = 10.8. At strontium  
-1  
(
concentration of 20 mg·l and pH = 7.0 ± 0.1 of the solution, the  
SC values of the modified ion exchangers approached the value  
-1  
of 1.6 mg·g [4]. In [5], the authors analyzed the environmental  
conditions impact on the sorption behavior of Sr (II) and  
identified that the Sr (II) sorption was greatly affected by ionic  
strength at pH <9.5, and no effect at pH> 9.5 was found. This fact  
indicated that in the mechanism of Sr (II) sorption, outer-sphere  
surface complexation or ion exchange at low pH prevailed; at pH  
-
1
-
1
=
7.0 ± 0.1 and сSr = 15 mg·l , the SC value reached 20 mg·g .  
In [6], the authors found that the SC of complexing polymeric  
sorbents based on EDE-10P and chlorine-containing quinones  
-
1
-1  
was 358.2 - 420.4 mg·g at pH = 4.6, cSr = 1.926 mg·l . Thus, in  
8] it was established that maximum SC of polymer complexing  
sorbents of various structure with regard to strontium ions was 50  
[
-
1
mg·g at pH of solution from 2.2 to 7.0. Thus, certain interest is  
attracted to analysis of strontium ions sorption on specially  
produced anionites characterized by high SC and containing  
Sorption is one of the most efficient approaches to treatment  
of wastes with heavy metals due to its low cost, high efficiency  
Corresponding author: Yevgeniy Melnikov, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov Str., Almaty, 050010,  
Republic of Kazakhstan. E-mail: sebas273@mail.ru  
1568  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1568-1573  
active groups in their structure. This work is aimed at analysis of  
physicochemical and sorption properties of multifunctional  
anionites based on epoxy derivatives of aromatic amines and  
polyethylenimine with regard to strontium (II) ions.  
elemental analysis using a CHN628 instrument (LECO, USA). As  
can be seen in Fig. 1, a, b , the IR spectra of AECHPEI and  
BAECHPEI anionites are very similar, which probably could  
be attributed to close chemical structure. These spectra do not  
-1  
contain characteristic bands (cm ) of epoxy groups (810920;  
,250; 3,0003,010), there appear bands of NH bending  
vibrations (1,5991,600) and CN stretching vibrations (1,020–  
,220) of amine group bonds, which evidences chemical  
1
2
Methods  
On the basis of aniline (A) or benzylamine (BA) and  
1
epichlorohydrin (ECH) we synthesized epoxy amines, and then,  
by condnesing them with polyethylenimine (PEI), multifuctional  
anionites AECHPEI and BAECHPEI [11]. At first, using A  
or BA and ECH in the presence of caustic soda at 50°C for 6 h,  
glycidyl derivatives of amines (epoxy amines) were synthesized.  
Then, their polycondensation with PEI was carried out in  
dimethylformamide (DMFA) solution at various ratios, 6065°C  
for 56 h, then the reacted mass was solidified at 100°C for 16–  
interaction of diglycidyl derivatives of A and BA with PEI. The  
frequency at 3,500 characterizes occurrence of hydroxyl groups.  
Absorption in the 1,5021,504 area, stipulated by stretching  
vibrations of benzene ring, confirms existence of aromatic  
fragments in the anionite structure [12]. The elemental  
composition of anionites (detected/predicted), % for AECH–  
PEI: C  73.32/73.86; H  17.60/17.34; N  5.89/5.60; O –  
3
1
.19/3.20; and for BAECHPEI: C  70.72/70.92; H –  
7.61/17.48; N  7.81/8.09; O  3.86/3.51. On the basis of  
2
4 h. Composition and chemical structure of the anionites were  
analyzed by IR spectroscopy using a Nicolet 5700 Fourier  
spectrometer (Thermo Electron Corporation, USA) and by  
chemical and spectral analyses, the structure of synthesized  
polymers can be presented as follows (Figure 2):  
a
b
-
1
Figure 1: IR spectra of BAECHPEI (a) and AECHPEI (b). I  intensity, ν  wave number (cm )  
N
CH2 CH CH2  
OH  
N
CH2 CH CH2  
OH  
N
N
CH2 CH CH2  
OH  
N
CH2 CH CH2  
OH  
N
CH2  
CH2  
NH  
CH2  
CH2  
NH  
CH2  
CH2  
CH2  
NH  
CH2  
CH2  
CH2  
CH2  
NH  
CH2  
CH2  
CH2  
CH2  
N
CH2  
N
CH2  
N
N
CH2 CH CH2  
OH  
N
CH2 CH CH2  
OH  
CH CH2  
OH  
CH2 CH CH2  
OH  
N
CH2  
CH2  
AECHPEI  
BAECHPEI  
Figure 2: Structures of synthesized polymers  
1569  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1568-1573  
The morphology and chemical structure of polymer matrix,  
as well as the structure of surface of the given anionites are similar  
to that studied previously and described in [13]. Thermal  
resistance of anionites in OH form was studied by  
thermogravimetric analysis (TGA). Thermograms were obtained  
using TGA/DSC1 thermogravimetric analyzer (Mettler Toledo,  
Switzerland) in air in the range of 20600°C at heating rate of  
The contact duration of sorbents with solutions was from 0.5 h to  
7 days. The model solutions were prepared using SrCl *6H O,  
2 2  
reagent grade. The SC was calculated by the difference between  
initial and equilibrium concentration of solutions, determined by  
classical polarography against 0.5 M LiCl by the reduction wave  
2+  
Sr (E1/2 = −2.03 V). Polarograms were recorded using a PU-1  
universal polarograph with the measurement error of ±0.5% in  
thermostatic cell at 25±0.5°C using dropping mercury electrode.  
Oxygen was removed from the analyzed solution by purging  
argon for 5 min. Saturated calomel electrode was used as  
reference. The modes of sorption experiments were selected  
(sorbent-to-solution ratio, concentration and pH of strontium  
containing model solutions, and contact duration) being close to  
commercial conditions.  
1
0°C/min. In order to determine static exchange capacity (SEC)  
of anionites using 0.1N HCl solution, a sample of anionite in the  
OH from in the amount of 1 g on dry basis measured with the  
accuracy of 0.0002 g was poured with 100 ml of 0.1N titrated  
solution of hydrochloric acid in 250 ml flat bottom flask and  
sealed. Reaching equilibrium (24 h), 25 ml of filtrate was titrated  
by 0.1N solution of sodium hydroxide in the presence of three  
droplets of methyl red until pink color changed into yellow. The  
concentration of functional groups in polymer phase  
3
Results and discussion  
Practical application of ionites requires for analysis of their  
-1  
corresponding to the ionite SEC (mg-eq·g ) was calculated as  
follows: SEC = (100  4V)/10 P, where V was the exact volume  
of 0.1N solution of sodium hydroxide consumed for titration (ml);  
P was the ionite sample on dry basis (g). In order to determine the  
volume occupied by mass unit of dry ionite after swelling in  
water, a sample of about 10 g was placed into cylinder and poured  
with 70 ml of water. The cylinder was tightly sealed and agitated  
up to complete wetting of lower layers of ionite and held in  
horizontal position for 12 h. Then the cylinder was positioned  
vertically, water was refilled to 100 ml, and compacted to constant  
volume by tapping cylinder bottom against wooden surface. After  
the compaction, the volume occupied by ionite was measured.  
physicochemical properties as well as of sorption of metal ions  
depending on process conditions. Aiming at determination of  
optimum sorption parameters, the influence of concertation and  
2
pH of SrCl solutions as well as the contact duration on the  
extraction of strontium (II) ions was studied. Table 1 summarizes  
the main physicochemical properties of the synthesized anionites  
determined according to the procedures in [14, 15].  
Table 1: Main physicochemical properties of the synthesized  
anionites  
Chemical resistance in  
-1  
The specific volume of swelled ionite (Vsp, ml·g ) was  
determined as follows: Vsp. = V/G, where V was the volume of  
swelled ionite, ml; G was the sample of dry ionite, g.  
Anionites  
based on  
SECHCl  
,
V ,  
ml·g  
solutions, %  
5N 5N  
SO  
sp  
-
1
-1  
mg eq·g  
.83  
8.95  
10%  
H O  
2 2  
H
2
4
NaOH  
94.9  
AECH–  
PEI  
BAECH–  
PEI  
In order to determine chemical resistance of the ionites with  
regard to solutions of acids and alkalis, two ionite samples, 0.1 g  
on dry basis each, were placed into 250 ml round bottom reflux  
flask. One sample was poured with 100ml of 5N solution of  
sulfuric acid, the other sample was poured with 100 ml of 5N  
solution of sodium hydroxide. The content of the flasks was held  
for 30 min on boiling water bath. Then the mixture was cooled in  
air to ambient temperature and the ionite was separated by  
filtration. The anionite was converted into hydroxyl form when  
required. The ionites were washed in distilled water, their SEC  
was determined. Chemical resistance (CR, %) of the ionites was  
determined by the ratio of the obtained exchange capacity to the  
4
4.5  
5.7  
92.5  
97.9  
70.1  
72.0  
98.7  
Stringent requirements to thermal resistance are set to ion  
exchangers intended for long-term operation at higher  
temperatures [16]. The thermal resistance is an important property  
of polymer materials allowing to detect destruction processes at  
higher temperatures, leading to impairment of operational  
properties and environmental pollutions. Destruction of ionites in  
dry state allows better estimation of the thermal stability of matrix  
and ionogenic groups and determination of initial temperatures of  
destruction of these structural elements. Thermograms of A–  
ECHPEI and BAECHPEI are illustrated in Figure 3. The use  
of TGA allows to determine the weight loss of ionite during  
thermal destruction. The results of TGA of anionites based on  
epoxy derivatives of aromatic amines and polyethylenimine are  
summarized in Table 2. The TGA curves (Fig. 1, a, b), the shapes  
of which are identical, illustrate that the initial temperature of  
their destruction, after which the weight loss is significant, is  
0 0  
initial one: CR = SEC/SEC * 100, where SEC and SEC were the  
static exchange capacity of ionites before and after processing  
with acid or alkali, respectively. In order to determine the ionite  
CR with regard to oxidizing solutions, a sample of ionite (1 g) was  
poured with 100 ml of 10% solution of hydrogen peroxide, held  
at ambient temperature for 48 h with periodic stirring. The ionite  
was separated by filtration, converted into hydroxyl form, washed  
in distilled water, the SEC was determined. The ionite resistance  
was determined using the previous equation.  
260°C for AECHPEI and 280°C for BAECHPEI. These  
Sorption of strontium (II) ions by AECHPEI and BA–  
ECHPEI in OH form was analyzed under static conditions at  
sorbent:solution ratio equaling to 1:400, 20±2°C, varying the  
temperatures on the curves of differential scanning calorimetry  
correspond to occurrence of exothermal maximums, which can be  
probably attributed to heat evolution upon further structuring of  
ionites, then the polymer matrix is destructed. Herewith, their  
weight loss is 8%. The commercial sorbent EDE-10p upon  
heating to 100200°C loses more than 20% of its weight [17].  
concentration of strontium ions in SrCl  
2
solutions from 0.184 to  
-1  
2
.015 g·l and varying their acidity by addition of 5N HCl  
solution in the pH range from 1.0 to 6.3. pH was measured using  
pH-150 MI meter with the measurement error of ±0.05 pH units.  
1570  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1568-1573  
a)  (On the left there is a TG curve from top to bottom, and on the right –  
b)  (On the left there is a TG curve from top to bottom, and on the right –  
DSC curve)  
DSC curve)  
Figure 3: Thermogravimetric analysis of anionites based on AECHPEI (a) and BAECHPEI (b). T is the temperature (ºC), DSC is the thermal capacity  
3
-1  
dependence (J·10 ·mg ), TG is the weight loss (%)  
Table 2: Weight loss of AECHPEI and BAECHPEI at  
rate reaches 83%. The sorption capacity of BAECHPEI upon  
2+  
various temperatures  
extration of Sr ions is higher in comparison with AECHPEI,  
-1 -1  
Weight loss, %  
their SC is 507.7 mg·g and 491.36 mg·g , respectively. One of  
the main factors upon extraction of metal ions from solution is the  
medium acidity, which influences both the form of the considered  
ion in solution, and the state of ionogenic groups [11]. It can be  
seen in Fig. 5 illustrating sorption capacity of anionites with  
regard to lead ions as a function of acidity of SrCl solutions that  
2
the optimum pH for their extraction is 1.0. Under such conditions,  
the absorption of strontium (II) ions is maximum.  
T, °C  
AECHPEI  
BAECHPEI  
1
2
3
3
4
00  
00  
00  
50  
00  
5
8
20  
55  
90  
5
8
15  
40  
95  
It has been established that these anion exchangers are  
characterized by sufficiently high thermal resistance. The  
structure of their polymer matrix exerts significant effect on  
thermal stability of anionites, which at 300350°C decreases as  
follows: AECHPEI > BAECHPEI  
Figure 5: Sorption of Sr2+ ions by AECHPEI (1) and BAECHPEI (2)  
-1  
2
as a funciton of acidity of SrCl solution; c Sr = 2.015 g·l , duration of  
contact: 7 days  
It also follows from Figure 5 that the sorption capacity of  
ionites is determined mainly by the ionic state of strontium in the  
solution. The acidity range corresponding to maximum SC, is  
stipulated, on the one hand, by the ratio of the interaction energy  
of metal cations and hydrogen with active polymer centers, and  
on the other hand, by pH values determining the started formation  
of hydroxide deposits and main metal salts. Further decrease in  
the solution acidity leads to deposition of strontium hydroxide.  
The mentioned facts evidence the necessity to achieve certain pH  
of acidity of purified water. Figure 6 illustrates the isotherms of  
sorption of strontium (II) ions by BAECHPEI and AECH–  
PEI. Equilibrium state between the ionites and the solution  
Figure 4: Sorption isotherms of Sr2+ ions by AECHPEI (1) and BA–  
ECHPEI (2). Duration of contact is 7 days; pH = 1.0; ceq is the  
-
1
equilibrium concentration; SC is the sorption capacity (mg·g ), cSr eq is the  
-
1
equilibrium concentration (g·l )  
It can be seen in Figure 3 illustrating the sorption isotherms  
of Sr2+ ions that the anionite SC increases with the content of  
strontium ions in solutions. The curve rising at low equilibrium  
concentrations evidences that these anionites extract strontium  
(
II) ions with sufficient completeness. Herewith, the extraction  
1571  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1568-1573  
containing 2.015 g·l-1 strontium and having pH 1.0 is reached for  
BAECHPEI in 1 h, and for AECHPEI in 3 h. Herewith, the  
SC of BAECHPEI is 507.7, and of AECHPEI is 491.36  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing.  
-
1
mg·g .  
References  
1
2
3
.
.
.
Polyakova UV, Maslennikova TP, Sinel'shchikova OYu. Sorbtsiya  
ionov strontsiya na kalii-titanatnykh nanomaterialakh, poluchennykh  
v gidrotermal'nykh usloviyakh [Sorption of strontium ions on  
potassium titanium nanomaterials produced under hydrothermal  
conditions]. In: Proceedings, 16th Youth Scientific Conference,  
Institute of Silicate Chemistry, Russian Academy of Sciences: 3D  
printing of ceramic composites for structures operating under extreme  
loads. St. Petersburg: OOO Izdatel'stvo LEMA; 2017. p. 4547.  
Kitikova NV, Ivanets AI, Shashkova IL, Radkevich AV, Shemet LV,  
Zarubo AM. Fosfatnye sorbenty na osnove dolomita dlya  
izvlecheniya radionuklidov kobal'ta  
i strontsiya iz model'nykh  
rastvorov morskoi vody [Phosphate sorbents based on dolomite for  
extraction of cobalt and strontium radionuclides from model solutions  
of sea water]. Trudy Kol'skogo nauchnogo tsentra RAN. 2018; 9(2–  
Figure 6: Sorption of strontium (II) ions by BAECHPEI (1) and A–  
2
ECHPEI (2) as a function of duration of its contact with SrCl solution  
Ahmadpour A, Zabihi M, Tahmasbi M, Rohani Bastami T. Effect of  
adsorbents and chemical treatments on the removal of strontium from  
aqueous solutions. Journal of Hazardous Materials. 2010; 182(1–  
-1  
(c Sr = 2.015 g·l , pH = 1.0)  
It has been established in [8] that the polymer complexing  
from:  
2
sorbents of various structure, which contain CH NH ion  
exchanging groups, more completely extract Sr2+ ions in acid  
mediums. The maximum performance of the sorbent, used in [18]  
4. Zuo R, Meng L, Guan X, Wang J, Yang J, Lin Y. Removal of  
strontium from aqueous solutions by acrylamide-modified  
attapulgite. Journal of Radioanalytical and Nuclear Chemistry. 2019;  
-1  
for extraction of strontium ions, is 40.6 mg·g . On the basis of  
experimental data, it has been established that the most promising  
for practical application are the sorbents with the best kinetic  
5
6
.
.
Wang H, Wang XJ, Ma JX, Xia P, Zhao JF. Removal of cadmium (II)  
from aqueous solution: a comparative study of raw attapulgite clay  
and a reusable waste-struvite/attapulgite obtained from nutrient-rich  
Zhao Y, Shao ZY, Chen CL, Hu J, Chen HL. Effect of environmental  
conditions on the adsorption behavior of Sr(II) by Na-rectorite.  
Applied Clay Science. 2014; 87:16. Available from:  
-1  
properties and maximum SC, which is 3.550.0 mg·g , that is, by  
0 times less than that of the synthesized ion exchangers  
characterized by the best kinetic properties.  
5
4
Conclusions  
1
. The main physicochemical and thermal properties of the  
obtained sorbents have been studied. Their composition and  
structure are detected.  
7. Baccar R, Bouzid J, Feki M, Montiel A. Preparation of activated  
carbon from Tunisian olive-waste cakes and its application for  
adsorption of heavy metal ions. Journal of Hazardous Materials.  
2
. Sorption capacity of the synthesized anionites based on epoxy  
derivatives of aromatic amines and polyethylenimine with  
regard to strontium (II) ions has been studied. It has been  
Available  
from:  
2+  
established that they are characterized by high affinity to Sr  
8
.
Anikin VYu, Basargin NN, Tarasova OV, Rozovskii YuG. Sorbtsiya  
strontsiya (II) polimernymi kompleksoobrazuyushchimi sorbentami  
razlichnoi struktury [Strontium (II) sorption by complexing  
polymeric sorbents with various structures]. ZhNKh [Russian Journal  
ions upon their extraction from individual model SrCl  
solutions.  
2
3
4
. It has been determined that the medium acidity in the range of  
pH = 1.06.3 exerts influence on sorption of strontium (II)  
ions. Maximum sorption is observed at pH = 1.0.  
. The obtained BAECHPEI and AECHPEI anionites are  
characterized by superior kinetic properties. Complete  
chemical equilibrium is achieved in 1 and 3 h, respectively.  
9. Bhosle SM, Ponrathnam S, Tambe SS, Chavan NN. Adsorption of  
strontium (II) metal ions using phosphonate-functionalized polymer.  
1
0. Mayordomo N, Alonso U, Missana T. Effects of γ-alumina  
nanoparticles on strontium sorption in smectite: Additive model  
1. Ergozhin EE, Chalov TK, Kovrigina TV, Melnikov YeA, Nikitina  
AI. Izuchenie sorbtsionnoi sposobnosti sintezirovannykh anionitov  
na osnove anilina, epikhlorgidrina i nekotorykh poliaminov po  
Findings  
This work was supported by the Committee of Science,  
Ministry of Education and Science of the Republic of Kazakhstan,  
grant No. АР05131439: Synthesis and modification of  
nanostructured ion exchange membranes and development of  
innovative water treatment systems on their basis.  
1
otnosheniyu  
k ionam molibdena (VI) [Performance of anion  
exchangers based on aniline, epichlorohydrin, and polyamines in  
sorption of molybdenum (VI) ions]. ZhPKh [Russian Journal of  
Conflict of interests  
The authors confirm that the submitted data do not contain  
conflict of interest.  
1572  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1568-1573  
1
1
2. Böcker J. Spektroskopie: Instrumentelle Analytik mit Atom- und  
Molekülspektrometrie. Würzburg: Vogel Buchverlag; 1997.  
3. Ergozhin EE, Chalov TK, Kovrigina TV, Serikbaeva KT, Nikitina  
AI. Izvlechenie perrenat-ionov makrosetchatym anionitom na osnove  
epoksidirovannogo  
allilglitsidilovogo efira i polietilenimina [Recovery of perrhenate ions  
with macrocellular anion exchanger based on epoxidized  
vinilovogo  
efira  
monoetanolamina,  
a
monoethanolamine vinyl ether, allyl glycidyl ether, and  
polyethyleneimine]. ZhPKh [Russian Journal of Applied Chemistry].  
Available  
from:  
1
1
1
1
4. Naushad M, Al-Othman ZA. A Book on Ion Exchange, Adsorption  
and Solvent Extraction. Nova Science Publishers, Inc.; 2013. 350 p.  
5. Tulupov PE. Stoikost' ionoobmennykh materialov [Resistance of ion  
exchanging materials]. Moscow: Khimiya; 1984.  
6. Chanda M. Plastics Technology Handbook. Boca Raton, FL: CRC  
Press; 2017. 1709 p.  
7. Mel'nikov EA, Khakimbolatova KKh, Nikitina AI, Ergozhin EE,  
Chalov TK. Issledovanie termicheskoi ustoichivosti ionoobmennykh  
materialov na osnove epoksiaminov [Studying thermal stability of ion  
exchanging materials based on epoxy amines]. In: Cherezova EN,  
editor. Collection of works: Shkola nauchno-tekhnicheskogo  
tvorchestva i kontseptual'nogo proektirovaniya [School of R&D  
creativity and conceptual design]. Kazan: Kazan National Research  
Technological University; 2012. p. 6163.  
1
8. Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M. Strontium (II)  
adsorption on Sb (III)/Sb  
2
O
5
. Chemical Engineering Journal. 2015;  
Available from:  
1573