2020, Volume 8, Issue 4, Pages: 1274-1278  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/8(4)1278  
Phytoconstituents from the Aerial Parts of Salvia  
dracocephaloides Boiss. and their Biological  
Activities  
1
,2  
2
2
Salar Hafez Ghoran , Omidreza Firuzi , Amir Reza Jassbi *  
1
Department of Chemistry, Faculty of Basic Sciences, Golestan University, Gorgan 4913815759, Iran  
2
Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 7134853734, Iran  
Received: 11/07/2020 Accepted: 04/09/2020 Published: 20/12/2020  
Abstract  
MTT colorimetric cytotoxic bioassay, solvent fractionation and chromatographic purification of an 80% methanol extract of Salvia  
dracocephaloides, led to isolation and identification of eight compounds, including 5-hydroxy-3,6,7,3ʹ,4ʹ-pentamethoxyflavone (1),  
cynaroside (2), salvigenin (3), eupatorin (4), cirsimaritin (5), β-sitosterol (6), oleanolic acid (7), and ursolic acid (8). The structures of  
1
13  
the compounds were characterized using spectroscopic analyses including HRESI-MS, H and C-NMR and comparison with those  
previously reported in the literature. The biological activities of 1 and 2, including their cytotoxicity against MCF-7 human breast cancer  
cell line and DPPH free radicals scavenging effect were studied in vitro. Compound 1 showed stronger cytotoxicity; IC50 of 7.2 µg/mL  
compared to that obtained for 2; IC50 of 15.5 µg/mL. While, compound 2, with 3ʹ,4ʹ dihydroquinol functionality, displayed higher DPPH  
radical inhibitory activity with an IC50 of 10.7 µg/mL compared to that measured for 1; 48.8 µg/mL.  
Keywords: Salvia dracocephaloides, Lamiaceae, Cytotoxicity, DPPH radical scavenging activity, Polymethoxyflavones  
Introduction1  
cymene, linalool, and the sesquiterpenes; β-caryophyllene and  
1
spathulenol [10]. Except the antioxidant potential, expressed as  
DPPH radical scavenging activity of aqueous methanol extract  
of S. dracocephaloides, there were no other report on the  
chemical properties of the plant in the literature [9].  
Hence, the main objective of the present study is the  
isolation and structure elucidation of the phytochemicals  
followed by reporting the cytotoxic activities of various  
extracts and the unexplored isolated phytochemicals. To the  
best of our knowledge this is the first report of Salvia  
dracocephaloides compounds including 5-hydroxy-3,6,7,3ʹ,4ʹ-  
pentamethoxyflavone; 1 [11], cynaroside; 2 [12], salvigenin; 3  
Salvia L. (Sage) is one of the greatest genus of the perennial  
and annual plants among the family Lamiaceae and distributed  
around the world. The genus Salvia or “Maryam-Goli” in  
Persian includes 62-reported species in Iran which 17 of them  
are endemic and wildly grown in different parts of Iran [1, 2,  
3]. Sages are rich in various specialized metabolites including  
terpenoids, sterols, phenolics including flavonoids, lignans, and  
phenylpropanoids [4, 5]. Salvia species are used in the folk  
medicine in different parts of the world. For instance, S.  
miltiorrihza; red sage, Danshen, S. officinalis; sage, and S.  
sclarea; clary sage are the most common species worldwide  
and S. hydrangea, S. macrosiphon, and S. mirzayanii are the  
Iranian ehtnopharmacologically important ones [6]. In addition  
to their use in folk medicine sage plants produce metabolites  
with various biological activities such as antioxidant,  
[
13], eupatorin; 4 [14], cirsimaritin; 5 [13], β-sitosterol; 6 [15],  
oleanolic acid; 7, and ursolic acid; 8 [16] in the cytotoxic  
chloroform soluble fraction of the 80% methanol extract  
(Figure 1).  
antibacterial,  
antiviral,  
antifungal,  
antileishmanial,  
antimalarial, antispasmodic, anti-inflammatory, anti-diabetic,  
cytotoxic, and insecticidal activities [4, 5, 7].  
2 Materials and Methods  
2.1. General Experimental Procedures  
As our ongoing research on the Iranian sages for their  
anticancer metabolites, we have subjected S. dracocephaloides  
to phytochemical analyses. S. dracocephaloides known as  
All organic solvents including n-hexane, dichloromethane  
(DMC), chloroform (CHCl ), ethyl acetate (EtOAc), acetone,  
3
n-butanol (n-BuOH), methanol (MeOH), were commercially  
purchased and applied without any further purification. TLC  
sheets (20 × 20 cm; pre-coated silica gel 60 F254; Merck,  
Germany) along with silica gel (70-230 and 230-400 mesh;  
Merck, Germany) were used for analytical TLC and column  
chromatography, respectively. TLC spots were detected using  
anisaldehyde/sulphuric acid reagent followed by heating. HR-  
ESIMS was recorded on MicrOTOF-Q II mass spectrometer  
equipped with an ESI source (Bruker Daltonik, Bremen,  
Germany).  
Maryam-Goli Tamashaei” in Persian is a shrubby perennial  
herb 25 to 40 cm tall, with small purple flowers which grows  
in rocky and mountainous regions of Caucasus and Iran [2].  
The synonymous relationship between S. hydrangea and S.  
dracocephaloides has been ruled out by their phenotypic  
differences and various essential oils composition [2, 8]. The  
major constituents of the oil of S. dracocephaloides are  
camphor, 1,8-cineole, and camphene [9], while those detected  
in the oil of S. hydrangea were detected as α- and β-pinene, p-  
*Corresponding author: Amir Reza Jassbi, Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical  
Sciences, Shiraz 7134853734, Iran. E-mail address: jassbiar@sums.ac.ir. Tel: +98 71 32303872 and Fax: +98 71 32332225  
1
274  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1274-1278  
Figure 1: Chemical structures of isolated compounds, 18, from S. dracocephaloides Boiss  
1
D and 2D NMR spectra were performed on a Bruker  
chromatography (FCC; 230-400 mesh) eluting with a mixture  
of n-hexane/EtOAc (90:10), which resulted in six sub-  
1
13  
Biospin GmbH spectrometer ( H at 300 MHz and C at 75  
1
13  
1
MHz, H at 400 MHz and C at 100 MHz and H at 500 MHz  
fractions; SFr. B  
from MeOH in SFr. B  
purified by silica gel-FCC eluting with CHCl  
to yield nine sub-fractions: SFr. D -D . SFr. D -D  
and re-chromatographed over silica gel FCC using the mobile  
phase of CHCl :Et O; 85:15 to 70:30 to afford compound 7  
1
-B  
6
. Compound 6 (43.1 mg) was crystalized  
while Fr. D (336.7 mg) was further  
:acetone (95:5)  
were pooled  
1
3
and C at 125 MHz). All NMR chemical shifts were expressed  
in ppm related to TMS signal at 0.00 ppm as internal reference.  
3
3
1
9
4
6
2
.2 Plant Materials  
The aerial parts of Salvia dracocephaloides Boiss. were  
3
2
collected in the flowering season (June 2017) from Marand to  
Jolfa road (GPS, 38˚44´N/45˚36´E, at an altitude of 1300 m),  
East Azerbaijan Province, Iran and botanically characterized by  
Mr. Mehdi Zare and Dr. Mojtaba Assadollahi, the plant  
taxonomists in Medicinal and Natural Products Chemistry  
Research Center (MNCRC). A voucher specimen; No. PC-96-  
(39.4 mg). Fr. E (407.6 mg) was triturated using acetone, which  
is caused to the formation of a white precipitate; compound 8  
(61.7 mg). The UV quenching spots on TLC plate were  
detected for the flavonoids compounds in Fr. F-H. Therefore,  
Fr. F (279.0 mg) was fractionated by FCC silica gel, and eluted  
1
with DCM/acetone (90:10) to give six sub-fractions (SFr. F -  
). Compound 1 was purified as a yellow powder (10.3 mg)  
upon triturating SFr. F with EtOAc. On the other hand, Fr. G  
(173.5 mg) was subjected to a silica gel FCC and eluted with  
CHCl /MeOH by increasing the polarity to give five sub-  
fractions. The third sub-fraction was subjected to CC and  
isocratically washed with CHCl /MeOH yielding the  
3
-8-28.1, of the plant was deposited at the Herbarium MNCRC.  
F
6
4
2
.3 Extraction procedure  
The air-dried powder of S. dracocephaloides aerial parts  
3
(300 g) was extracted in methanol water (8:2) solvent using  
maceration method for 48 h (3 × 2L). After evaporation of the  
solvent by rotary evaporator, the crude extract (71.68 g) was  
partitioned in water (1L) and organic solvents (3 × 1L) in the  
order of increasing polarity; n-hexane, chloroform, ethyl  
acetate, and n-butanol. All of the organic layers and the  
remaining water fraction were concentrated under reduced  
pressure and stored in refrigerator at -20 ˚C for further  
phytochemical and biological studies.  
3
compound 3 (4.8 mg). Compounds 4 (7.6 mg) and 5 (3.9 mg)  
were purified from Fr. H using silica gel-preparative thin layer  
chromatography (PTLC). Eventually, Fr. K (419.3 mg) was  
fractionated by silica gel FCC, eluting with gradient of  
DCM/MeOH; 95;5 to 60:40), resulting eight sub-fractions  
1 8  
(SFr. K -K ). Amongst, the yellowish sediments of compound  
2 (41.6 mg) were yielded from the SFr. K6,7 using EtOAc  
trituration, washing, and filtration procedures.  
2
.4 Purification of the phytochemicals  
The CHCl and n-hexane fractions showed the highest  
3
2.5 Cytotoxic activity  
cytotoxic activity against MOLT-4 cell line (Table 1).  
Therefore, the former fraction was chosen for further  
purification of its constituents, while the latter one was found  
to be out of interest due to the presence of high levels of fatty  
acids, waxes, carotenoids, and chlorophylls detected on TLC  
The in vitro cytotoxic activity of the extracts and purified  
compounds (1 and 2) were examined against MOLT-4 human  
lymphoblastic leukemia and MCF-7 human breast  
adenocarcinoma cell lines, respectively, using 3-(4,5-  
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)  
reduction assay [6, 17]. MCF-7 cells were obtained from  
Iranian Biological Resource Center, Tehran, Iran, while  
MOLT-4 cells were purchased from National Cell Bank of Iran,  
Pasteur Institute, Tehran, Iran. The cells were seeded into 96-  
well microplates and incubated overnight at 37 °C. Three to  
four different concentrations of plant extracts or isolated  
compounds were added in triplicate and incubated for another  
72 h. The concentration of DMSO in each well did not exceed  
0.25%. At the end of the incubation time, the media in each  
well was replaced with 0.5 mg/mL MTT dissolved in RPMI  
without phenol red. After 4 hours at 37 °C DMSO was added  
to solubilize the formazan crystals formed inside the viable  
3
sheet. An aliquot of the CHCl fraction (5 g) was subjected to  
silica gel open column chromatography (CC; 35 × 5 cm; 250  
g), eluted with n-hexane followed by increasing the polarity to  
pure EtOAc and then to EtOAc:MeOH (50:50, v/v). The  
resulting CC fractions were analyzed by TLC using different  
mobile phase (n-Hex:EtOAc 3:7 and EtOAc:MeOH 9:1) and  
visualizing with anisaldehyde/sulphuric acid reagent followed  
by heating on a hot plate. The similar CCʹs fractions on TLC  
were mixed to afford 12 fractions (Fr. A-L). The well separated  
fractions on analytical TLCs were selected for further  
purification using preparative chromatography. Thus, Fr. B  
(290.1 mg) was loaded onto silica gel flash column  
1
275  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1274-1278  
cells. The optical density of the final solution was measured at  
antioxidant activity [18, 19, 20], while the former (1) has been  
isolated from the leaves of Vitex negundo acting as anti-allergic  
constituent [21]. Most of the Polymethoxyflavones (PMFs)  
have been reported form the Citrus species, from leaves of  
Murraya spp. (Rutaceae), Kaempferia spp. (Zingiberaceae),  
and Piper spp. (Piperaceae) [22]. Despite the presence of  
5,6,7,8-tetra-oxygeneted flavones among the plants of  
Lamiaceae family only a few species including Thymus, Salvia,  
Vitex, and Ocimum appear to accumulate ploymethoxylated  
flavones [21, 23, 24].  
5
70 nm using a Bio-Tek microplate reader (Model Synergy  
HTX). The cell viability was calculated compared to untreated  
control cells by comparison of absorbance measurements. IC50  
values for each compound was calculated using CurveExpert  
software version 1.34 for Windows. Each experiment was  
repeated 3 to 5 times. Paclitaxel, a standard chemotherapeutic  
agent, was used as a positive control.  
2
.6 DPPH radical scavenging activity  
The in vitro antioxidant activity of compounds 1 and 2 was  
According to the literature survey, Walle reported that the  
most cytotoxic active flavones are those ones bearing the  
methoxy groups and concluded that the glycosylation is a  
crucial effect resulting to be inactive agent on the biological  
activity [25]. The cytotoxicity against MCF-7 cell lines of  
compound 1 and quercetin are the highest among the tested  
compounds followed by compound 2, respectively (Table 1).  
This is in agreement with the extensive research on the  
cytotoxicity of PMFs. The higher activity is attributed to the  
presence of hydroxy group at position C-5 of the PMFs, since  
5-hydroxy PMFs exhibited stronger anticancer activity when  
tested against the colon cancer cells compared to the respective  
5-methoxylated derivatives [26]. Salvigenin, eupatorin, and  
cirsimaritin were isolated from Centaurea kilaea (Asteraceae)  
in a bioassay-guided purification procedure against two  
determined calorimetrically by assaying for DPPH (2,2-  
diphenyl-1-picrylhydrazyl) radical scavenging activity [7].  
Briefly, the plant extracts or isolated compounds were diluted  
-
1
in methanol at five concentrations (78-1250 μg.mL ). Five  
microliters of each concentration were added to 195 μL of  
DPPH solution (100 μM concentration in MeOH). The  
microplate was shaken at room temperature in the dark place.  
After 30 min, the absorbance was measured at 517 nm using a  
Bio-Tek microplate reader (Model Synergy HTX). IC50 values  
for each components was calculated using CurveExpert  
software version 1.34 for Windows. Each experiment was  
repeated 3 times. Quercetin, a pentahydroxy-flavonol, was used  
as the positive control.  
cancerous cell lines; MCF-7 and PC-3;  
a
prostate  
3
Results and Discussion  
adenocarcinoma cell line. Only the two later compounds  
showed potent cytotoxic effect against PC-3 [27, 28]. Quercetin  
alone or in combination with topotecan showed significant  
cytotoxicity against the MCF-7 cell lines [29]. While  
cynaroside showed weak cytotoxic effect against the breast  
cancer cell line [30]. Literature survey confirmed that  
polymethoxylated flavonoids like nobiletin, tangeretin,  
sinensetin, and 5-demethyltangeretin (found in Citrus spp.)  
play a key role in anticancer and anti-inflammatory activity [21,  
Methanol-water (80:20) extract of the aerial parts of S.  
dracocephaloides after evaporation of its methanol was  
partitioned between solvents with different polarities; n-  
hexane, chloroform, ethyl acetate, and n-butanol. The resulting  
fractions were evaluated for their cytotoxic effects against  
MOLT-4 human leukemia cell line as well as DPPH radical  
scavenging activity. The active chloroform layer was subjected  
to column chromatography over normal phase silica gel.  
Consequently, eight reported compounds (1-8) were isolated  
and characterized (Figure 1). The chemical structures of the  
isolated compounds 3-8 were elucidated based on comparison  
of their physical constants such as co-TLC with the reference  
substances that has been simultaneously isolated from S.  
russellii in our laboratory and their structures were elucidated  
by H and C NMR Spectroscopy. Meanwhile, the chemical  
structures of 1 and 2 were identified as 5-hydroxy-3,6,7,3ʹ,4ʹ-  
pentamethoxyflavone and cynaroside (luteolin-7-O-β-D-  
glucopyranoside) based on the H and C NMR spectral data,  
respectively [11, 12]. The later compound showed a vast  
variety of biological activities such as antimalarial,  
2
2, 31], as we found for compound 1. In addition, the cytotoxic  
activities of compounds 6-8 have also been previously  
examined by other investigators against MCF-7 cell line [32,  
3
3, 34]. The radical scavenging activity of quercetin is higher  
than those measured for compound 1 and 2 as the following  
descending order of IC50s: quercetin (5.3 µg.mL )  
1
1
13  
>
1
cynaroside;  
2
(10.7 µg.mL )  
>
5-hydroxy-3,6,7,3ʹ,4ʹ-  
1
pentamethoxyflavone; 1 (48.8 µg.mL ). Previously, it was  
reported that glycosylation or methylation of the hydroxy  
groups decreases the antioxidant activity of flavonoids while  
the free hydroxy groups together with 3ʹ,4ʹ dihydroquinol  
functionality increase it dramatically (supplementary data) [35,  
1
13  
antileishmanial,  
cytotoxicity,  
anti-inflammatory  
and  
3
6].  
Table 1: Cytotoxic and antioxidant activities of various fractions and pure flavonoids isolated from S. dracocephaloides Boiss.  
Antioxidant activity IC50  
(µg/mL)  
Cytotoxic activity IC50 (µg/mL)a  
a
Weight of the  
extract (g)  
Materials  
MOLT-4 cells  
MCF-7 cells  
DPPH radicals  
Aqueous methanol extract  
n-Hexane fraction  
73.68  
15.35  
7.26  
6.73  
14.32  
25.61  
35.5 ± 12.2  
24.6 ± 8.0  
25.8 ± 6.5  
31.7 ± 6.9  
35.3 ± 16.6  
NA  
NAb  
NA  
NA  
NA  
NA  
NA  
47.36 ± 1.89  
NA  
35.76 ± 4.29  
57.91 ± 2.81  
76.63 ± 5.62  
NA  
CHCl  
3
fraction  
EtOAc fraction  
n-BuOH fraction  
Aqueous fraction  
5
-hydroxy-3,6,7,3ʹ,4ʹ-  
-
NTc  
7.22 ± 2.95  
48.82 ± 3.43  
pentamethoxy flavone (1)  
Cynaroside (2)  
Quercetin (µg/ml)  
Paclitaxel (ng/ml)  
-
-
-
NT  
NT  
2.4 ± 0.7  
15.48 ± 2.04  
7.16 ± 1.35  
10.74 ± 2.78  
5.29 ± 2.36  
-
2.49 ± 0.57  
a
b
c
The data are presented as mean ± S.D. of at least three independent experiments. NA: Not active. NT: Not tested. Paclitaxel and quercetin were tested  
as reference agents.  
1
276  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1274-1278  
1
1
0. Rustaiyan A, Masoudi S, Jassbi AR. Essential Oil of Salvia  
hydrangea DC. ex Benth. Journal of Essential Oil Research.  
4
Conclusion  
To the best of our knowledge, this is the first report of non-  
1
997;9(5):599-600.  
volatile phytochemicals in S. dracocephaloides resulting in  
identification of one PMF (1), further four flavones (2-5), β-  
sitosterol and two triterpenoids (6-8). Compound 1 present a  
rare flavone in Salvia species with five methoxy groups, so far  
reported in the plants of the Lamiaceae family. Phytochemical  
investigations on Salvia species revealed that the natural  
occurrence of 3-methoxy flavones (flavonol-3-methyl-ether) is  
rare with the expectation of a few compounds including,  
isokaempferide, kumatakenin, quercetin 3-methyl ether,  
ayanin, and retusin previously reported [37]. Taken together,  
the polymethoxyflavones and flavonols could be considered as  
the chemotaxonomic markers for S. dracocephaloides".  
Likewise, compound 1 acted as a potent cytotoxic agent while  
weakly scavenged the free stable radicals of DPPH that showed  
the activities are not follow the same mechanisms of action.  
1. Martínez V, Barberá O, Sanchez-Parareda J, Marco JA. Phenolic  
and acetylenic metabolites from Artemisia assoana.  
Phytochemistry. 1987;26(9):2619-2624.  
12. Blunder M, Orthaber A, Bauer R, Bucar F, Kunert O. Efficient  
identification of flavones, flavanones and their glycosides in  
routine analysis via off-line combination of sensitive NMR and  
HPLC experiments. Food Chemistry. 2017;218:600-609.  
1
3. Alwahsh MA, Khairuddean M, Chong WK. Chemical constituents  
and antioxidant activity of Teucrium barbeyanum Aschers.  
Records of Natural Products. 2015;9(1):159-163.  
4. Nagao T, Abe F, Kinjo J, Okabe H. Antiproliferative constituents  
in plants 10. Flavones from the leaves of Lantana montevidensis B  
RIQ. and consideration of structureactivity relationship.  
Biological and Pharmaceutical Bulletin. 2002;25(7):875-879.  
5. Saeidnia S, Manayi A, Gohari AR, Abdollahi M. The story of beta-  
sitosterol-a review. European Journal of Medicinal Plants.  
1
1
1
2
014;4(5):590-609.  
6. Martins D, Carrion LL, Ramos DF, Salomé KS, da Silva PE,  
Barison A, Nunez CV. Triterpenes and the antimycobacterial  
activity of Duroia macrophylla Huber (Rubiaceae). BioMed  
Research International. 2013 Oct;2013.  
7. Hafez Ghoran S, Babaei E, Rezaei Seresht H, Karimzadeh Z.  
Cytotoxic constituents and molecular docking study of the active  
triterpenoids from Tripleurospermum disciforme (C. A. Mey.)  
Schultz-Bip. Jundishapur Journal of Natural Pharmaceutical  
Products. 2020;15(2):e65760.  
8. Calixto JB, Campos MM, Otuki MF, Santos AR. Anti-  
inflammatory compounds of plant origin. Part II. Modulation of  
pro-inflammatory cytokines, chemokines and adhesion molecules.  
Planta Medica. 2004;70(2):93-103.  
9. Kirmizibekmez H, Calis I, Perozzo R, Brun R, Donmez AA,  
Linden A, Rudi P, Tasdemir D. Inhibiting activities of the  
secondary metabolites of Phlomis brunneogaleata against  
parasitic protozoa and plasmodial enoyl-ACP reductase, a crucial  
enzyme in fatty acid biosynthesis. Planta Medica. 2004;70(8):711-  
717.  
Acknowledgments  
The authors are grateful to Golestan University and Shiraz  
University of Medical Sciences for the financial support. We  
especially thankful to Dr. Mojtaba Asadollahi and Mr. Mehdi  
Zare for their skillful collection and identification of the plant  
material. This article is a part of the PhD dissertation submitted  
to the Department of Chemistry (Golestan University, Gorgan,  
Iran), for the fulfillment of the PhD degree of Salar Hafez  
Ghoran in Phytochemistry.  
1
1
1
Authorship contribution statement  
Conceptualization,  
Investigation,  
Methodology,  
Roles/Writing  original draft: S. Hafez Ghoran. Conducted  
experiments: S. Hafez Ghoran, A.R. Jassbi. Writing - review &  
editing, Validation, Supervision: O. Firuzi, A.R. Jassbi. All the  
authors approved the final version of the manuscript.  
2
2
0. Saracoglu I, Varel M, Harput US, Nagatsu A. Acylated flavonoids  
and phenol glycosides from Veronica thymoides subsp.  
pseudocinerea. Phytochemistry. 2004;65(16):2379-2385.  
1. Patel J, Deshpande SS. Anti-Allergic and antioxidant activity of 5-  
Hydroxy-3,6,7,3ʹ,-pentamethoxy flavone isolated from leaves of  
Vitex negundo. Anti-Inflammatory & Anti-Allergy Agents in  
Medicinal Chemistry (Formerly Current Medicinal Chemistry-  
Anti-Inflammatory and Anti-Allergy Agents). 2011;10(6):442-451.  
Conflict of interest  
The authors declare they have no any competing interest.  
References  
1
2
3
4
.
.
.
.
Hedge I. Salvia L. Flora of Turkey and the East Aegean islands.  
1
982;7:400-461.  
Jamzad Z, Asadī M. ''Lamiaceae. Research Institute of Forests and  
Rangelands; 2012.  
Mozaffarian V. A dictionary of Iranian plant names: Latin,  
English, Persian. Farhang Mo'aser; 2003.  
Jassbi AR, Zare S, Firuzi O, Xiao J. Bioactive phytochemicals  
from shoots and roots of Salvia species. Phytochemistry reviews.  
22. Tung YC, Chou YC, Hung WL, Cheng AC, Yu RC, Ho CT, Pan  
MH. Polymethoxyflavones: Chemistry and molecular mechanisms  
for cancer prevention and treatment. Current Pharmacology  
Reports. 2019;5(2):98-113.  
23. Berim A, Gang DR. Methoxylated flavones: occurrence,  
importance,  
biosynthesis.  
Phytochemistry  
Reviews.  
2
016;15(5):829-867.  
2016;15(3):363-390.  
5
6
.
.
Wu YB, Ni ZY, Shi QW, Dong M, Kiyota H, Gu YC, Cong B.  
Constituents from Salvia species and their biological activities.  
Chemical Reviews. 2012;112(11):5967-6026.  
24. Tomás-Barberán F, Wollenweber E. Flavonoid aglycones from the  
leaf surfaces of some Labiatae species. Plant Systematics and  
Evolution. 1990;173(3-4):109-118.  
Asadollahi M, Firuzi O, Jamebozorgi FH, Alizadeh M, Jassbi AR.  
25. Walle T. Methoxylated flavones,  
a
superior cancer  
Ethnopharmacological  
studies,  
chemical  
composition,  
chemopreventive flavonoid subclass? Seminars in cancer biology.  
2007;17(5):354-362.  
26. Qiu P, Dong P, Guan H, Li S, Ho CT, Pan MH, McClements DJ,  
Xiao H. Inhibitory effects of 5‐hydroxy polymethoxyflavones on  
colon cancer cells. Molecular Nutrition & Food Research.  
2010;54(S2):S244-S252.  
27. Sen A, Ozbas Turan S, Bitis L. Bioactivity-guided isolation of anti-  
proliferative compounds from endemic Centaurea kilaea.  
Pharmaceutical Biology. 2017;55(1):541-546.  
28. Kouhbanani MA, Beheshtkhoo N, Amani AM, Taghizadeh S,  
Beigi V, Bazmandeh AZ, Khalaf N. Green synthesis of iron oxide  
nanoparticles using Artemisia vulgaris leaf extract and their  
application as a heterogeneous Fenton-like catalyst for the  
degradation of methyl orange. Materials Research Express.  
2018;5(11):115013.  
antibacterial and cytotoxic activities of essential oils of eleven  
Salvia in Iran. Journal of Herbal Medicine. 2019;17:100250.  
Firuzi O, Miri R, Asadollahi M, Eslami S, Jassbi AR. Cytotoxic,  
antioxidant and antimicrobial activities and phenolic contents of  
eleven Salvia species from Iran. Iranian Journal of  
Pharmaceutical Research: IJPR. 2013;12(4):801-810.  
Kotan R, Kordali S, Cakir A, Kesdek M, Kaya Y, Kilic H.  
Antimicrobial and insecticidal activities of essential oil isolated  
from Turkish Salvia hydrangea DC. ex Benth. Biochemical  
Systematics and Ecology. 2008;36(5-6):360-368.  
7
8
9
.
.
.
Jamzad M, Hafez-Taghva P, Kazembakgloo A, Jamzad Z.  
Chemical composition of essential oil, total flavonoid content and  
antioxidant activity of Salvia dracocephaloides Boiss. from Iran.  
Journal of Essential Oil Bearing Plants. 2014;17(6):1203-1210.  
2
9. Akbas SH, Timur M, Ozben T. The Effect of Quercetin on  
Topotecan Cytotoxicity in MCF-7 and MDA-MB 231 Human  
1
277  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1274-1278  
Breast Cancer Cells1. Journal of Surgical Research.  
2
005;125(1):49-55.  
3
0. Mamadalieva NZ, Herrmann F, El‐Readi MZ, Tahrani A, Hamoud  
R, Egamberdieva DR, Azimova SS, Wink M. Flavonoids in  
Scutellaria immaculata and S. ramosissima (Lamiaceae) and their  
biological activity. Journal of Pharmacy and Pharmacology.  
2
011;63(10):1346-1357.  
3
3
1. Manthey JA, Guthrie N, Grohmann K. Biological properties of  
Citrus flavonoids pertaining to cancer and inflammation. Current  
Medicinal Chemistry. 2001;8(2):135-153.  
2. Chakravarti B, Maurya R, Siddiqui JA, Bid HK, Rajendran SM,  
Yadav PP, Konwar R. In vitro anti-breast cancer activity of  
ethanolic extract of Wrightia tomentosa: role of pro-apoptotic  
effects of oleanolic acid and urosolic acid. Journal of  
Ethnopharmacology. 2012;142(1):72-79.  
3
3. Kassi E, Sourlingas TG, Spiliotaki M, Papoutsi Z, Pratsinis H,  
Aligiannis N, Moutsatsou P. Ursolic acid triggers apoptosis and  
Bcl-2 downregulation in MCF-7 breast cancer cells. Cancer  
investigation. 2009;27(7):723-733.  
3
3
4. Awad AB, Chinnam M, Fink CS, Bradford PG. β-Sitosterol  
activates Fas signaling in human breast cancer cells.  
Phytomedicine. 2007;14(11):747-754.  
5. Jassbi AR, Singh P, Krishna V, Gupta PK, Tahara S. Antioxidant  
study and assignments of NMR spectral data for 3′,4′,7-  
trihydroxyflavanone 3′,7-di-O-β-D-glucopyranoside (butrin) and  
its hydrolyzed product. Chemistry of Natural Compounds.  
2
004;40(3):250-253.  
3
3
6. S Tuzun B, Hajdu Z, Orban-Gyapai O, P Zomborszki Z, Jedlinszki  
N, Forgo P, Kıvcak B, Hohmann J. Isolation of chemical  
constituents of Centaurea virgata lam. and xanthine oxidase  
inhibitory activity of the plant extract and compounds. Medicinal  
Chemistry. 2017;13(5):498-502.  
7. Lu Y, Foo LY. Polyphenolics of Salviaa review.  
Phytochemistry. 2002;59(2):117-140.  
1
278