Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1581-1585  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/1585  
Respiratory Tract Disorders Associated with  
Changes of the Mucous Membrane in Workers often  
Exposed to Pathological and Toxic Factors  
Elida Tairovna Topchubaeva*, Zhazgul Bukarbaevna Imetova, Akshoola Kozmanbetovna  
Turusbekova, Baktyar Omurbekovich Abdurahmanov, Roman Kalmatovich Kalmatov  
Osh State University, Osh, Kyrgyzstan  
Received: 01/06/2020  
Accepted: 08/10/2020  
Published: 20/12/2020  
Abstract  
This article is investigating changes in the mucous membrane of the respiratory tract in workers who are often exposed to pathological  
and toxic factors. Research methods and materials: Air sampling was performed by aspirator and gas analyzer. Collected air was checked  
for chemical composition. Results and discussions: Air sampling of the working area detected toxic substances such as dust, soot and toxic  
3
gases: SO  
2
, N  
2
O
5
, N  
2
O
4
, NO  
2
, N  
2
O, CO and H  
2
S. Concentrations of these toxic substance and gases varied from 0.06-15.8 mg/m .  
Mechanisms of toxic effects causing occupational disorders by various substances and chemicals described. Conclusions: Respiratory tract  
disorders including chronic bronchitis, allergic bronchitis, chronic obstructive pulmonary disease and lung cancer in workers exposed to  
pathological and toxic factors have been described.  
Keywords: Respiratory tract disorders, mucous membrane, workers, substances and gases, air sampling  
1
vulnerable to injury [13].  
1
Introduction  
It is known that workers of various factories are exposed to a  
wide range of toxic substances that potentially have a negative  
effect on their health. However, data on the characteristics of the  
state of the mucous membranes of the UDT and the relationship  
with the immune status of the body in representatives of these  
contingents are practically absent in the available literature. In  
this article we are describing working air composition obtained  
during air sampling from the Aravan cement factory.  
At the present time an adverse effect of toxic environmental  
factors on the human immune system was generally recognized  
1-3]. The influence of such factors on the biological property of  
[
microbiota bacteria, which is a fundamental component of the  
macroorganism protection system, has been reported [4]. Lungs  
exposure to the toxic substances from different sources in the  
environment may lead to acute [5] and chronic pulmonary [6] or  
even systemic inflammation disorders [7]. Mechanism of toxic  
action exerted by the irritant gases may cause widespread and  
severe injury of the epithelial lining of the bronchioles which  
leads to acute respiratory symptoms including lung edema [8].  
Types of toxic substances which are participating in the toxicity  
mechanism are: irritants, sensitizers, genotoxicity, carcinogens,  
mutagens, teratogens and reproductive toxins [9] as shown in the  
Figure 1. Normal function of the respiratory tract mucous  
membrane and its immunological response should be considered  
depending on the inhaled air components, pollutants, or allergens  
2 Research methods and materials  
Air sampling from the production area (sampling No.  
GOST12.1005-88) and conservation was collected by air filter  
AFA VP-20. Measurement tools for air sampling used: aspirator  
(Meteoscope M) and gas analyzer (Signal 4M). Survey method  
based on the medical checkup of respiratory organs was applied  
in the determination of people with respiratory disorders.  
Respiratory tract disorders were registered in the Aravan region,  
Osh (2014-2018 years). Conditions and time for an air sampling  
are shown in the Table 1.  
[
10]. Dehydration of the respiratory mucous membrane causes an  
increase in viscosity of the mucosal fluid and, hence the ciliary  
clearance becomes less effective [11]. Mucociliary clearance has  
important function in innate defense mechanism against inhaled  
microbes and irritants and can be affected by exogenous factors  
such as smoke, dust and infections [12]. Inhaled toxins are  
trapped in the airway mucus and transport them from lungs in the  
forms of ciliary interactions and cough by making lungs  
Corresponding author: Elida Tairovna Topchubaeva, Osh State University, Osh, Kyrgyzstan. E-mail: topchubaeva@oshsu.kg  
1581  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1581-1585  
Figure 1: Figure 1. Mechanisms of toxic effects causing occupational disorders by various chemicals such as Metalliferous carcinogens (Ar, Be, Cd, Cr, Ni),  
Aromatic amine carcinogens (4aminibiphenyl and its nitro derivatives, ΒNaphthylamine), Ethylene oxide, Formaldehyde, Polycyclic aromatic hydrocarbons  
and aromatic amines (adapted from [9]).  
3
Results and discussions  
Table 1: Conditions and time for air sampling used for  
determination air of the working environment  
Air sampling conditions and determination time of the  
working environment of the Aravan cement factory are shown in  
the Table 1. Filters 1-3, 3-6 and 6-9 were used; temperature was  
Air sampling conditions  
Time  
21.42 24.41°C, pressure was 89 kPa, distance from the base 1.5  
meters, aspiration speed of 200.102 L/min was applied. Air  
sampling time was lasted for 10  30 minutes. Concentrations,  
kinds of toxic substances and gases in air of the working  
environment were measured by the meteorological department in  
28.06.2019, measurement certificate No. 16/1-4 (Table 2). The  
data obtained on the concentration of toxic components and gases  
in the inhaling air of workers showing their increased  
concentrations. Usually, air is containing the following  
1310  
1320  
1
2
3
1-3  
3-6  
6-9  
21.42  
24.21  
24.41  
89  
89  
89  
1.5  
1.5  
1.5  
200.102  
1450  
1525  
1520 200.102  
1535 200.102  
substances: nitrogen (N  
2
) - 78.084 mole percent (m.p.), oxygen  
) 20.947 m.p., argon (Ar) - 0.934 m.p., carbon dioxide (CO  
0.0350 m.p., neon (Ne) - 0.001818 m.p., helium (He) - 0.000524  
) - 0.00017 m.p., krypton (Kr) - 0.000114  
) - 0.000053 m.p., nitrous oxide (N O) -  
.000031 m.p., xenon (Xe) - 0.0000087 m.p., ozone (O ) - 0.0008  
(
-
O
2
2
)
m.p., methane (CH  
m.p., hydrogen (H  
4
2
2
0
3
1582  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1581-1585  
m.p., carbon monoxide (CO) - 0.000025 m.p., sulfur dioxide  
3.2 Chronic bronchitis  
Chronic bronchitis (CB) defined as a condition of excess  
mucus secretion in the bronchial tree, occurring on most days for  
at least 3 months per year for at least 2 consecutive years [23]. In  
CB there is overproduction and hypersecretion of mucus by  
goblet cells, leading to airflow luminal obstruction of small  
airways, changes in the epithelium, and alteration of airway  
surface tension predisposing to collapse [24]. CB associated  
clinical features are lung function impairment, increasing risk of  
exacerbations [25]. Symptoms [26] such as dyspnea subjective  
sensation of shortness of breath and discomfort or an abnormal  
awareness of breathing [27], chronic cough which is defined as  
cough present for more than 8 weeks in adults [28], and sputum  
or saliva mixed with mucus from the respiratory tract and ejected  
from the mouth were observed. Fl or the treatment of CB local  
anesthetics either orally or inhaled form should be prescribed;  
ceftazidime is effective and well tolerated in patients with severe  
chronic bronchitis and purulent sputum [29-31].  
(
SO  
2
) - 0.00001 m.p., nitrogen oxide (NO  
) - 0.0000003 m.p. [14].  
2
) - 0.000002 m.p.,  
ammonia (NH  
3
Table 2: Concentrations and kinds of toxic substances and gases  
in air of the working environment  
Concentration  
(
No. Filter number Air component  
3
mg/m )  
1
2
3
4
5
6
7
8
9
1
1
1-3  
1-3  
1-3  
1-3  
1-3  
4-6  
4-6  
4-6  
4-6  
7-10  
7-10  
Dust and soot  
SO  
15.8  
10  
2
N
2
O
5
, N  
2
O
4
, NO  
2
, N  
2
O
O
0.27  
0.12  
10  
CO  
2
H S  
Dust and soot  
, N , NO  
16  
3
.3 Allergic rhinitis (RA)  
Allergic rhinitis (AR) is an IgE-mediated symptomatic  
N
2
O
5
2
O
4
2
, N  
2
0.61  
0.08  
22.5  
2.8  
CO  
SO  
Dust and soot  
SO  
inflammation of upper airways with a prevalence of 1020 % in  
worldwide population [32]. Allergic rhinitis can increase the risk  
of bronchial asthma, chronic sinusitis, and otitis media [33].  
Symptoms characterized by nasal congestion, sneezing, itching  
and rhinorrhea, and ocular effects such as eye itching, tearing and  
redness [34]. Treatment of AR should consider a prophylactic  
approach to prevent or reduce exacerbations during an acute  
increase in allergen [35].  
2
0
1
2
0.06  
Qualitative and quantitative compositions of air were changed  
during the working procedure of factory machines. Despite the  
fact that the majority of substances with irritating effects were  
known, it is often impossible to establish reliably the cause of the  
pathological conditions of heavy industry workers. Inhaling air in  
the working area may consist of small size particles including  
various chemical compounds, in particular formaldehyde,  
alkanolamines, triazoles and volatile organic substances [15, 16].  
It has been established that 70% of plant workers suffer from skin  
and upper respiratory tract diseases [17]. The oil-dispersant  
mixtures in the working area cause respiratory symptoms, long-  
lasting airway oxidative stress and systemic genetic disorders due  
to presence of mutagenic/carcinogenic chemicals including PAH,  
benzene, and benzene derivatives [18]. A high prevalence of  
symptoms (in particular, nasal congestion, runny nose and sore  
throat) has been shown to be characteristic of acute rhinosinusitis  
and allergic rhinitis [19]. Signs of mucosal irritation caused by the  
presence of toxic substances in the workplace have been studied.  
3
.4 COPD  
Chronic obstructive pulmonary disease (COPD) is  
characterized by respiratory airways obstruction including  
obstruction of the small airways (chronic obstructive  
bronchiolitis) and emphysema leading to air trapping and  
shortness of breath in response to physical exertion [36].  
Common features of COPD can be characterized by submucosal  
gland enlargement, mucous secretory cell hyperplasia in the large  
airways and metaplasia in the small airways and sputum  
production [37]. In COPD an airflow limitation is associated with  
abnormal inflammatory response of the lung to toxic particles or  
gases causing inflammation and destruction of alveolar septa  
leading to emphysema [38]. Use of bronchodilators including β  
agonist salbutamol, anticholinergic ipratropium bromide, β  
agonists salmeterol and formoterol, theophylline for COPD  
treatment can be combined with inhaled corticosteroids for  
greater efficacy and fewer side effects [39].  
2
-
-
2
3
.1. Disorders associated with changes in the mucous  
3
.5 Lung cancer  
Lung cancer is characterized as a primary cancer of the lung  
membrane of respiratory tract  
Mucous secretions have important function in protection of  
lungs against chronic lung disease [20]. Upper respiratory airway  
symptoms may occur due to exposure to irritants such as throat  
and nose irritation, nasal congestion, rhinorrhea, postnasal drip,  
nasal drying and sneezing [21]. Mucosal immunity represented in  
the Figure 2 is constituted by mucosa-associated lymphoid tissue  
and regional mucosa-draining lymph nodes (LNs), effector sites  
consisting of different histological parts including the lamina  
propria [22].  
histological subtypes of adenocarcinoma, squamous cell and large  
cell cancers [40]. Prevalence of this most common malignant  
tumor histological types: 1) squamous cell carcinoma (30% to  
40% of lung cancers); 2) adenocarcinoma (25% to 30%); 3) non-  
small cell lung carcinoma (less than 10%), and 4) small cell lung  
carcinoma (15% to 20%) [41]. Lung cancer causing primary type  
exposure and occupational substances were noted such as:  
chemicals and mixtures including soot, bis(chloromethyl)ether,  
chloromethyl methyl ether, coal gasification, iron and steel  
founding. General practice medical records have reported early  
signs and symptoms of lung cancer such as: haemoptysis,  
1583  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1581-1585  
dyspnea, chest pain, cough appetite loss and/or weight loss up to  
two years before the diagnosis [42]. For the treatment of lung  
cancer radiotherapy can be applied [43].  
10. Jones N. The nose and paranasal sinuses physiology and anatomy.  
Advanced Drug Delivery Reviews. 2001; 51(13):5-19.  
1
1. Byber K, Flatz A, Norbäck D, Hitzke C, Imo D, Schwenkglenks M,  
Puhan MA, Dressel H, Mutsch M. Humidification of indoor air for  
preventing or reducing dryness symptoms or upper respiratory  
infections in educational settings and at the workplace. Cochrane  
Database of Systematic Reviews. 2016; 6:012219.  
4
Conclusion  
Air sampling analyses of the working area revealed toxic  
gases and substances such as dust, soot, SO  
2 2 5 2 4 2  
, N O , N O , NO ,  
12. Munkholm  
M,  
Mortensen  
J.  
Mucociliary  
clearance:  
pathophysiological aspects. Clin Physiol Funct Imaging. 2014; 34:  
171-177.  
N
2
O, CO and H S with concentrations varied from 0.06-15.8  
2
3
mg/m . Concentrations, kinds of toxic substances and gases in air  
of the working environment were measured by the meteorological  
department in 28.06.2019, measurement certificate No.16/1-4.  
Respiratory disorders associated with changes in the mucous  
membrane in the respiratory tract of workers including chronic  
bronchitis (CB), allergic rhinitis (AR), chronic obstructive  
pulmonary disease (COPD) and lung cancer were described.  
1
1
3. Fahy JV, Dickey BF. Airway mucus function and dysfunction. The  
New England journal of medicine. 2010; 363(23):22332247.  
4. Abdullaeva Z. Nanomaterials in Daily Life: Compounds, Synthesis,  
Processing and Commercialization. Springer International  
Publishing; 2017. 149 p.  
15. Reijnders L. The Cement Industry as a Scavenger in Industrial  
Ecology and the Management of Hazardous Substances. Journal of  
Industrial Ecology. 2007; 11: 15-25.  
1
6. Duarte K, Justino CIL, Freitas AC, Duarte AC, Rocha-Santos TAP.  
Direct-reading methods for analysis of volatile organic compounds  
and nanoparticles in workplace air. TrAC Trends in Analytical  
Chemistry. 2014; 53:21-32.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission, manipulation  
17. Nuraydın A, Bilek Ö, Kenziman AK, Korkusuz MA, Atagün Aİ,  
Çakar NÖ, Özer N, Deniz S, Başaralı MK, Özlü A, Sandal A, Van  
der Laan G, Yıldız AN. The Mersin Greenhouse Workers Study.  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
Surveillance of Work-related  
Musculoskeletal Diseases. Annals of global health. 2018;  
4(3):504511.  
Skin,  
Respiratory,  
and  
8
1
1
8. Liu YZ, Roy-Engel AM, Baddoo MC, Flemington EK, Wang G,  
Wang H. The impact of oil spill to lung health--Insights from an  
RNA-seq study of human airway epithelial cells. Gene. 2016;  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
5
78(1):3851.  
9. London NR, Lina I, Ramanathan MJr. Aeroallergens, air pollutants,  
and chronic rhinitis and rhinosinusitis. World journal of  
otorhinolaryngology - head and neck surgery. 2018; 4(3):209215.  
Authors’ contribution  
All authors contributed to data collection, study design, data  
analysis, interpretation, and writing of this article.  
20. Sturgess JM. Mucous Secretions in the Respiratory Tract. Pediatric  
Clinics of North America. 1979; 26(3):481-501.  
2
1. Bascom R. The upper respiratory tract: mucous membrane irritation.  
Environmental Health Perspectives. 1991; 95:39-44.  
2. Brandtzaeg P, Kiyono H, Pabst R, Russel MW. Terminology:  
nomenclature of mucosa-associated lymphoid tissue. Mucosal  
Immunol. 2008; 1:3137.  
3. Salyer SW. Chapter 15. Pulmonary Emergencies. In: Essential  
Emergency Medicine. Saunders; 2007. p. 844-913.  
4. Kim V, Criner GJ. Chronic bronchitis and chronic obstructive  
pulmonary disease. American journal of respiratory and critical care  
medicine. 2013; 187(3):228237.  
5. Dotan Y, So JY, Kim V. Chronic Bronchitis: Where Are We Now?  
Chronic obstructive pulmonary disease. 2019; 6(2):178192.  
6. Ferré A, Fuhrman C, Zureik M, Chouaid C, Vergnenègre A, Huchon  
G, Delmas M-C, Roche N. Chronic bronchitis in the general  
population: Influence of age, gender and socio-economic conditions.  
Respiratory Medicine. 2012; 106(3):467-471.  
References  
2
1
.
Gangemi S, Gofita E, Costa C, Teodoro M, Briguglio G, Nikitovic  
D, Fenga C. Occupational and environmental exposure to pesticides  
and cytokine pathways in chronic diseases. International journal of  
molecular medicine. 2016; 38(4):10121020.  
2
2
2
3
.
.
Kampa M, Castanas E. Human health effects of air pollution.  
Environmental Pollution. 2008; 151(2):362-367.  
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal  
toxicity and the environment. Experientia supplementum. 2012;  
2
2
1
01:133164.  
4
5
.
.
Licht TR, Bahl MI. Impact of the gut microbiota on chemical risk  
assessment. Current Opinion in Toxicology. 2019; 15:109-113.  
Bouchama A, Chastre J, Gaudichet A, Soler P, Gibert C. Acute  
Pneumonitis with Bilateral Pleural Effusion after Talc Pleurodesis.  
Chest. 1984; 86(5):795-797.  
2
2
7. Al-Ansari E. Chapter: Dyspnea. In: Mushlin SB, Greene II HL,  
6
7
.
.
Jindal SK. Chronic obstructive pulmonary disease-current status and  
management. Medical Journal Armed Forces India. 2000;  
rd  
editors. Decision Making in Medicine. 3 edition. Mosby; 2010. 768  
p.  
5
6(3):225-228.  
8. Madison JM, Irwin RS. 63-Approach to the Patient with Chronic  
Cough. In: Adkinson NF, Bochner BS, Burks AW, Busse WW,  
Levitsky A, Pernemalm M, Bernhardson B, Forshed J, Kölbeck K,  
Olin M, Wong J, Magun BE, Wood LJ. Lung inflammation caused  
by inhaled toxicants: a review. International journal of chronic  
obstructive pulmonary disease. 2016; 11:13911401.  
th  
Holgate ST, Lemanske RF, et al. Middleton's Allergy. 8 edition.  
Saunders; 2014. p. 1032-1041.  
2
9. Micklefield GH, Schött D, Zimmermann I, Ulmer WT. Treatment  
of severe chronic bronchitis with ceftazidime. Journal of Hospital  
Infection. 1990; 15(SupplA):65-67.  
0. Kaplan AG. Chronic Cough in Adults: Make the Diagnosis and  
Make a Difference. Pulm Ther. 2019; 5:11-21.  
8
9
.
.
Kerger BD, Fedoruk MJ. Pathology, toxicology, and latency of  
irritant gases known to cause bronchiolitis obliterans disease: Does  
diacetyl fit the pattern? Toxicology reports. 2015; 2:14631472.  
Lim JW, Koh D. Chemical Agents that Cause Occupational  
Diseases. In: Cockerham WC, Dingwall R, Quah SW, editors. The  
Wiley Blackwell Encyclopedia of Health, Illness, Behavior, and  
Society, 1st edition. John Wiley & Sons, Ltd.;2014.  
3
3
1. Mifflin n.d.  
Harcourt.  
https://www.collinsdictionary.com/dictionary/english/sputum  
1584  
Journal of Environmental Treatment Techniques  
2020, Volume 8, Issue 4, Pages: 1581-1585  
3
2. Toppila-Salmi S, van Drunen CM, Fokkens WJ, Golebski K, Mattila  
P, Joenvaara S, Renkonen J, Renkonen R. Molecular mechanisms of  
nasal epithelium in rhinitis and rhinosinusitis. Curr Allergy Asthma  
Rep. 2015; 15(2):495.  
3
3
3. Kozlov V, Lavrenova G, Savlevich E. Evidence-based phytotherapy  
in allergic rhinitis. Clin Phytosci. 2018; 4(23):1-8.  
4. Canonica GW, Compalati E. Minimal persistent inflammation in  
allergic rhinitis: implications for current treatment strategies.  
Clinical and experimental immunology. 2009; 158(3):260271.  
5. Storms WW. Minimal persistent inflammation, an emerging concept  
in the nature and treatment of allergic rhinitis; the possible role of  
leukotrienes. Annals of Allergy, Asthma & Immunology. 2003;  
3
3
9
1(2):131-140.  
6. Bracke KR, Brusselle GG. Chapter: Chronic Obstructive Pulmonary  
Disease. In: Mestecky J, Strober W, Russell M, Cheroutre H,  
th  
Lambrecht BN, Kelsall B, editors. Mucosal Immunology. 4 edition.  
Elsevier; 2015. 2540 p.  
3
3
7. Barnes P, Burney P, Silverman E, Bartolome RC, Jørgen V, Jadwiga  
AW, Emiel FMW. Chronic obstructive pulmonary disease. Nat Rev  
Dis Primers. 2015; 1:15076.  
8. Hanania NA, Ambrosino N, Calverley P, Cazzola M, Donner CF,  
Make B. Treatments for COPD. Respiratory Medicine. 2005;  
9
9(Suppl2):S28-S40.  
3
4
9. Bradley SH, Kennedy MPT, Neal RD. Recognising Lung Cancer in  
Primary Care. Adv Ther. 2019; 36:19-30.  
0. Hammerschmidt S, Wirtz H. Lung cancer: current diagnosis and  
treatment. Deutsches Arzteblatt international. 2009; 106(49):809–  
8
20.  
4
4
1. Field RW, Withers BL. Occupational and Environmental Causes of  
Lung Cancer. Clinics in Chest Medicine. 2012; 33(4):681-703.  
2. Jones GS, Baldwin DR. Recent advances in the management of lung  
cancer.  
Clinical  
medicine  
(London,  
England).  
2018;  
1
8(Suppl2):s41s46.  
4
3. Jett JR, Schild SE, Kesler KA, Kalemkerian GP. Treatment of small  
rd  
cell lung cancer: Diagnosis and management of lung cancer, 3 Ed:  
American College of Chest Physicians evidence-based clinical  
practice guidelines. Chest. 2013; 143(Suppl5):e400S-e419S.  
1585