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Abstract 
The water scarcity issue is becoming a critical issue to the climate change, industrialization and urbanization. Prompt to the advances in 

biotechnology, Oleaginous microorganisms have been discovered and successfully applied in biological wastewater treatments, which are 
highly effective for wastewater clean-up and energy efficient lipid conversion to value-added products. This paper aims to review the recent 
advances of the application of different types of Oleaginous microorganisms (e.g. yeasts, microalgae, and fungi) as well as the advantages, 
limitations and application fields (food industry, municipal waste and chemical plant). The future prospect and challenges of Oleaginous 
microorganism that warrant in environmental settings or engineered systems are also highlighted in the review. In order to improve the 
Technology Readiness Level (TRL), the future research direction should be more focussed on the economic and environmental studies. 
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1 Introduction
1
 

 The fresh water demand is rapidly increasing due to 
urbanization and industrialization, and predicted to beyond than 
55% in by the year of 2025 [1].  In recent year, “wastewater 
treatment field” is becoming a hot topic in both academic and 
industrial community to eliminate both chemical and microbial 
pollutants from municipal/industrial wastewater [2]. 
Nevertheless, the reuse of water from treated wastewater effluents 
can pose a serios health issue due to contamination such as 
microbial pollutants, heavy metals, suspended solid and organic 

matters [3]. To date, biological treatment is well-acknowledged 
as one of the most eco-friendly and cost-effective way to remove 
those contaminants from wastewater [1, 4-8]. Notably, the use of 
Oleaginous microorganisms in biological treatment of wastewater 
is much attractive as compared with the traditional aerobic 
digestion and anaerobic digestion technologies which requires 
high-end system such as up-flow anaerobic sludge blanket 
digestion or expanded granular sludge bed digestion [9-11]. 

 Apart from cost-effectiveness, Oleaginous microorganisms 
can clean up the wastewaters effectively within a short period 
with valuable generation of some value-added products as shown 
in Fig. 1. For instance, Chlorella pseudolambica has been studied 
in livestock wastewater for biodiesel production [12]; 
Sterigmatomyces halophilus has been applied in textile dyeing 
wastewater for bioremediation [13]; and Chlorella vulgaris has 
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been reported for biochar production using rich in ammonia-N 
swine wastewater as source of nutrient [14]. Most importantly, 
the valorisation of Oleaginous microorganisms in low-cost 
substrates like nutrient-rich wastewaters is a circular economy 
concept that can help improve the economic feasibility of the 
wastewater treatment plants related industries with a net positive 

value. Thus, in this review, we aim to provide a comprehensive 
insight on the advances of wastewaters treatment by Oleaginous 
microorganisms which includes 1) The types of Oleaginous 
microorganisms used for biological treatment such as microalgae, 
yeast, fungi and bacteria; 2) The industrial application of 
Oleaginous microorganisms such as food, pharmaceutical and 
municipal waste industries and also; 3) The commercialization 
attractiveness and challenges of the technology. 
 

2 Types of Oleaginous microorganisms used for 

biological treatment of wastewaters 
 Most of the studies have reported that Oleaginous 
microorganisms accumulate a high lipid content in the range of 
14-75% of their dry weight [15-20]. To date, Botryococcus 
braunii is reported as one of the richest lipid content 

microorganisms in which 74.5 % of lipid (58.8% nonpolar lipids 
and 15.7% polar lipids) can be extracted [21].  
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Figure 1: Application of Oleaginous microorganisms for biological treatment of wastewaters 

 

Table 1: Application of Oleaginous microorganisms in biological wastewater treatment for bio-energy production 

Microorganism Feedstock Culture mode  Products Ref 

Candida lipolytica Molasses Batch Biodiesel [22] 

Cryptococcus laurentii Winery Batch Biodiesel/Bio-oil [23] 

Trichosporon fermentans Molasses Batch Biodiesel [24] 

Trichosporon dermatis Butanol (ABE) fermentation Batch Biodiesel [25] 

Chlorella vulgaris Artificial wastewater Batch Biodiesel [26] 

Scenedesmus sp. Starch-containing textile wastewater Batch Biogas [27] 

Scenedesmus sp. ABE fermentation Fed-batch Biogas [28] 

Rhodococcus opacus Refinery wastewater Batch Bio-oil [29] 

Chlorella vulgaris Municipal waste Batch Bio-oil [30] 

 

Table 2: Application of Oleaginous yeast for wastewaters treatment 

Yeast Substrate Biomass (g L-1) Lipid content (%) COD removal (%) Ref 

Rhodotorula glutinis Brewery effluents 5.2 15.0 - [36] 

Rhodotorula glutinis Corn starch farm 40.0 35.0 80.0 [37] 

Arthrospira platensis Dairy farm 4.9 30.2 98.0 [38] 

Rhodococcus opacus Dairy farm 0.7 53.2 100.0 [39] 

Oleaginous consortium Municipal wastewater 0.6 20.0 81.0 [40] 

Lipomyces starkeyi Potato starch wastewater 2.6 8.9 - [41] 

Botryococcus braunii N-rich wastewater 2.3 30.3 - [42] 

 

Table 1 shows a series of Oleaginious microorganisms that 
have been utilized for wastewater biological treatment to produce 

various products such as biodiesel, biogas and bio-oil. 

 

2.1 Oleaginous yeasts 
Oleaginous yeasts are capable of accumulating over 20% of 

their cell mass as intracellular lipids, high growth rate as well as 
large capacity for substrate consumption [31]. Typical 

Oleaginous yeasts strains that being investigated are e.g. 
Yarrowia lipolytica, Rhodotorula glutinis, Rhodosporidium 
toruloides, Cryptococcus curvatus, Trichosporon pullulan and 
Lipomyces lipofer as shown in Table 2 [32-34]. For example, 
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Trichosporon cutaneum ACCC 20271 is investigated in an 
ethanol fermentation wastewater medium by Wang et al. [35]. 
Without any pre-treatment or external nutrient, it is able to 
accumulate significant lipid quantities (2.16 g L−1) and remove 
ca. 55% of COD after a 5-day culture. Meanwhile, Peng’s group 

has reported that Trichosporon dermatis has a high biomass and 
lipid content of 7.4 g L-1 and 13.5%, respectively [25]. Notably, 
68% of COD from butanol fermentation wastewater-based 
medium is removed after 5 days of fermentation, indicating that 
Trichosporon dermatis is a potential candidate for large scale 
wastewater treatment.  
 

2.2 Oleaginous Microalgae 

Microalgae are one of the potential candidates for the 
biological treatment in wastewater facilities, as autotrophic 
cultivation of microalgae in wastewater open ponds that can 
enhance the growth as well as the amount of lipid content through 
consumption of the nutrient the wastewater stream [43-46]. Also, 
the ambient CO2 can be sequestered for microalgae growth which 
helps to reduce the global carbon’s footprint [47]. Thus, the use 
of wastewater during the heterotrophic growth conditions for 

microalgae is an economic feasible process for biodiesel 
production. The types of Oleaginous microalgae genus reported 
for simultaneous lipid production and biological wastewater 
treatment are shown Table 3. In 2011, Feng et al. have replicated 
an artificial wastewater to cultivate Chlorella vulgaris in a column 
aeration photobioreactor under batch and semi-continuous 
configuration. The highest lipids content (42%) with 86% of COD 
removal and 97% of NH4+ are attained in the semi-continuous 

cultivation with daily replacement of 1.0 l of the 2.0 l culture [26]. 
Meanwhile, Hena et al. have also reported similar good result in 
which that the dairy farm wastewater is a suitable medium for 
cultivation of Arthrospira Platensis, producing a high biomass 
yield of 4.98 g L−1 that contains 30.23% of lipids and 98% COD 
and nutrients. Although the growth period of microalgae is 
relatively longer when compared with other microorganisms, 
microalgae is still a better alternative as it can survive in harsh 

low nutrient concentration wastewaters environment due to its 
autotrophic character [48].  

2.3 Oleaginous Fungi and Bacteria 
The application of fungi and bacteria in wastewater 

purification is much lesser as compared to its counterparts’ 
microalgae and yeasts. Up to date, only a few literature has been 
reported using Oleaginous fungi namely Aspergillus oryzae 

[53]¬, Trichoderma reesei ¬[54], Rhodococcus opacus [39], 
Rhodococcus sp. [55] as shown in Table 4. Minaraj and co-
authors have investigated the ability of Rhodococcus opacus in 
removing the COD of dairy wastewater [53]. They claimed that 
the bacteria managed to yield up to 14.28% of lipid content and 
COD removal of 30% without addition of any substrate. 
Meanwhile, with the addition of mineral salts as external 
substrate, the lipid content and the COD removal efficiency have 

increases up to 33% and 62%, respectively. Similar observation 
has been obtained by Gupta et al where the application of 
Rhodococcus opacus could remove up to almost 100% of COD 
with a maximum lipid yield of 1.8 g L−1 at a retention time of 6.6 
hr [39]. 

 

3 Application of Wastewater Treatment by 

Oleaginous Microorganisms 
3.1 Food industry 

The strategy of using Oleaginous microorganism for treating 
wastewater from food waste industry are gaining popularity in 
solving wastewater pollution and reducing the greenhouse 
emission [53, 56, 57]. Recently, many researchers have 
demonstrated that Oleaginous microorganism can be used to treat 
wastewaters discharged from a wide spectrum of food industries 

including Monosodium glutamate [58], olive oil [59], soybean 
[60], and starch [61]. The rationale behind such application is due 
to wastewater from food industry has high BOD and COD 
contents, which contributes to its intrinsically high fermentability. 
Thus, it can be treated easily from conventional anaerobic 
digestion method. Anbarasan et al. have inoculated 
Metschnikowia Pulcherrima using the distillery wastewater and 
produced biodiesel from the lipids accumulated by the 

microorganism [62]. 
 

Table 3: Application of Oleaginous microalgae for wastewaters treatment 

Microalgae Substrate Biomass (g L-1) Lipid content (%) COD removal (%) Ref 

Chlorella protothecoides Thiocyanate wastewater 1.3 30.6 - [49] 

Arthrospira platensis Olive-oil mill wastewater 1.7 16.9 73.1 [50] 

Aspergillus sp. Corncob waste liquor 2.0 22.1 60.0 [51] 

Botryococcus braunii N-rich wastewater 2.2 30.2 - [42] 

Scenedesmus obliquus Secondary effluent - 17.0 1.3 [52] 

Scenedesmus sp. Secondary effluent - 12.7 1.0 [52] 

Scenedesmus quadricauda Secondary effluent - 66.1 1.7 [52] 

 
Table 4: Application of Oleaginous fungi and bacteria for wastewaters treatment 

Fungi and Bacteria Substrate Biomass (g L-1) Lipid content (%) COD removal (%) Ref 

Aspergillus oryzae Potato processing wastewater - 3.5 g/L 91.0 [53] 

Mucor circinelloides Equalization tank wastewater 0.6 22.1 88.7 [54] 

Trichoderma reesei Equalization tank wastewater 0.7 9.8 86.7 [54] 

Rhodococcus opacus Dairy wastewater - 53.2 100 [39] 

Rhodococcus opacus Primary effluent - - 81.0 [40] 

Rhodococcus sp. RHA1 Thermomechanical pulping effluent - - 48.0 [55] 
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The in-situ transesterification reaction is performed using 
sodium hydroxide and methanol under base catalysis and the 
biodiesel yield was reported as high as 1.4 g/L.  Furthermore, Xue 
et al. have demonstrated an excellent COD removal of 80 % by 
treating potato processing wastewater using Rhodotorula 

glutinis[63]. The COD removal performance in former study is 
comparably higher than that reported in previous studies of 
Honyang et.al [64] and Muniraj et.al [65]. In a recent study, a mix-
culture of yeast (Rhodosporidum. Toruloides) and microalgae 
(Chlorella vulgaris) is introduced in a culturing and treating the 
food waste hydrolysate (see Fig. 2(a)) [66]. Based on the findings, 
the mix-culture of yeast and culture promoted a higher removal 
performance of organic matters from wastewater and better lipid 

production at a shorter cultivation time as compared to the pure 
culture of yeast and microalgae. Under the mutualistic 
relationship of both yeast and microalgae, yeasts provide CO2 for 
microalgae meanwhile microalgae offer oxygen for the yeasts. 
Furthermore, yeasts mainly consume organic matters and 
microalgae uptake nitrogen and phosphorus from the wastewater. 
Thus, mix-culture of yeast and microalgae using food waste 
hydrolysate as a culture medium is a dual propose strategy in 

solving the waste disposal issues and alarming energy crisis. As 
evidence in Fig. 2(b), it showed that the final biomass and 
substrate utilization ratio of mixed culture is highest at 20% 
inoculum size of Chlorella vulgaris, the lipid production, lipid 
content, biomass yield and lipid yield are highest at 10% when the 

Rhodosporidum. Toruloides Inoculum size fixed at 5%. However, 
the application of yeast is generally less effective in nutrient 
removal due to its poor resistance to high organic matter non-
sterile wastewater. Up to now, only a few studies have been 
performed to produce microbial lipid from high strength non-

sterile wastewater in the absence of other nutrients for the mixed 
culture of yeast and microalgae. Future research works should be 
conducted on producing microbial lipid from non-sterile 
wastewater as the results could give an insight on bridging the gap 
between research and industrial practice. 

 

3.2 Municipal wastewater 
Lately, there has been a great upsurge of interest in studies 

related to several aspect of municipal wastewater treatment. 
Amongst the treatment methods reported in literature, anaerobic-
aerobic digestion treatment is one of the methods widely reported 
and used in treating the municipal wastewater [67-69]. In recent 
years, Oleaginous microorganism has been proven as one of the 
promising biological sources in treating municipal wastewater. 
For example, Goswami et al. explored on the valorisation of 
biomass gasification wastewater for lipid accumulation by using 

Rhodococcus apacus and the potential application of biodiesel 
production [70]. Using the raw biomass gasification water as the 
synthetic mineral media, the high cell density lipid rich bacterium 
exhibited an excellent lipid yield of 54.3% with high wastewater 
COD removal efficiency of 64%.

 
Figure 2: (a) Application of co-culture of microalgae and yeast in treating wastewater derived from food industry, (b) Nitrogen utilization ratio and lipid content 

extraction from Pure and mixed culture of R. toruloides and C. vulgaris at different inoculum size ratio in FWH. (adapted from [62]) 
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From the transesterification of bacterial lipids to biodiesel, it 
is revealed that the Rhodococcus apacus bacterial strain has a 
good potential in treating the biomass gasification wastewater and 
producing biodiesel. In the same vein, Eida et al. have isolated a 
local Scenedesmus obliquus from wastewater swamp and 

cultivated it using secondary treated domestic wastewater for 
biomass and lipid production [71]. From the results, the secondary 
treated municipal wastewater is proven to be an economical 
growth medium for the microalgae cultivation and lipid 
production. Similar to treatment of food industry wastewater, co-
culture of Oleaginous yeast and algae is also reported to be one of 
the effective strategies in treating municipal wastewater and 
producing lipids.  

In another study of Cho et.al [72], instead of using a single 
strain of microalgae, a consortium of indigenous microalgae and 
bacterial from raw municipal wastewater is used for biomass and 
lipid production. Three different cultivation phases of microalgae 
and bacteria in raw municipal wastewater in lab-scale 
photobioreactors operated in circulating batch mode are 
investigated. From Fig.3, the initial phase I cultivation is 
performed using only raw municipal wastewater, where phase II 

and III are replaced with effluent from the sewage sludge 
fermentation. As a result, a stepwise increment of biologically 
produced volatile fatty acids in phase II and III can be observed 
at the beginning of phase II and III. The highest algal biomass 
production of 117.1 + 2.7 mg/L/d and highest lipid productivity 
of 17.2 + 0.2 mg/L/d are attained at phase II and III, respectively. 
As a whole, the stepwise additional of biologically produced 
volatile fatty acids promoted the microalgae biomass and lipid 

productions with better nutrient removal performance. However, 
future studies must be performed to isolate the consortium of 
indigenous microalgae and bacterial from raw municipal 
wastewater and expound the individual effect of each microalgae 
or bacterial strain to biomass and lipid productivity in a 
photobioreactor. Likewise, consortium of Oleaginous yeasts and 
bacterium also exhibited excellent COD removal performance 
(above 81%) when it is used to treat municipal wastewater [73, 
74]. 

 

3.3 Chemical plant 
Wastewater pollution from chemical plants is widely 

recognized as one of the serious threats to human population and 
ecosystem due to the discharge of toxic effluents to the 
surrounding environments. To combat this challenge, the 
application of Oleaginous bacterial, yeast and microalgae in an 

integrated application of toxic chemical removal and sustainable 
biodiesel production have been studied and reported in many 
previous studies. For instance, pulp and paper industry is one of 
the main environmental polluters after oil, leather, cement, steel 
and textile industries. According to the literature, approximately 
100 million kg of hazardous contaminants including sodium 
hydroxide, chlorinated phenol, lignin and other derivatives with 
high COD are discharged into the environment every year from 
the paper industry [75]. This raised serious environmental 

concerns and consequences to our wildlands and communities. 
Fig. 4 illustrates the process flow of pulp and paper industry 

wastewater for Oleaginious yeast cultivation and biodiesel 
production. It is reported that Rhodosporidium kratochvilovae has 
unique ability to utilize the pulp and paper industry effluent as a 

culture medium and accumulate high quantity of triacylglycerol 
or neutral lipids (8.56 g/L). 

 

 
Figure 3: Changes of chemical components in consortium of microalgae 

and bacterial with stepwise increment of biologically produced volatile 

fatty acids circulating within the photobioreactor: (a) VFAs, (b) STN, 

NH4+, NO2−, and NO3−, (c) pH and PO4−3. Ad Adopted from [68] 

 

It also possessed superior phenol (99.60%) and lignin (94.2%) 
removal performances with high COD (94.22%) and BOD 
(84.59%) removal efficiencies [75]. Interestingly, the biodiesel 
obtained from the extracted triacylglycerol has desired biofuel 
properties including high cetane number, better oxidation 

stability, and improved cold flow properties. Taking Deeba et al. 
study as an example, the Cryptococcus vishniaccii (MTCC 232) 
strain has been used to convert paper mill sludge into neutral 
lipids for sustainable biodiesel production. From the results, the 
paper mill sludge extracts have all the essential nutrients for the 
culture of Oleaginious yeast and the bacterial strain exhibited 
enhanced triaclyglycerides production of 5.5 + 0.8 g/L [76]. Also, 
the biodiesel obtained from the transesterification of the 

accumulated triglycerides is enriched in oleic acid, palmitic acid, 
linoleic acid, and stearic acid with better oxidative stability and 
biodiesel quality. 
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Figure 4: Utilization of pulp and paper industry effluent in cultivating 

Oleaginous yeast and producing sustainable biodiesel [71] 
 

Other than paper and pulp industry, industrialization 
processes including textile, leather, dyeing, cosmetic and 
pharmaceutical industries have an increasing demand for 
synthetic lignin-like dyes. Discharge of such hazardous effluents 
from these industries into water bodies will ultimately give rise to 
detrimental effects to the environments and aquatic flora. Besides 
that, the use of oleaginous microorganism including yeast, 

bacterial and fungi offers another environmentally friendly 
biological remediation method to decolorize recalcitrant synthetic 
dyes and valorising lignin while producing sustainable biodiesel. 
Such method also offers low operating cost, low energy 
requirement, easy process control, and also the excellent 
operation flexibility under a wide range of conditions.  

In a recent study of Ali et.a l [77], a novel oleaginous yeast 
consortium, OYC-YBC.SH is developed using three yeast 

cultures (Viz. Yarrowia sp. SSA1642, Barnettozyma californica 
SSA1518 and Sterigmatomyces halophilus SSA1511) for textile 
dye removal, lignin valorisation and lipid production. The 
oleaginous yeast consortium exhibited superior decolorization 
performance when tested with real dyeing effluent sample at pH 
8. It is able to grow on a wide range of carbon sources with the 
highest lipid productivity of 1.56 g/L/day and lipid activity of 
170.3 U/mL Moreover, substantial detoxification performance is 

also observed when the textile effluent sample is treated with 
OYC-Y.BC.SH consortium under static conditions at 30 °C for 
24 hrs, which further suggesting its suitability for degrading most 
of the textile constituents under alkaline pH environments. The 
TOC, BOD, COD and color removal performances are reported 
as 54%, 74%, 95% and 98%, respectively. 

 

4 Challenges of the application of oleaginous 

microorganisms in industrial wastewater 

treatment 
 As discussed in the above, the use of oleaginous 
microorganisms is a breakthrough in wastewater treatment as they 
are inexpensive, environmentally friendly, simple system 
configuration as well as short fermentation period [78-80]. 
However, the COD removal by oleaginous microorganisms is still 
far lower than that of traditional chemical technologies. In fact, 
the total COD removal of industrial and municipal wastewaters 
can be up to 95% by using the ion exchange or chemical reduction 

[81-83]. On top of that, the COD removal obtained by the 
conventional biological anaerobic–aerobic biological treatment 
(80-90%) is also much higher than the use of oleaginous 
microorganisms [67]. 

 

 

2 Conclusions 
The application of Oleaginous microorganisms is a win-win 

strategy where the nutrient-rich wastewaters can be act as the 
medium to produce bioenergy and also, the unwanted nutrient or 
COD can be removed simultaneously. Owing to its advantages, 
the application of oleaginous microorganisms in industrial scale 
seems feasible only if the challenges mentioned above can be 
resolved. The future research direction should be more focussed 

on the economic and environmental studies in order to benchmark 
with the conventional biological (anaerobic) and chemical 
wastewater treatment. 
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