Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 148-157  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)157  
A Review: Plastics Waste Biodegradation Using  
Plastics-Degrading Bacteria  
1
2
3
Angga Puja Asiandu *, Agus Wahyudi , Septi Widiya Sari  
1
Department of Biology, Gadjah Mada University, Yogyakarta, Indonesia  
2
Department of Biology, Sriwijaya University, Indonesia  
3
Department of Sociology, University of Bengkulu, Indonesia  
Received: 25/09/2020  
Accepted: 25/10/2020  
Published: 20/03/2021  
Abstract  
Plastic is a synthetic polymer that is widely used in almost every field of life. The massive use of this synthetic polymer has led to the  
accumulation of this polymer in the environment thus polluting the environment. The general techniques in preventing plastic waste as  
landfill, incineration, recycling are considered less effective as they release some hazardous materials to the environment. Thus, the  
appropriate technique is needed to overcome this problem. Biodegradation is an enzymatic degradation involving some microorganisms  
including bacteria. This technique can be used to prevent the plastic waste problem. Plastic waste biodegradation occurred through several  
steps, including biodeterioration, depolymerization, and assimilation. Within this process, bacteria will secrete many enzymes that will  
degrade and convert plastic polymers into microbial biomass and gases. Thus, this process has fewer even no side effect.  
Keywords: Bacteria, Biodegradation, Enzymes, Plastics Waste  
1
Plastics are daily lives related products used in almost every  
1
Introduction  
field of life in all countries (9). They are widely used because of  
their strength and durability. On the other hand, those characters  
lead to plastic resistance to degradation. These insoluble  
recalcitrant polymers take many years to be naturally degraded  
in the environment. This problem encourages plastic waste  
pollution that threatens many living things, including humans  
Plastics are organic polymers containing molecules  
composed of long carbon chains back-bone formed through the  
polymerization (1). They are made of carbon and hydrogen, with  
nitrogen, sulfur, and other various organic and inorganic  
materials derived from fossil fuels (2). Plastics divided into  
natural plastics, semi-synthetic plastics, synthetic plastics,  
thermoplastics, and thermosetting plastics (3).  
(
10).  
The uncontrolled plastics uses started several decades ago  
The massive plastics production has begun in the 1950s,  
which is generally produced for disposable use. Most of the  
plastics waste is non-biodegradable which takes thousands of  
years to be decomposed or degraded (4). In 2010, China was the  
highest plastic waste producer in the world with 8.8 million tons  
per year or 27% of the total world plastic waste production.  
Meanwhile, Indonesia was the second after China as the highest  
plastic waste-producing country in the world with 3.2 million  
tons per year or 10% of the total world plastic waste (5, 6, 4). In  
Indonesia, approximately 15% of the individually daily wastes  
are plastics (7). Based on the European Plastics in 2018, total  
world plastic production reaches 335 million tons per year, as  
much as 60 million of that amount is obtained in Europe. It is  
estimated that the number of plastic productions will be two  
times greater in the next 20 years. Meanwhile, plastic bags are  
the most common form of plastic widely used in daily lives in  
the world. Although plastic products are reusable, they are still  
one of the main factors causing environmental pollution (8).  
have caused many environmental problems related to the  
disposal uses and pollutions of plastics waste. The  
decomposition process of plastic polymers takes thousands of  
years. People usually burn plastics waste to overcome the  
accumulation of plastics waste in the environment yet the  
burning of plastics waste leads to air pollution. It releases toxic  
2
compounds, CO , and dioxins, into the air. Those released gases  
cause lung diseases and cancer (11). As plastics waste is a  
pollutant polluting the land, air, and water ecosystem (12),  
threatening various living things (10), therefore the appropriate  
processing method of plastic waste is necessarily needed to be  
carried out. The application of reuse, reduce, and recycle is now  
widely applied to prevent the problem caused by plastics waste.  
However, this method is less effective, especially for plastics  
waste that has been mixed with other types of waste (8). Also,  
landfill plastics waste processing requires large space, and  
incineration plastics waste processing can produce toxic gases  
into the environment (13). Thus the more effective and  
environmentally safe processing plastics waste method is  
needed. Biodegradation is considered as a more profitable and  
more effective method to prevent this worldwide problem.  
Corresponding Author: Angga Puja Asiandu, Department of  
Biology, Gadjah Mada University, Yogyakarta, Indonesia.  
E-mail: anggahasiandu@gmail.com  
148  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 148-157  
Biodegradation involves many kinds of plastics degrading  
3
Plastics Waste Problems  
microorganisms  
(14,  
15)  
as  
bacteria, such  
as  
The plastics degradation process in the environment takes up  
0 to 100 years, even reaching 500 years to be degraded  
D.nigrificans, and Pseudomonas alcaligenes (16). They can  
produce various enzymes, both intracellular and extracellular,  
that can degrade plastic polymers to protect the environment  
2
completely (22). Furthermore, the degradation of plastic bags  
and styrofoam containers spend 1000 years (4). It causes  
negative impacts on the environment as decreasing soil fertility  
that contaminated with plastics waste, contaminating water by  
plastic constituents, interfering soil-decomposing organisms, and  
accumulating toxic compounds through the food chains. Also,  
buried plastic waste blocks waterways cause flooding (22).  
Plastics waste in both terrestrial and aquatic environments is  
the main problem of ecosystem balance. It will be worse when  
the plastics have been transformed into invisible microplastics  
that are harder to overcome. The large amount of plastics waste  
dominated by plastic bags has caused various respiratory and  
digestive system problems for thousands of species. Ingested  
plastic waste by animals, mainly aquatic animals such as fish,  
leads to bioaccumulation of the toxic compounds contained in  
the plastic waste. Then the plastic contaminated fish possibly  
consumed by humans resulting in many health problems. It is  
estimated that in 2050 as many as 99% of seabirds will be  
exposed to plastic waste through ingestion (4).  
Plastics waste on the land can be broken down by sunlight  
into smaller parts or fragments polluting soil and water. Those  
toxic fragments may be involved in food chains threatening  
many living things. For instance, polyethylene is gravely  
hazardous for many aquatic species as aquatic mammals, sea  
turtles, and waterbirds when it is consumed accidentally (11).  
Plastics waste burning is not an effective solution to solve  
plastics accumulation problems. That process releases toxic  
gases into the environment including dioxins, heavy metals,  
PCBs, and furans causing various respiratory system diseases  
(
(
14, 15), and to stop plastics polluting the land, air, and water  
10).  
2
Type of Plastics  
Plastics generally divided into two categories,  
thermoplastics and thermosets. Thermoplastics are a group of  
plastics that can be melted when heated and hardened when  
cooled.  
Thermoplastics  
are  
including  
Polyethylene  
Terephthalate (PET), Polyethylene (PE), Low-Density  
Polyethylene (LDPE), High-Density Polyethylene (HDPE),  
Polystyrene (PS), Expanded polystyrene (EPS), Polyvinyl-  
chloride (PVC), Polycarbonate, Polypropylene (PP), Polylactic  
acid (PLA) and Polyhydroxyalkanoates (PHA). Meanwhile,  
thermosets are plastics which their chemical structures can be  
changed when heated thus can not be re-melted. Thermoset  
plastics are including Polyurethane (PUR), Phenolic resins,  
Epoxy resins, Silicone, Vinyl ester, Acrylic resins,  
Ureaformaldehyde (UF) resins (4).  
Polyethylene terephthalate (PET) is a transparent and thin  
plastic that commonly used as a wrapper for various foods and  
drinks. Low-density polyethylene (LDPE) is a flexible and  
strong heat-resistant plastic usually used as a drink container.  
High-density polyethylene (HDPE), made from heat-resistant  
petroleum, is commonly used as plastic bags. While Polyvinyl  
chloride (PVC) is a synthetic plastic containing many chemical  
additives such as heavy metals, dioxins, BPA, and phthalates  
resulting in various health problems as bronchitis and cancer.  
This plastic is widely used as a wrapper, such as vegetable oil  
wrapper. Polypropylene (PP), strong and semi-permanent  
plastic, commonly used for medicine packaging. Polystyrene  
2
(23, 18). Furthermore, the plastic burning produces CO into the  
air, the gas is related to global warming. It will trap solar heat  
that increases the earth's surface temperature (24, 18).  
(
PS) is a petroleum-based plastic that contains benzene, a  
The accumulated plastics waste on the land is hard to  
degrade. It will inhibit the water infiltration into the soil (11),  
leads to soil infertility. The plastics waste accumulation on the  
land reduces the availability of oxygen in the soil. The amount  
of plastics waste in the soil causes the reduction of soil-  
decomposing organisms, thus decomposition of organic and  
inorganic materials will be decreased that affects the soil fertility  
and inhibits plant growth (22).  
carcinogenic compound. This plastic widely used as cutleries.  
Polycarbonate is a plastic that contains hazardous BPA material,  
this plastic is usually used as a reusable bottle (17, 18).  
Meanwhile, the most common single-use plastics are LDPE,  
HDPE, PET, PS, EPS, and PP (4).  
Based on Plastic Europe 2018, In Europe, the highest plastic  
demands are LDPE, HDPE, polypropylene, polyvinyl chloride,  
polyurethane, polystyrene, and polyethylene terephthalate. The  
need for LDPE is 17.5% and HDPE 12.3%. While the need for  
polypropylene is 19.3%, polyvinyl chloride 10.2%, polyurethane  
4
Plastics Hazardous Substances  
Plastics contain some hazardous substances affecting human  
7
(
.7%, polystyrene 7.4%, and polyethylene terephthalate is 7.4%  
19).  
In addition to nonbiodegradable synthetic plastics,  
health. Dangerous plastic components such as bisphenol A  
found in PC and PVC can cause the reproductive system  
disorders, mainly the ovaries. Phthalates contained in PS and  
PVC lead to testosterone disorders and interfere with sperm  
motility. The styrene monomers as those found in polystyrene-  
type plastics are carcinogenic. Nonylphenol contained in PVC  
causes estrogen disorders. Meanwhile, dioxins, persistent  
organic pollutants (POPs), polycyclic aromatic hydrocarbons  
biodegradable plastics are now being developed and used.  
Biodegradable plastics and polymers are materials that are now  
widely used in various industries. The use of biodegradable  
plastics is related to environmental problems due to the  
recalcitrant characteristic of petroleum-based plastics waste.  
Some biodegradable plastics are polylactic acid (PLA) and  
polybutylene adipate-co-terephthalate (20, 21). Although PLA is  
biodegradable, the polymer still requires a long time to be  
degraded in nature. The complete biodegradation process of a  
biodegradable polymer in nature takes months or even years  
(
PAHs), and polychlorinated biphenyls (PCBs) found in almost  
all plastic types resulting in various health problems. Dioxins are  
carcinogens interfering with testosterone disorders. POPs can  
disrupt the nervous and reproductive systems. PAHs associated  
with the reproductive system and development disorders, and  
PCBs related to thyroid hormone disorders (25, 18).  
(
21).  
149  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 148-157  
kinds of acid compounds changing the pH of plastic polymers  
leads to chemical plastic deterioration causing changes of the  
polymer microstructures. These acids are including nitrous acid,  
nitric acid or sulfuric acid, citric, fumaric, gluconic, glutaric,  
glyoxylic, oxalic, and oxaloacetic (32). The plastic surface  
damages associated with metabolites and extracellular enzymes  
released by bacteria (34).  
Depolymerization of the plastic constituents is carried out by  
depolymerase enzymes. The results of this reaction can be in the  
form of oligomers, dimers, and monomers that are simpler than  
polymers. They will be further processed according to the  
presence of oxygen molecules in metabolism. Aerobic  
degradation of those components will produce microbial  
5
General Plastics Waste Management  
Plastics waste landfill and incineration are two commonly  
used plastic waste management methods. However, these two  
methods are considered as the managing plastic waste processes  
which have side effects on the environment as they release  
various toxic gases into the air, besides landfill also requires a  
large space. Plastics recycling activities are also relatively  
ineffective in dealing with the abundance of plastic waste (13).  
The application of reuse, reduce, and recycle is now widely  
promoted in addition to solve plastic waste problems. It is  
appropriate for postindustrial plastics, yet it is not effective for  
plastics that have been used or consumed by people that are  
usually mixed with other organic and inorganic wastes.  
Afterward, chemical methods of plastics waste management  
systems are influenced by several factors and conditions related  
to the polymer constituents of each plastic (8).  
biomass, CO  
change those components into microbial biomass, CO  
and CH or H S (35).  
2
, and H  
2
O. While anaerobic degradation will  
2
, H O,  
2
4
2
Extracellular and intracellular depolymerase enzymes  
secreted by microbes have important roles in plastic waste  
degradation. During the degradation process, the released  
enzymes will break down complex polymers into smaller and  
simpler chains. These decomposed small molecules will be  
easily dissolved in water then absorbed through microbial  
semipermeable cell membranes to be used as carbon and energy  
sources. Assimilation occurs in microbial cytoplasms in which  
the metabolic process occurs to produce energy, biomass, food  
reserves, primary and secondary metabolites (29). After  
degraded into smaller ones, plastic fragments such as monomers  
will enter the cells. These components enter the microbial cell  
metabolism system to undergo a subsequent degradation process  
to form energy and biomass for microorganisms. Even though  
monomers have formed, sometimes they do not fully  
assimilated. They will be released outside of the cells and will  
be used by other microorganisms that have a suitable  
assimilation pathway for those monomers (32).  
The next process of biodegradation is mineralization.  
Mineralization is the final metabolic process of plastic waste  
toxic compounds. This process changes those hazardous  
compounds into more environmentally safe compounds (36).  
Mineralization is a process of converting biodegradable  
materials or biomass into gases, water, salt, minerals, and other  
residues. The formed gases include carbon dioxide, methane,  
and nitrogen components. The mineralization process will be  
ended when all biodegradable compounds have been consumed  
by microorganisms and all carbons are converted to carbon  
dioxide (37, 38).  
6
Plastics Biodegradation  
A plastics waste processing effective method is needed (14,  
1
5) to balance the increasing uses of plastics every year (26). It  
is Biodegradation. Biodegradation is an effective, profitable, and  
economically valuable plastics waste processing method. The  
ability of many microorganisms to break down plastic polymers  
is an advantage that can be used in dealing with problems arising  
from the increasing accumulation of plastics waste every day.  
Some microorganisms produce various kinds of enzymes, both  
intracellular and extracellular, catalyze plastic polymers  
degradation into safe smaller fragments (14, 15). The utilization  
of microbial cells directly to degrade plastic C-C bonds is  
considered more effective (27). Biodegradation is a specific  
enzymatic process. Certain enzymes break down certain  
substrates (28).  
The plastic waste biodegradation process occurs through  
several stages, including biodeterioration, depolymerization, and  
assimilation. Biodeterioration is a cooperation between several  
microbes and abiotic factors that breaks down polymers into  
smaller ones. This process will be continued with  
depolymerization. Depolymerization occurs in which microbes  
secrete catalytic compounds in the form of enzymes and free  
radicals to form biofilms helping them to break the polymer  
chains progressively (29).  
Biodeterioration is a process of changing or modifying  
plastic polymers carried out by some microorganisms on the  
plastic surface. The changes include chemical, physical, and  
mechanical changes (30). This process will be accelerated by  
biofilms formed by microorganisms on the plastic surface. A  
biofilm is a form of living things community. Microbes attach  
themselves and colonize the surface of an object to form  
biofilms assisted by an extracellular compound produced by  
them. In the form of biofilms, microbial cells attach one to  
another in a polymer matrix containing polysaccharides and  
proteins (13). Extracellular polymeric substances (EPS)  
produced by microorganisms help them to break down the  
plastic surface (31, 32). EPS consists of polysaccharides,  
proteins, and nucleic acids (33).  
7
Plastics Degrading Bacteria  
Many plastics degrading bacteria have been widely reported  
by researchers as compiled in table 1. Some of PE degrading  
bacteria are including D.nigrificans and Pseudomonas  
alcaligenes isolated from plastic waste contaminated soil  
16), Enterobacter sp. D1 isolated from the guts of Galleria  
(
mellonella (39) and P.putida MTCC 2475 isolated from garden  
soil. P.putida MTCC 2475 reduced milk cover weight about  
63.1  
73.3% within  
1
month incubation (40). In  
the Enterobacter sp. D1 treated solution there was increasing of  
alcohol, esters, acidic compounds, ethyl decanoate, and 6-  
methyl-5-hepten-2-ol. Alcohol, alkaline, hydrocarbon, esters,  
and acid compounds indicate bacterial metabolism in degrading  
PE (41, 39). That process involves various oxidoreductase  
enzymes (39).  
EPS penetrates the plastic surface pores causing enlargement  
of the pores. It is enhanced microbes, bacteria, to damage plastic  
polymers, to form holes, and to encourage the physical  
deterioration of plastic polymers (31, 32). Also, the formation of  
biofilms on plastic surfaces encourages the formation of various  
150  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 148-157  
Tabel 1: Plastics Degrading Bacteria  
Observation of  
Media  
Plastic  
Types  
Incubation  
References  
Time  
Bacteria  
Isolate Sources  
Garbage Soil  
Degradation  
32% of PWL  
14% of PWL  
Bacillus  
Culture Broth Medium  
Culture Broth Medium  
Nutrient Broth  
1 Month  
1 Month  
1 Month  
(42)  
(42)  
(16)  
amylolyticus  
Bacillus subtilis  
Desulfotomaculu  
m nigrifans  
Enterobacter sp.  
D1  
Pseudomonas  
alcaligenes  
Pseudomonas  
fluorescens  
Pseudomonas  
putida  
Garbage Soil  
Plastic Contaminated  
Soil  
Isolated from Gut of  
Galleria mellonella  
Plastic Contaminated  
Soil  
1
6.2% of PWL  
1.98% of CD  
1.98% of OI  
A Carbon-Free Source  
Agar Solid Medium  
3
1 Days  
(39)  
(16)  
(42)  
(42)  
1
6.2% of PWL  
Nutrient Broth  
1 Month  
1 Month  
1 Month  
Garbage Soil  
Garbage Soil  
22% of PWL  
18% of PWL  
Culture Broth Medium  
Culture Broth Medium  
PE  
Pseudomonas  
putida MTCC  
Garden Soil  
>10% of PWL  
Mineral Salt Medium  
1 Month  
(40)  
2
475  
Streptomyces  
SSP2  
Streptomyces  
SSP4  
Sterptomyces  
SSP14  
Actinobacter  
ursingii  
Soil  
8% of PWL  
ATCC Medium  
ATCC Medium  
ATCC Medium  
Solid MSM  
1 Month  
1 Month  
1 Month  
3 Days  
(12)  
(12)  
(12)  
(48)  
Soil  
11% of PWL  
Soil  
19% of PWL  
Soil and Plastic Waste  
Color Zone on the Medium  
Alcanivorax  
borkumensis  
Marine Plastic Waste  
Sedimentations  
Liquid Medium Containing  
0.05% Hexadecane  
3
.5% of PWL  
80 Days  
(50)  
Bacillus  
carbonipphilus  
25% of PWL  
Mineral Broth  
Mineral Agar  
LDPE Contaminated  
Soil  
2 Months  
(45)  
(45)  
(49)  
34.55% of PWL  
Bacillus  
coagulans  
Bacillus  
licheniformis  
KC2-MRL  
Bacillus  
LDPE Contaminated  
Soil  
16% of PWL  
18.37% of PWL  
Mineral Broth  
Mineral Agar  
2
Months  
Soil  
Plastic’s Surface Damage  
Mineral Salt Medium  
1 Month  
2 Months  
2 Months  
2 Months  
LDPE Contaminated  
Soil  
LDPE Contaminated  
Soil  
LDPE Contaminated  
Soil  
34.48% of PWL  
21% of PWL  
36.07% of PWL  
14% of PWL  
16.40% of PWL  
8% of PWL  
Mineral Agar  
Mineral Broth  
Mineral Agar  
Mineral Broth  
Mineral Agar  
Mineral Broth  
(45)  
(45)  
(45)  
megaterium  
Bacillus nedei  
Bacillus smithii  
Bacillus sp. KC3-  
MRL  
Bacillus  
sporothermo-  
durans  
Soil  
Plastic Surface Damage  
36.54% of PWL  
21% of PWL  
Mineral Salt Medium  
Mineral Agar  
1 Month  
(49)  
(45)  
LDPE  
LDPE Contaminated  
Soil  
2 Months  
Mineral Broth  
Bacillus  
weihenstephanens  
is  
Hydrocarbon enriched  
soil  
32.61% of TPBWL and  
35.64% of ThPBWL  
C-zopek-Dox Broth  
6 Months  
(82)  
Burkholderia  
cepacia  
Hydrocarbon Enriched  
Soil  
31.43% of TPBWL and  
36.34% of ThPBWL  
C-zopek-Dox Broth  
C-zopek-Dox Broth  
6 Months  
6 Months  
(82)  
(82)  
Hydrocarbon Enriched  
Soil  
23.27% of TPBWL and  
23.57% of ThPBWL  
Escherichia coli  
Pseudomonas  
aeruginosa  
Pseudomonas  
fluorescens  
Serratia sp. KCI-  
MRL  
Stenotropphomon  
as sp. KC4-MRL  
Streptomyces  
coelicoflavus  
Landfill Soil  
Garbage Soil  
Soil  
18.75% of PWL  
Mineral Salt Broth  
45 Days  
1 Month  
1 Month  
1 Month  
4 weeks  
(47)  
(42)  
(49)  
(49)  
(51)  
22% of PWL  
Culture Broth Medium  
Mineral Salt Medium  
Mineral Salt Medium  
Mineralt Salt Agar  
Plastic Surface Damage  
Plastic Surface Damage  
30% of PWL  
Soil  
Oil Contaminated Soil  
151  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 148-157  
Plastic  
Types  
Observation of  
Degradation  
Incubation  
References  
Time  
Bacteria  
Isolate Sources  
Media  
NBRC 15399T  
Streptomyces  
SSP2  
Streptomyces  
SSP4  
Sterptomyces  
SSP14  
Ochrobacterum  
anthropi  
Soil  
6% of PWL  
9% of PWL  
17% of PWL  
20% of PWL  
12% of PWL  
11% of PWL  
ATCC Medium  
ATCC Medium  
ATCC Medium  
Mineral Salt Broth  
Mineral Broth  
1 Month  
1 Bulan  
1 Month  
45 Days  
40 Days  
40 Days  
(12)  
(12)  
(12)  
(47)  
(53)  
(53)  
Soil  
Soil  
HDPE  
PP  
Landfill Soil  
Mangrove sediment  
Mangrove sediment  
Bacillus cereus  
Sporosacrina  
globispora  
Mineral Broth  
2
5
0% of PWL in NB and  
8.82% of PWL in BHB  
Bacillus subtilis  
Culture  
Culture  
Culture  
Culture  
NB and BHB  
NB and BHB  
NB and BHB  
NB and BHB  
1 Month  
1 Month  
1 Month  
1 Month  
(54)  
(54)  
(54)  
(54)  
Pseudomonas  
auroginosa  
5% of PWL in NB and  
11% of PWL in BHB  
PS  
Staphylococcus  
aureus  
4.76% of PWL in NB and  
37.5% of PWL in BHB  
Staphylococcus  
pyogenes  
8.33% of PWL in NB and  
11.11% of PWL in BHB  
7
1
4.59% of PWL in NB and  
.75% of PWL in BHB  
Bacillus subtilis  
Culture  
Culture  
Culture  
NB and BHB  
NB and BHB  
NB and BHB  
1 Month  
1 Month  
1 Month  
(54)  
(54)  
(54)  
Staphylococcus  
pyogenes  
3.85% of PWL in NB and  
3.92% of PWL in BHB  
PET  
Staphylococcus  
aureus  
8.75% of PWL in NB and  
3.85% of PWL in BHB  
Hydrolysis Zone Formed  
on PHB Containing  
Medium  
Turbid Medium  
Containing PHB as Carbon  
Source  
Streptomyces  
lydicus MM10  
Soil, Sand and  
Wastewater  
PHB  
PLA  
7 Days  
(56)  
Bacillus sp.  
MKY2  
Pseudomonas sp.  
MKY1  
Digester Sludge  
Digester Sludge  
Morphological Damage  
Morphological Damage  
PLA-Agar Plate  
PLA-Agar Plate  
40 Days  
40 Days  
(21)  
(21)  
PWL: Plastic’s Weight Loss; TPBWL: Thin Plastic Bag’s Weight Loss; ThPBWL: Thin Plastic Bag’s Weight Loss; CD: Carbon Decreasing; OI: Oxygene  
Increasing; NB: Nutrient Broth; BHB: Bushnell Hash Broth.  
Four polyethylene plastic degrading bacteria isolated from  
soil were also reported by Patil (42). They were Bacillus  
amylolyticus, B.subtilis, Pseudomonas putida, and Pseudomonas  
fluorescens. These bacteria were separately incubated in a broth  
medium containing polyethylene films and incubated for a  
month. Based on the research, B.amylolyticus was able to reduce  
were incubated in culture broth media for a month. Based on  
that research, B.amylolyticus was able to reduce plastic samples  
about  
20%, B.firmus 12%, P.putida 30%, P.fluroscence 16%,  
and B.subtilis 22%. FTIR analysis showed that the plastics were  
damaged (44).  
Bacillus spp. are potential LPDE degrading agents. By using  
agar minerals incubated for two months, B.carbonipphilus was  
able to degrade LDPE about 34.55%. Meanwhile,  
B.sporothermo-durans degraded the sample about 36.54%,  
B.sporothermodurans degraded it about 36.54%, B.coagulans  
degraded the sample about 18.37%, B.neidei decreased the  
plastic’s weiht about 36.07%, B.smithii degraded it about 16.0%,  
and B.megaterium degraded it about 34.48%. In Mineral Broth  
3
2%  
of  
polyethylene  
film  
weight,  
followed  
by P.fluorescens with 22%, P.putida 18%, and B.subtilis 14%.  
FTIR analysis stated that there was a rapid process of carbon  
chain degradation through wave absorption. These bacteria  
break down polythene polymers then serve them as their carbon  
source (42). P.aeruginosa and P.stutzeri are also included as PE  
degrading bacteria (15). Pseudomonas spp. have an inducible  
operon system initiating the formation of certain enzymes that  
are useful in unusual carbon sources metabolisms. Enzymes  
produced by Pseudomonas spp. are including serine hydrolase,  
esterase, and lipase (43).  
media, B.carbonipphilus degraded  
LDPE  
about  
25%, B.sporothermodurans 21%, B.coagulans 16%, B.neidei  
14%, B.smithii 8%, and B.megaterium 21% (45).  
microorganisms adhere to the plastic surfaces, they will start  
trying to use those polymers as their carbon source (46).  
The other LDPE degrading bacteria are Bacillus  
When  
The other 5 isolates of polyethylene degrading bacteria were  
successfully isolated from dumped soil. The five bacteria  
were Bacillus  
amylolyticus, Bacillus  
firmus, Pseudomonas  
weihenstephanensis, Burkholderia cepacia, and Escherichia  
coli. Within six months, B.weihenstephanensis was able to  
putida, Pseudomonas fluroscence, and Bacillus subtilis. They  
152  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 148-157  
reduce the weight of thick LDPE plastic bags around 32.61%  
and thin plastic bags about 35.64%. B.cepacia can reduce the  
weight of thick plastic bags about 31.43%, and 36.34% for thin  
plastic bags. Whereas E.coli reduced 23.72% of thick plastic  
bags weight and 23.57% for thin plastic bags (Mukherjee and  
Chatterjee, 2014). LDPE weight reduction by Pseudomonas  
depolymerase (56).  
8
Enzymes Involved in Plastics Biodegradation  
Many microbes produce various kinds of important enzymes  
in plastic biodegradation. Enzymes such as laccase, lignin  
peroxidase, manganese peroxidase, lipase, esterase, and amylase  
are potential catalysts of plastic constituent polymers  
degradation (59, 60). Lignin peroxidase, manganese peroxidase,  
and laccase are the three main lignolytic enzymes (61, 62).  
Lignolytic enzymes are including phenol oxidase or laccase,  
heme peroxidase consisting of lignin peroxidase, manganese  
peroxidase, and versatile peroxidase (63, 62).  
There are two reactions involved in the polymer  
biodegradation process, hydrolysis and oxidation. Hydrolysis is  
the breaking down of polymers catalyzed by hydrolases  
enzymes, while oxidation is a biodegradation process catalyzed  
by various oxidoreductase enzymes. Hydrolase enzymes  
catalyze the hydrolyzing reactions of esters, carbonates, amides,  
and glycosidic bonds of various hydrolyzed polymers to produce  
monomers. Meanwhile, oxidoreductase enzymes catalyze  
oxidizing and reducing reactions of ethylene, carbonate, amide,  
urethane, and others (59, 60).  
The polymers hydrolysis process usually includes a reaction  
involving three amino acid residues including aspartate,  
histidine, and serine. Aspartate will interact with the histidine  
ring to form hydrogen bonds. The histidine ring will interact  
with serine. Histidine conducts the deprotonating process with  
serine to form a nucleophilic alkoxide (-O), a group attacking  
the ester bonds. This process results in an alcohol tip and an  
acyl-enzyme complex. Then, water attacks the acyl-enzyme  
complex to form a carboxyl-end and free enzyme that will be  
further processed by microorganisms (64, 35). Bacillus sp.  
BCBT21 is one of the hydrolases producing bacteria. It produces  
lipase, CMCase, xylanase, chitinase, and protease that are  
important in the degradation of plastic polymers (65).  
When some polymer compounds can not be degraded by  
certain enzymes, the other appropriate enzymes will work  
together to break down those compounds. This phenomenon is  
known as oxidation. For instance, monooxygenase and  
dioxygenase will be coalesced to form a more fragmented  
alcohol or peroxyl groups. The further reaction will be catalyzed  
by peroxidase, breaking down these components into smaller  
components. Peroxidases catalyze the reaction between a  
peroxyl molecule and an electron acceptor such as phenol,  
phenyl, amino, carboxyl, thiol, or unsaturated aliphatic  
compound (64, 35).  
aeruginosa was  
18.75%  
within  
a
month  
(47).  
Moreover, P.fluorescens and Actinobacter ursingii are also  
considered as LDPE degrading bacteria (48).  
Furthermore, Jamil et al. (49), reported that Serratia sp.  
KCI-MRL, Bacillus licheniformis KC2-MRL, Bacillus sp. KC3-  
MRL, and Stenotrophomonas sp. KC4-MRL isolated from the  
soil in Khasmir Smast, Pakistan, were able to damage the  
surface of LDPE plastic films within one month of incubation.  
Harshvardhan and Jha, cited from Jamil et al. (49) stated that  
LDPE biodegradation through a series of enzymatic reactions  
involving various enzymes that catalyze chemical changes of  
plastic polymers such as oxidation, reduction, hydrolysis,  
esterification, and molecular inner conversion.  
Another  
studi  
also  
reported  
that Alcanivorax  
borkumensis was able to form large biofilms on the surface of  
LDPE waste. This bacterium is a species of hydrocarbon-  
degrading bacteria which able to degrade LDPE (50). Based on  
Golyshin et al., and Sabirova et al., the LDPE degradation  
mechanism by this bacterium is carried out through several  
enzymatic reactions involving various enzymes, such as alkane  
hydroxylase (alkB1, alkB2), cytochrome P50, and Ferredoxin  
(
50).  
The ability of actinomycetes in degrading plastic waste was  
also reported by some researchers. Some LDPE degrading  
actinomycetes including Streptomyces coelicoflavus NBRC  
1
5399T (51), Streptomyces SSP2, Streptomyces SSP4,  
and  
Streptomyces SSP14 are potential agents of plastic waste  
biodegradation. They are also considered to be able to produce  
bioemulsifier. Bioemulsifier is  
a molecule produced by  
microorganisms during the degradation of plastic polymers. The  
microorganisms used in that study were able to produce  
biosurfactants that are also important in plastics degradation  
(
12). Actinomycetes produce various kind of metabolites which  
play a vital role in plastics degradation (52).  
One of the HDPE degrading bacteria is Ochrobacterum  
anthropi. This bacterium degraded HDPE film by 20% in 45  
days (47). PP degrading bacteria are including Bacillus  
cereus and Sporosarcina globispora. The plastic degradation  
ability  
of B.cereus was  
0.003  
grams  
per  
day,  
while S.globispora was 0.002 grams per day (53). Two PLA  
degrading  
and Bacillus sp.  
bacteria  
including Pseudomonas sp.  
were reported by  
MKY1  
(21).  
As the first step of PE degradation, carbonyl grub of the PE  
is converted into alcohol. The process is catalyzed by the  
monooxygenase enzyme. Then it will be converted into an  
aldehyde catalyzed by alcohol dehydrogenase. Furthermore, the  
formed aldehyde will be converted into fatty acids by the  
aldehyde dehydrogenase. They will be entered into the β-  
oxidation process for further processing inside microbial cells  
MKY2  
Meanwhile, B.subtilis, S.aureus, and S.pyogenes considered as  
important PET and PS degrading bacteria (54). Ideonella  
sakaiensis was also reported to degrade PET polymer (55, 19).  
Another plastic degrading actinomycetes is Streptomyces  
lydicus MM10. This filamentous bacterium produces Poly-  
hydroxybutyrate (PHB) depolymerase, an enzyme that breaks  
down PHB polymer (56). Furthermore, other PHB degrading  
(
66, 38). Meanwhile, the oxidation process carried out by  
laccase breaks down polyethylene polymers into carboxylic  
acids. These formed acids will be entered fl-oxidation with  
coenzyme-A. This reaction breaks the two carbon fragments of  
the carboxylic acids to form acetyl-CoA. This result will be  
included in the citric acid cycles for further metabolism. In the  
end, water and carbon dioxide will be produced as the final  
bacteria  
are  
Azotobacter and Bacillus (57).  
Meanwhile,  
Moritella sp.,  
Shewanella sp., Psychrobacter sp.,  
and Pseudomonas sp. play a role in PCL degradation (58).  
Under the appropriate conditions and environments, various  
kinds of bacteria can accumulate Poly-hydroxybutyrate (PHB) in  
their cells then break down that polymer catalyzed by PHB  
153  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 148-157  
products of PE biodegradation carried out by microorganisms  
catalyzed by laccase (67).  
microorganism's surface and the plastic film surface, the  
polymeric bonds, and the level of plastic surface roughness.  
Environmental factors also affect the biodegradation process,  
including temperature and humidity (79, 80). Nutrition also has  
important roles in the biodegradation (81).  
PET degradation by Ideonella sakaiensis catalyzed by two  
correlated types of enzymes, PETase (PET-digesting enzyme)  
and MHETase (MHET-digesting enzyme). PETase converts  
PET into mono (2-hydroxyethyl) terephthalic acid or MHET.  
That process also produces secondary products such as  
terephthalic acid (TPA) and bis (2-hydroxyethyl)-TPA.  
Furthermore, the MHETase enzyme converts the formed MHET  
into two monomers, TPA and ethylene glycol or EG (55, 68).  
Polyurethane degraded by polyurethane degrading bacteria  
such as Pseudomonas chlororaphis (69, 70). Two proteolytic  
enzymes used in polyurethane polyester degradation are papain  
and urease. Polymer degradation by papain is carried out by the  
hydrolysis reaction of urethane and urea bonds. This hydrolysis  
reaction produces free amines and hydroxyl groups (71, 62).  
Meanwhile, aliphatic polyester such as PEA, PES, PPA, and  
PBA can be degraded by hydrolase enzymes including lipase,  
PEA depolymerase, and PHB depolymerase (72, 38). PHB  
depolymerase is widely produced by some bacteria  
including Alcaligenes faecalis, Rhodospirillum rubrum,  
B.megaterium, A.beijerinckii and Pseudomonas lemoignei (73,  
1
0 Conclusions  
Biodegradation of plastic waste using plastics degrading  
bacteria is a valuable plastic waste treatment that must be  
implemented to maintain the environment quality of the  
problems caused by plastic waste. This process has less even no  
side effect that pollutes the environment. Plastic biodegradation  
involves some hydrolase and oxidase enzymes produced by  
many microbes including bacteria. This enzymatic process  
breaks down the recalcitrant plastic polymers into microbial  
biomass and other environmentally safe compounds throughout  
several steps, including biodeterioration, depolymerization,  
assimilation, and mineralization. Optimization of proper  
environmental factors is the main factor to enhance the ability of  
bacteria to degrade plastics waste.  
Aknowledgment  
We thank all the researchers for their valuable and important  
studies about plastic waste biodegradation using plastic  
degrading bacteria that cited by us in this review.  
5
6).  
PVA can be degraded by Pseudomonas spp. Those bacteria  
secrete PVA degrading enzyme, polyvinyl alcohol  
a
dehydrogenase (PVADH). PVA degradation occurs through two  
stages. The first stage is the conversion of the 1,3-glycol  
structure to β-ketone through random oxidative dehydrogenation  
reactions or hydroxyl group oxidations to form a monoketone  
structure. This process is catalyzed by alcohol oxidase. The  
second step is breaking down the carbon-carbon bond and  
changing the ketone groups to carboxylic (37, 38). Two possible  
mechanisms occurred in this step. The first possibility is the  
hydrolysis of the β-diketone structure of oxidized PVA  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
(
oxiPVA) catalyzed by β-diketone hydrolase (oxiPVA  
hydrolase). The second possibility is the aldolase reaction  
involving the monoketone structure of the oxidized PVA (74,  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
3
8).  
Another important plastic degradation catalyst is the PHA  
hydrolase enzyme. It is classified as serine hydrolase that attacks  
the branch chains and cyclic components of PHA (75, 62).  
Meanwhile, PCL degradation can be carried out by  
microorganisms by producing PCL enzymes hydrolases, lipases,  
and esterases. PCL can be degraded by some microbes such  
as Rhizopus arrhizuz (76, 38). PLA can be hydrolyzed by lipase,  
proteinase K, and polyester polyurethane depolymerase (77, 38).  
Moreover, nylon degradation involves the hydrolysis reaction of  
amine bonds (-CONH-) of Nylon polymers that forms 12-amino  
dodecanoic acid. This acid then oxidized to carboxyl and other  
products. One of the nylons degrading bacteria is Geobacillus  
thermocatenulatus (78, 38).  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
References  
1
2
3
Koushal V, Sharma R, Sharma M, Sharma R, Sharma V. Plastics:  
Issues Challenges and Remediation. International Journal of Waste  
Resources. 2014 Feb 10;4(1):1-6.  
Kumari P, Murthy NS. A Novel Mathematical Approach for  
Optimization of Plastic Degradation. International Journal of  
Engineering Trends and Technology. 2013 August; 4(8):3539-42.  
Kumar S, Das ML, Rebecca J, Sharmila S. Isolation and  
identification of LDPE degrading fungi from municipal solid waste.  
Journal of Chemical and Pharmaceutical Research. 2013 May;  
9
Factors Affecting Biodegradation  
Biodegradation is influenced by several factors including the  
5
(3):78-81.  
chemical structure of the polymers, the phase structure  
amorphous or crystalline) of plastic polymers, molecular  
4
5
UNEP. Single-Use Plastics: A Roadmap for Sustainability. 2018  
June 5.  
Jambeck R, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady  
A, Narayan R, Law KL. Plastic waste inputs from land into the  
ocean. Science. American Association for the Advancement of  
Science. 2015 Feb 12;347(6223):768-71.  
(
weight, miscibility of the polymer's constituent. Moreover, the  
presence of hydrolyzed and oxidized compounds also affect the  
biodegradation process carried out by microorganisms. Other  
factors that also affect the rate of the biodegradation process are  
hydrophobicity or hydrophilicity compatibility between the  
154  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 148-157  
6
Geyer R, Jambeck JR, Law KL. Production, Use, and Fate of All  
Plastics Ever Made. Science Advaces. 2017 Jul;3(7):1-5.  
Arico Z, Jayanthi S. Pengolahan Limbah Plastik Menajdi Produk  
Kreatif sebagai Peningkatan Ekonomi Masyarakat Pesisir. Martabe:  
Jurnal Pengabdian Masyarakat. 2017 Nov 13;1(1): 1-6.  
Drzyzga O, Prieto A. Plastic Waste Management, a Matter for the  
Community. Microbial Biotechnology. 2018 Nov 8;12(1):66-8.  
Mrowiec B. Plastic Pollutans in Water Environtment.  
Environmental Protection and Natural Resources. 2017; 28(4): 51-5.  
Sowmya H, Ramalingappa V, Krishnappa, Thippeswamy B. Low  
Density Polyethylene Degrading Fungi Isolated from Local  
Dumpsite of Shivamogga District. International Journal of  
Biological Research. 2014 May 31;2(2): 39-43.  
26 Pratomo H, Rohaeti E. Bioplastik Nata De Casava sebagai Bahan  
Edible Film Ramah Lingkungan. Jurnal Penelitian Saintek. 2011  
Oct;16(2):172-90.  
27 Wei R, Zimmermann W. Microbial Enzymes for the Recycling of  
Recalcitrant Petroleum-Based Plastics: How Far Are We?.  
Microbial Biotechnology. 2017 Mar 28;10(6):1308-22.  
7
8
9
1
28 Adamcová  
D,  
Vaverková  
M.  
Degradation  
of  
Biodegradable/Degradable Plastics in Municipal Solid-Waste  
Landfill. Polish Journal of Environmental Studies. 2014 Jan;23(4):  
1071-8.  
0
29 Marjayandari L, Shovitri M. Potensi Bakteri Bacillus sp. dalam  
Mendegradasi Plastik. Jurnal Sains dan Seni ITS. 2015;4(2):59-62.  
30 Helbling C, Abanilla M, Lee L, Karbhari VM. Issues of variability  
and durability under synergistic exposure conditions related to  
advanced polymer composites in civil infrastructure. Composites  
Part A: Applied Science and Manufacturing. 2006 Aug;37(8):1102–  
10.  
31 Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott  
G. Environmental biodegradation of polyethylene. Polymer  
Degradation and Stability. 2003 Jan;81(3): 441-52.  
1
1
1
1
2
3
Kale SK, Deshmukh AG, Dudhare MS, Patil VB. Microbial  
Degradation of Plastic:  
a Review. Journal of Biochemical  
Technology. 2015 Dec 25;6(2): 952-61.  
Soud SA. Biodegradation of Polyethylene LDPE Plastic Waste  
using Locally Isolated Streptomyces sp. Journal of Pharmacetical  
Sciences and Research.. 2019;11(4):1333-9.  
Kumar VR, Kanna GR, Elumalai S. Biodegradation of Polyethylene  
by  
Bioremediation&Biodegradation. OMICS Publishing Group.  
017;8(1):1-8.  
Okmoto K, Izawa M, Yanase H. Isolation and Application of a  
Styrene-Degrading Strain of Pseudomonas putida to Biofiltration.  
Journal of Bioscience and Bioengineering. Elsevier. 2003  
Jan;95(6):633-6.  
Green  
Photosynthetic  
Microalgae.  
Journal  
of  
32 Sharma B, Rawat H, Pooja, Sharma R. Bioremediation-A  
Progressive Approach toward Reducing Plastic Wastes.  
International Journal of Current Microbiology adn Applied Science.  
2017 Dec 10;6(12):1116-31.  
33 Gilan 1, Sivan A. Extracellular DNA Plays an Important Structural  
Role in the Biofilm of the Plastic Degrading Actinomycete  
Rhodococcus ruber. Advances in Microbiology. 2013;3(03):543-51.  
34 Rosario LLD, Baburaj S. Isolation and Screening of Plastic  
Degrading Bacteria from Polythene Dumped Garbage Soil.  
2
1
4
1
1
5
6
Agrawal P, Singh RK. Breaking Down of Polyethylene by  
Pseudomonas  
Species.  
International  
Journal  
of  
Scientific&Engineering Research. 2016 March;7(3):124-7.  
International Journal for Research in Applied Science  
Engineering Technology. 2017;5(12):1028-32.  
35 Tiwari AK, Gautam M and Maurya HK. Recent Development of  
Biodegradation Techniques of Polymer. International Journal of  
Research-GRANTHAALAYAH. 2018 Jun 30;6(6): 414-52.  
&
Begum MA, Varalakshmi B, Umamagheswari K. Biodegradation of  
Polythene Bag using Bacteria Isolated from Soil. International  
Journal of Current Microbiology and Applied Sciences. 2015; 4(11):  
6
74-80.  
1
1
7
8
Proshad R, Islam MS, Kormoker T, Haque MA, Rahman MM,  
Mithu MMR. Toxict Effect of Plastic on Human Health and  
36 Alshehrei F. Biodegradation of Low Density Polyethylene by Fungi  
Isolated from Red Sea Water. International Journal of Current  
Microbiology and Applied Sciences. 2017 Aug 10;6(8):1703-9.  
37 Kyrikou J, Briassoulis D. Biodegradation of Agricultural Plastic  
Environment:  
a Sequences of Health Risk Assessment in  
Bangladesh. International Journal of Health. 2018;6(1):1-5.  
Alabi OA, Ologbonjaye KI, Awosolu O, Alade OE. Public and  
Films: A Critical Review. Journal of Polymers and the  
Environmental Health Effects of Plastic Wastes Disposal:  
Review. Journal of Toxicology and Risk Assessment. 2019 Apr 5;  
(2):1-13.  
Oberbeckmann S, Labrenz M. Marine Microbial Assemblages on  
Microplastics: Diversity, Adaptation, and Role in Degradation.  
Annual Review of Marine Science. 2020 Jan 3;12(1):209-32.  
Weng Y-X, Jin Y-J, Meng Q-Y, Wang L, Zhang M, Wang Y-Z.  
Biodegradation behavior of poly (butylene adipate-coterephthalate)  
A
Environment. 2007 Aug 1;15(3).  
38 Leja K, Lewandowicz G. Polymer Biodegradation and  
Biodergadable Polymers-a Review. Polish Journal of Environmental  
Studies. 2010;19(2):255-66.  
39 Ren L, Men L, Zhang Z, Guan F, Tian J, Wang B, Wang J, Zhang  
Y, Zhang W. Biodegradation of Polyethylene by Enterobacter sp.  
D1 from the Guts of Wax Moth Galleria Mellonella. International  
Journal of Environtmental Research and Public Health. 2019 May  
31;16(11):1-11.  
5
1
2
9
0
(PBAT), poly (lactic acid) (PLA), and their blend under soil  
conditions. Polymer Testing. 2013 Aug;32(5): 918-26.  
40 Saminathan P, Sripriya A, Nalini K, Sivakumar T, Thangapandian  
V. Biodegradation of Plastics by Pseudomonas putida isolated from  
Garden Soil Samples. Journal of Advanced Botany and Zoology.  
2014 May 1;1(3):1-4.  
41 Shahnawaz M, Sangale MK, Ade AB. Bacteria-based polythene  
degradation products: GC-MS analysis and toxicity testing.  
Environmental Science and Pollution ResearchEnviron. 2016 Feb  
18;23(11); 1073341.  
42 Patil RC. Screening and Characterization of Plastic Degrading  
Bacteria from Garbage Soil. British Journal of Environmental  
Sciences. 2018;6(4):33-40.  
43 Sriningsih A, Shovitri M. Potensi Isolat Bakteri Pseudomonas  
sebagai Pendegredasi Plastik. Jurnal Sains dan Seni ITS. 2015;4(2):  
67-70.  
2
2
1
2
Kim MY, Kim C, Moon J, Heo J, Jung SP, Kim JR. Polymer Film-  
Based Screening and Isolation of Polylactic Acid (PLA)-Degrading  
Microorganisms. Journal of Microbiol and Biotechnol. Korean  
Society for Microbiology and Biotechnology. 2017 Feb 28;27(2):  
3
42-9.  
Purwaningrum, P. Upaya Mengurangi Timbulan Sampah Plastik di  
Lingkungan. Indonesian Journal of Urban and Environmental  
Technology. 2016 Dec 6;8(2):141-7.  
2
2
3
4
Hamlet C, Matte T, Mehta S. Combating Plastic Air Polution on  
Earth’s Day. Vital Strategies Environmental Division. 2018.  
Chandegara VK, Cholera SP, Nandasana JN, Kumpavat MT, Patel  
KC. Plastic Packaging Waste Impact on Climate Change and its  
Mitigation. In: Subbaiah R, Prajapati GV, Water management and  
climate smart agriculture. Adaptation of Climatic Resilient Water  
Management and Agriculture, Gyan Publishing House, New Delhi,  
India, 2015; 3: 404-15.  
44 Jumaah, O. S. Screening of Plastic Degrading Bacteria from  
Dumped Soil Area. Journal of Environmental Sinece, Toxicology  
and Food Technology. 2017 May;11(5): 93-8.  
2
5
Halden RU. Plastics and Health Risk. Annual Review of Public  
Health. 2010 Apr 21;31:179-94.  
45 Shresta JK, Joshi DR, Regmi P, Badahit G. Isolation and  
Identification of Low Density Polyethylene (LDPE) Degrading  
155  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 148-157  
Bacillus spp. from  
Microbiology. 2019 Mar 5;2(4):30-4.  
a
Soil of Landfill Site. Acta Scientific  
63 Dashtban M, Schraft H, Syed TA, Qin W. Fungal Biodegradation  
and Enzymatic Modification of Lignin. International Journal of  
Biochemistry and Molecular Biology. 2010 May 23;1(1):36-50.  
64 Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-  
Saucedo J-E. Polymer biodegradation: Mechanisms and estimation  
4
4
6
7
Deepika S, Madhuri JR. Biodegradation of Low Density  
Polyethylene by Microorganisms from Garbage Soil. Journal of  
Experimental Biology and Agricultural Science. 2015;3(1):15-21.  
Riandi MI, Kawuri R, Sudirga SK. Potential of Pseudomonas sp.  
and Ochrobacterum sp. Isolated from Various Soil Sample as  
Degrading Bacteria of High Density Polyethylene (HDPE) and Low  
Density Polyethylene (LDPE) Plastic. SIMBIOSIS Journal of  
Biological Science. 2017 Sep 30;5(2):58-63.  
Hussein AA, Al-Mayaly IK, Khudeir SH. Isolation, Screening and  
Identification of Low Density Polyethylene (LDPE) Degrading  
Bacteria from Contaminated Soil With Plastic Wastes. Mesopotamia  
Environmental Journal. 2015;1(4):1-14.  
techniques  A review. Chemosphere. Elsevier BV. 2008  
Sep;73(4):42942.  
65 Dang TCH, Nguyen DT, Thai H, Nguyen TC, Tran TTH, Le VH,  
Nguyen VH, Tran XB, Pham TPT, Nguyen TG, Nguyen QT. Plastic  
Degradation by Thermophilic Bacillus sp. BCBT21 Isolated from  
Composting Agricultural Residual in Vietnam. Advances in Natural  
Sciences: Nanoscience and Nanotechnology. 2018 Mar 29;9(1):1-  
11.  
66 Gautam R, Bassi AS, Yanful EK. A Review of Biodegradation of  
Synthetic Plastic and Foams. Applied Biochemistry and  
Biotechnology. 2007 Apr;141(1):85108.  
67 Khalil MI, Ramadan NA, Albarhawi RK. Biodegradation of  
Polymers by Fungi Isolated from Plastic Garbage and the Optimum  
Condition Assessment of Growth. J. Raff. Env. 2013 May;1(1):33-  
43.  
68 Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FK,  
Silveira RL, Pollard BC, Dominick G, Duman R, Omari KE,  
Mykhaylyk V, Wagner A, Michener WE, Amore A, Skaf MS,  
Crowley MF, Thorne AW, Johnson CW, Woodcock HL, McGeehan  
JE, Beckham GT. Characterization and Engineering of a Plastic-  
degrading Aromatic Polyesterase. Proceedings of the National  
Academy of Sciences. 2018 Apr 17;115(19):43507.  
4
4
5
8
9
0
Jamil SUU, Zada S, Khan I, Sajjad W, Rafiq M, Shah AA, Hasan F.  
Biodegradation of Polyethylene by Bacterial Strains Isolated from  
Kashmir Cave, Buner, Pakistan. Journal of Cave and Karst Studies.  
2
017;79(1): 73-80.  
Delacuvellerie A, Cyriaque V, Gobert S, Benali S, Wattiez R. The  
Plastisphere in Marine Ecosystem Hosts Potential Specific  
Microbial Degraders Including Alcanivorax borkumensis as a Key  
Player for the Low Density Polyethylene Degradation. Journal of  
Hazardous Materials. 2019 Dec;380:1-11.  
Duddu MK, Tripura KL, Gantuku G, Divya DS. Biodegradation of  
Low Density Polyethylene (LDPE) by  
Producing Thermophilic Streptomyces coelicoflavus NBRC 15399 .  
African Journal of Biotechnology. 2015;14(4):327-40.  
5
5
1
2
a New Biosurfactant-  
T
Waithaka PN, Gathuru EM, Githaiga BM, Ochieng EO, Laban LT.  
Microbial Degradation of Polythene using Actinomycetes Isolated  
from maize Rhizosphere, Forest and Waste Damping Sites Within  
Egerton University, Kenya. International Journal on Emerging  
Technologies. 2017;8(1):05-10.  
69 Howard GT, Ruiz C, Hillard NP. Growth of Pseudomonas  
chlororaphis on a polyester-polyurethane and the purification and  
characterization of a polyurethane-esterase enzyme. International  
Biodeterioration & Biodegradation.1999 Mar;43(1-2):7-12.  
70 Caruso G. Plastic Degrading Microorganisms as  
a Tool for  
5
5
5
5
3
4
5
6
Helen AS, Uche EC, Hamid FS. Screening of Polyptopylene  
Degdradation Potential of Bacteria Isolated from Mangrove  
Ecosystems in Peninsular Malaysia. International Journal of  
Bioscience, Biochemistry and Bioinformatics. 2017;7(4): 245-251.  
Asmita K, Shubhamsingh T, Tejashree S. Isolation of PlASTIC  
Degrading Microorganisms from Soil Samples Collected at Various  
Locations in Mumbai, India. International Research of  
Environetmental Sciences. 2015;4(3):77-85.  
Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda J,  
Toyohara K, Miyamoto K, Kimura Y, Oda K. A bacterium that  
degrades and assimilates poly(ethylene terephthalate). Science. 2016  
Mar 11;351(6278):119699.  
Bioremediation of Plastic Contamination in Aquatic Environments.  
Journal of Pollution Effects&Control. 2015;3(3): 1-2.  
71 Phua SK, Castillo E, Anderson JM, Hiltner A. Biodegradation of a  
Polyurethane in vitro. Journal of Biomedical Materials Research.  
1987 Feb;21(2): 231-46.  
72 Kim DY, Rhee YH. Biodegradation of Microbial and Synthetic  
Polyesters by Fungi. Applied Microbiology and Biotechnology.  
2003 Jan 25;61(4):300-8.  
73 Panagiotidou E, Konidaris C, Baklavaridis A, Zuburtikudis 1,  
Achilias D, Mitlianga P. A simple route for purifying extracellular  
poly3- hydroxybutyrate- depolymerase from  
Penicillium  
pinophilum. Enzyme Research. 2014 Sep 23; 2014:1-6.  
Aly MM, Tork S, Qari HA, Al-Seeni MN. Poly-β-hydroxy butyrate  
Depolymerase from Streptomyces lydicus MM10, Isolated from  
Wastewater Sample. International Journal of Agriculture & Biology.  
74 Kawai F, Hu X. Biochemistry of microbial polyvinyl alcohol  
degradation. Applied Microbiology and Biotechnology. 2009 Jul  
10;84(2):227-37.  
2
015 Sep1;17(5):891-900.  
75 Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Biodegradability of  
Plastics. International Journal of Molecular Sciences. 2009 Aug  
26;10(9):3722-42.  
76 Tokiwa Y, Suzuki T. Hydrolysis of polyesters by lipases. Nature.  
Springer Science and Business Media LLC. 1977 Nov;270:76-8.  
77 Kim JM, Jeon CO. Isolation and Characterization of a New  
Benzene, Toluene, and Ethylbenzene Degrading Bacterium,  
Acinetobacter sp. B113. Current Microbiology. 2008 Oct  
7;58(1):70-5.  
78 Tomita K, Ikeda N, Ueno A. Isolation and characterization of a  
thermophilic bacterium, Geobacillus thermocatenulatus, degrading  
nylon 12 and nylon 66. Biotechnology Letter. 2004; 25:1743-6.  
79 Bikiaris DN. Nanocomposites of aliphatic polyesters: An overview  
of the effect of different nanofillers on enzymatic hydrolysis and  
biodegradation of polyesters. Polymer Degradation and Stability.  
2013 Sep;98(9):1908-28.  
80 Râpă M, Popa ME, Cornea PC, Popa VL, Grosu E, Geicu-Cristea  
M, Stoica P, Tanase EE. Degradation Study by Trichoderma spp. of  
poly (3-hydroxybuthyrate) and Wood Fibers Composites. Romanian  
Biotechnological Letters. 2014;19(3): 9390-9.  
5
5
7
8
Aburas MMA. Degradation of Poly (3-hydroxybuthyrate) using  
Aspergillus oryzae obtained from Uncultivated Soil. Life Science  
Journal. 2016;13(3):51-6.  
Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C.  
Isolation and Characterization of Biodegradable Plastic Degrading  
Bacteria from Deep-Sea Environments. JAMSTEC Report of  
Research and Development. 2011;11:33-41.  
Matsumura S. Mechanism of biodegradation. Biodegradable  
polymers for industrial applications. El Sevier. 2005; 357-410.  
Ganesh P, Dineshraj D, Yoganathan K. Production and Screening of  
Depolymerasing Enzymes by Potential Bacteria and Fungi Isolated  
from Plastic Waste Dump Yard Sites. International Journal of  
Applied Research. 2017;3(3):693-695.  
Hofrichter M, Lundell T, Hatakka A. Conversion of Milled Pine  
Wood by Manganese Peroxidase from Phlebia radiata. Applied and  
Environmental Microbiology. 2001 Oct 1;67(10):4588-93.  
Bhardwaj H, Gupta R, Tiwari A. Microbial Population Associated  
with Plastic Degradation. Open Acces Scientific Reports. 2012;  
5
6
9
0
6
6
1
2
1
(5):1-4.  
156  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 148-157  
8
8
1
2
Vidali, M. Bioremediation. An Overview. Pure and Applied  
Chemistry. 2001 Jul 1;73(7): 1163-72.  
Mukherjee, S. and S. Chatterjee.  
A Comparative Study of  
Commercially Available Plastic Carry Bag Biodegradation by  
Microorganisms Isolated from Hydrocarbon Effluent Enriched Soil.  
International Journal of Current Microbiology and Applied  
Sciences. 2014;3(5):318-325.  
157