Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 280-288  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)288  
A Review on Oleaginous Microorganisms for  
Biological Wastewater Treatment: Current and  
Future Prospect  
Mohammed B. Al Rayaan 1* and, Ibrahim A. Alshayqi 2  
1
Department of Environmental Sciences and Engineering, King Abdullah University of Science & Technology, Thuwal, Saudi Arabia, email:  
2
Department of Environmental Engineering, University of Dammam, Dammam, Saudi Arabia  
Received: 09/09/2020  
Accepted: 16/11/2020  
Published: 20/03/2021  
Abstract  
The water scarcity issue is becoming a critical issue to the climate change, industrialization and urbanization. Prompt to the advances in  
biotechnology, Oleaginous microorganisms have been discovered and successfully applied in biological wastewater treatments, which are  
highly effective for wastewater clean-up and energy efficient lipid conversion to value-added products. This paper aims to review the recent  
advances of the application of different types of Oleaginous microorganisms (e.g. yeasts, microalgae, and fungi) as well as the advantages,  
limitations and application fields (food industry, municipal waste and chemical plant). The future prospect and challenges of Oleaginous  
microorganism that warrant in environmental settings or engineered systems are also highlighted in the review. In order to improve the  
Technology Readiness Level (TRL), the future research direction should be more focussed on the economic and environmental studies.  
Keywords: Oleaginous microorganisms; Biological wastewater treatment; Microalgae; Industrial application  
1
been reported for biochar production using rich in ammonia-N  
1
Introduction  
swine wastewater as source of nutrient [14]. Most importantly,  
the valorisation of Oleaginous microorganisms in low-cost  
substrates like nutrient-rich wastewaters is a circular economy  
concept that can help improve the economic feasibility of the  
wastewater treatment plants related industries with a net positive  
value. Thus, in this review, we aim to provide a comprehensive  
insight on the advances of wastewaters treatment by Oleaginous  
microorganisms which includes 1) The types of Oleaginous  
microorganisms used for biological treatment such as microalgae,  
yeast, fungi and bacteria; 2) The industrial application of  
Oleaginous microorganisms such as food, pharmaceutical and  
municipal waste industries and also; 3) The commercialization  
attractiveness and challenges of the technology.  
The fresh water demand is rapidly increasing due to  
urbanization and industrialization, and predicted to beyond than  
5% in by the year of 2025 [1]. In recent year, “wastewater  
treatment field” is becoming a hot topic in both academic and  
industrial community to eliminate both chemical and microbial  
5
pollutants  
from  
municipal/industrial  
wastewater  
[2].  
Nevertheless, the reuse of water from treated wastewater effluents  
can pose a serios health issue due to contamination such as  
microbial pollutants, heavy metals, suspended solid and organic  
matters [3]. To date, biological treatment is well-acknowledged  
as one of the most eco-friendly and cost-effective way to remove  
those contaminants from wastewater [1, 4-8]. Notably, the use of  
Oleaginous microorganisms in biological treatment of wastewater  
is much attractive as compared with the traditional aerobic  
digestion and anaerobic digestion technologies which requires  
high-end system such as up-flow anaerobic sludge blanket  
digestion or expanded granular sludge bed digestion [9-11].  
Apart from cost-effectiveness, Oleaginous microorganisms  
can clean up the wastewaters effectively within a short period  
with valuable generation of some value-added products as shown  
in Fig. 1. For instance, Chlorella pseudolambica has been studied  
in livestock wastewater for biodiesel production [12];  
Sterigmatomyces halophilus has been applied in textile dyeing  
wastewater for bioremediation [13]; and Chlorella vulgaris has  
2 Types of Oleaginous microorganisms used for  
biological treatment of wastewaters  
Most of the studies have reported that Oleaginous  
microorganisms accumulate a high lipid content in the range of  
14-75% of their dry weight [15-20]. To date, Botryococcus  
braunii is reported as one of the richest lipid content  
microorganisms in which 74.5 % of lipid (58.8% nonpolar lipids  
and 15.7% polar lipids) can be extracted [21].  
Corresponding author: Mohammed B. Al Rayaan, Department of Environmental Sciences and Engineering, King Abdullah University of  
Science & Technology, Thuwal, Saudi Arabia, Email: Mohammed.alrayaan@kaust.edu.sa  
280  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 280-288  
Figure 1: Application of Oleaginous microorganisms for biological treatment of wastewaters  
Table 1: Application of Oleaginous microorganisms in biological wastewater treatment for bio-energy production  
Microorganism  
Feedstock  
Culture mode  
Products  
Biodiesel  
Biodiesel/Bio-oil  
Biodiesel  
Biodiesel  
Biodiesel  
Biogas  
Ref  
Candida lipolytica  
Cryptococcus laurentii  
Trichosporon fermentans  
Trichosporon dermatis  
Chlorella vulgaris  
Scenedesmus sp.  
Molasses  
Batch  
[22]  
[23]  
[24]  
[25]  
[26]  
[27]  
[28]  
[29]  
[30]  
Winery  
Batch  
Molasses  
Batch  
Butanol (ABE) fermentation  
Artificial wastewater  
Starch-containing textile wastewater  
ABE fermentation  
Refinery wastewater  
Municipal waste  
Batch  
Batch  
Batch  
Scenedesmus sp.  
Fed-batch  
Batch  
Biogas  
Rhodococcus opacus  
Chlorella vulgaris  
Bio-oil  
Batch  
Bio-oil  
Table 2: Application of Oleaginous yeast for wastewaters treatment  
Yeast  
Substrate  
Biomass (g L-1)  
Lipid content (%)  
COD removal (%)  
Ref  
Rhodotorula glutinis  
Rhodotorula glutinis  
Arthrospira platensis  
Rhodococcus opacus  
Oleaginous consortium  
Lipomyces starkeyi  
Botryococcus braunii  
Brewery effluents  
Corn starch farm  
Dairy farm  
5.2  
40.0  
4.9  
0.7  
0.6  
2.6  
2.3  
15.0  
35.0  
30.2  
53.2  
20.0  
8.9  
-
[36]  
[37]  
[38]  
[39]  
[40]  
[41]  
[42]  
80.0  
98.0  
100.0  
81.0  
-
Dairy farm  
Municipal wastewater  
Potato starch wastewater  
N-rich wastewater  
30.3  
-
Table 1 shows a series of Oleaginious microorganisms that  
have been utilized for wastewater biological treatment to produce  
various products such as biodiesel, biogas and bio-oil.  
their cell mass as intracellular lipids, high growth rate as well as  
large capacity for substrate consumption [31]. Typical  
Oleaginous yeasts strains that being investigated are e.g.  
Yarrowia lipolytica, Rhodotorula glutinis, Rhodosporidium  
toruloides, Cryptococcus curvatus, Trichosporon pullulan and  
Lipomyces lipofer as shown in Table 2 [32-34]. For example,  
2
.1 Oleaginous yeasts  
Oleaginous yeasts are capable of accumulating over 20% of  
281  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 280-288  
Trichosporon cutaneum ACCC 20271 is investigated in an  
ethanol fermentation wastewater medium by Wang et al. [35].  
Without any pre-treatment or external nutrient, it is able to  
accumulate significant lipid quantities (2.16 g L−1) and remove  
ca. 55% of COD after a 5-day culture. Meanwhile, Peng’s group  
has reported that Trichosporon dermatis has a high biomass and  
lipid content of 7.4 g L-1 and 13.5%, respectively [25]. Notably,  
2.3 Oleaginous Fungi and Bacteria  
The application of fungi and bacteria in wastewater  
purification is much lesser as compared to its counterparts’  
microalgae and yeasts. Up to date, only a few literature has been  
reported using Oleaginous fungi namely Aspergillus oryzae  
[53]¬, Trichoderma reesei ¬[54], Rhodococcus opacus [39],  
Rhodococcus sp. [55] as shown in Table 4. Minaraj and co-  
authors have investigated the ability of Rhodococcus opacus in  
removing the COD of dairy wastewater [53]. They claimed that  
the bacteria managed to yield up to 14.28% of lipid content and  
COD removal of 30% without addition of any substrate.  
Meanwhile, with the addition of mineral salts as external  
substrate, the lipid content and the COD removal efficiency have  
increases up to 33% and 62%, respectively. Similar observation  
has been obtained by Gupta et al where the application of  
Rhodococcus opacus could remove up to almost 100% of COD  
with a maximum lipid yield of 1.8 g L−1 at a retention time of 6.6  
hr [39].  
6
8% of COD from butanol fermentation wastewater-based  
medium is removed after 5 days of fermentation, indicating that  
Trichosporon dermatis is a potential candidate for large scale  
wastewater treatment.  
2
.2 Oleaginous Microalgae  
Microalgae are one of the potential candidates for the  
biological treatment in wastewater facilities, as autotrophic  
cultivation of microalgae in wastewater open ponds that can  
enhance the growth as well as the amount of lipid content through  
consumption of the nutrient the wastewater stream [43-46]. Also,  
the ambient CO2 can be sequestered for microalgae growth which  
helps to reduce the global carbon’s footprint [47]. Thus, the use  
of wastewater during the heterotrophic growth conditions for  
microalgae is an economic feasible process for biodiesel  
production. The types of Oleaginous microalgae genus reported  
for simultaneous lipid production and biological wastewater  
treatment are shown Table 3. In 2011, Feng et al. have replicated  
an artificial wastewater to cultivate Chlorella vulgaris in a column  
aeration photobioreactor under batch and semi-continuous  
configuration. The highest lipids content (42%) with 86% of COD  
removal and 97% of NH4+ are attained in the semi-continuous  
cultivation with daily replacement of 1.0 l of the 2.0 l culture [26].  
Meanwhile, Hena et al. have also reported similar good result in  
which that the dairy farm wastewater is a suitable medium for  
cultivation of Arthrospira Platensis, producing a high biomass  
yield of 4.98 g L−1 that contains 30.23% of lipids and 98% COD  
and nutrients. Although the growth period of microalgae is  
relatively longer when compared with other microorganisms,  
microalgae is still a better alternative as it can survive in harsh  
low nutrient concentration wastewaters environment due to its  
autotrophic character [48].  
3 Application of Wastewater Treatment by  
Oleaginous Microorganisms  
3
.1 Food industry  
The strategy of using Oleaginous microorganism for treating  
wastewater from food waste industry are gaining popularity in  
solving wastewater pollution and reducing the greenhouse  
emission [53, 56, 57]. Recently, many researchers have  
demonstrated that Oleaginous microorganism can be used to treat  
wastewaters discharged from a wide spectrum of food industries  
including Monosodium glutamate [58], olive oil [59], soybean  
[60], and starch [61]. The rationale behind such application is due  
to wastewater from food industry has high BOD and COD  
contents, which contributes to its intrinsically high fermentability.  
Thus, it can be treated easily from conventional anaerobic  
digestion method. Anbarasan et al. have inoculated  
Metschnikowia Pulcherrima using the distillery wastewater and  
produced biodiesel from the lipids accumulated by the  
microorganism [62].  
Table 3: Application of Oleaginous microalgae for wastewaters treatment  
Microalgae  
Substrate  
Biomass (g L-1)  
Lipid content (%) COD removal (%)  
Ref  
Chlorella protothecoides  
Arthrospira platensis  
Aspergillus sp.  
Thiocyanate wastewater  
Olive-oil mill wastewater  
Corncob waste liquor  
N-rich wastewater  
Secondary effluent  
Secondary effluent  
Secondary effluent  
1.3  
1.7  
2.0  
2.2  
-
30.6  
16.9  
22.1  
30.2  
17.0  
12.7  
66.1  
-
[49]  
[50]  
[51]  
[42]  
[52]  
[52]  
[52]  
73.1  
60.0  
-
Botryococcus braunii  
Scenedesmus obliquus  
Scenedesmus sp.  
1.3  
1.0  
1.7  
-
Scenedesmus quadricauda  
-
Table 4: Application of Oleaginous fungi and bacteria for wastewaters treatment  
Fungi and Bacteria  
Aspergillus oryzae  
Substrate  
Biomass (g L-1)  
Lipid content (%)  
COD removal (%)  
Ref  
Potato processing wastewater  
Equalization tank wastewater  
Equalization tank wastewater  
Dairy wastewater  
-
3.5 g/L  
22.1  
9.8  
91.0  
88.7  
86.7  
100  
[53]  
[54]  
[54]  
[39]  
[40]  
[55]  
Mucor circinelloides  
Trichoderma reesei  
Rhodococcus opacus  
Rhodococcus opacus  
Rhodococcus sp. RHA1  
0.6  
0.7  
-
53.2  
-
Primary effluent  
-
81.0  
48.0  
Thermomechanical pulping effluent  
-
-
282  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 280-288  
The in-situ transesterification reaction is performed using  
sodium hydroxide and methanol under base catalysis and the  
biodiesel yield was reported as high as 1.4 g/L. Furthermore, Xue  
et al. have demonstrated an excellent COD removal of 80 % by  
treating potato processing wastewater using Rhodotorula  
glutinis[63]. The COD removal performance in former study is  
comparably higher than that reported in previous studies of  
Honyang et.al [64] and Muniraj et.al [65]. In a recent study, a mix-  
culture of yeast (Rhodosporidum. Toruloides) and microalgae  
Rhodosporidum. Toruloides Inoculum size fixed at 5%. However,  
the application of yeast is generally less effective in nutrient  
removal due to its poor resistance to high organic matter non-  
sterile wastewater. Up to now, only a few studies have been  
performed to produce microbial lipid from high strength non-  
sterile wastewater in the absence of other nutrients for the mixed  
culture of yeast and microalgae. Future research works should be  
conducted on producing microbial lipid from non-sterile  
wastewater as the results could give an insight on bridging the gap  
between research and industrial practice.  
(
Chlorella vulgaris) is introduced in a culturing and treating the  
food waste hydrolysate (see Fig. 2(a)) [66]. Based on the findings,  
the mix-culture of yeast and culture promoted a higher removal  
performance of organic matters from wastewater and better lipid  
production at a shorter cultivation time as compared to the pure  
culture of yeast and microalgae. Under the mutualistic  
relationship of both yeast and microalgae, yeasts provide CO2 for  
microalgae meanwhile microalgae offer oxygen for the yeasts.  
Furthermore, yeasts mainly consume organic matters and  
microalgae uptake nitrogen and phosphorus from the wastewater.  
Thus, mix-culture of yeast and microalgae using food waste  
hydrolysate as a culture medium is a dual propose strategy in  
solving the waste disposal issues and alarming energy crisis. As  
evidence in Fig. 2(b), it showed that the final biomass and  
substrate utilization ratio of mixed culture is highest at 20%  
inoculum size of Chlorella vulgaris, the lipid production, lipid  
content, biomass yield and lipid yield are highest at 10% when the  
3.2 Municipal wastewater  
Lately, there has been a great upsurge of interest in studies  
related to several aspect of municipal wastewater treatment.  
Amongst the treatment methods reported in literature, anaerobic-  
aerobic digestion treatment is one of the methods widely reported  
and used in treating the municipal wastewater [67-69]. In recent  
years, Oleaginous microorganism has been proven as one of the  
promising biological sources in treating municipal wastewater.  
For example, Goswami et al. explored on the valorisation of  
biomass gasification wastewater for lipid accumulation by using  
Rhodococcus apacus and the potential application of biodiesel  
production [70]. Using the raw biomass gasification water as the  
synthetic mineral media, the high cell density lipid rich bacterium  
exhibited an excellent lipid yield of 54.3% with high wastewater  
COD removal efficiency of 64%.  
Figure 2: (a) Application of co-culture of microalgae and yeast in treating wastewater derived from food industry, (b) Nitrogen utilization ratio and lipid content  
extraction from Pure and mixed culture of R. toruloides and C. vulgaris at different inoculum size ratio in FWH. (adapted from [62])  
283  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 280-288  
From the transesterification of bacterial lipids to biodiesel, it  
is revealed that the Rhodococcus apacus bacterial strain has a  
good potential in treating the biomass gasification wastewater and  
producing biodiesel. In the same vein, Eida et al. have isolated a  
local Scenedesmus obliquus from wastewater swamp and  
cultivated it using secondary treated domestic wastewater for  
biomass and lipid production [71]. From the results, the secondary  
treated municipal wastewater is proven to be an economical  
growth medium for the microalgae cultivation and lipid  
production. Similar to treatment of food industry wastewater, co-  
culture of Oleaginous yeast and algae is also reported to be one of  
the effective strategies in treating municipal wastewater and  
producing lipids.  
culture medium and accumulate high quantity of triacylglycerol  
or neutral lipids (8.56 g/L).  
In another study of Cho et.al [72], instead of using a single  
strain of microalgae, a consortium of indigenous microalgae and  
bacterial from raw municipal wastewater is used for biomass and  
lipid production. Three different cultivation phases of microalgae  
and bacteria in raw municipal wastewater in lab-scale  
photobioreactors operated in circulating batch mode are  
investigated. From Fig.3, the initial phase I cultivation is  
performed using only raw municipal wastewater, where phase II  
and III are replaced with effluent from the sewage sludge  
fermentation. As a result, a stepwise increment of biologically  
produced volatile fatty acids in phase II and III can be observed  
at the beginning of phase II and III. The highest algal biomass  
production of 117.1 + 2.7 mg/L/d and highest lipid productivity  
of 17.2 + 0.2 mg/L/d are attained at phase II and III, respectively.  
As a whole, the stepwise additional of biologically produced  
volatile fatty acids promoted the microalgae biomass and lipid  
productions with better nutrient removal performance. However,  
future studies must be performed to isolate the consortium of  
indigenous microalgae and bacterial from raw municipal  
wastewater and expound the individual effect of each microalgae  
or bacterial strain to biomass and lipid productivity in a  
photobioreactor. Likewise, consortium of Oleaginous yeasts and  
bacterium also exhibited excellent COD removal performance  
(
above 81%) when it is used to treat municipal wastewater [73,  
7
4].  
Figure 3: Changes of chemical components in consortium of microalgae  
and bacterial with stepwise increment of biologically produced volatile  
fatty acids circulating within the photobioreactor: (a) VFAs, (b) STN,  
NH4+, NO2−, and NO3−, (c) pH and PO4−3. Ad Adopted from [68]  
3
.3 Chemical plant  
Wastewater pollution from chemical plants is widely  
recognized as one of the serious threats to human population and  
ecosystem due to the discharge of toxic effluents to the  
surrounding environments. To combat this challenge, the  
application of Oleaginous bacterial, yeast and microalgae in an  
integrated application of toxic chemical removal and sustainable  
biodiesel production have been studied and reported in many  
previous studies. For instance, pulp and paper industry is one of  
the main environmental polluters after oil, leather, cement, steel  
and textile industries. According to the literature, approximately  
It also possessed superior phenol (99.60%) and lignin (94.2%)  
removal performances with high COD (94.22%) and BOD  
(
84.59%) removal efficiencies [75]. Interestingly, the biodiesel  
obtained from the extracted triacylglycerol has desired biofuel  
properties including high cetane number, better oxidation  
stability, and improved cold flow properties. Taking Deeba et al.  
study as an example, the Cryptococcus vishniaccii (MTCC 232)  
strain has been used to convert paper mill sludge into neutral  
lipids for sustainable biodiesel production. From the results, the  
paper mill sludge extracts have all the essential nutrients for the  
culture of Oleaginious yeast and the bacterial strain exhibited  
enhanced triaclyglycerides production of 5.5 + 0.8 g/L [76]. Also,  
the biodiesel obtained from the transesterification of the  
accumulated triglycerides is enriched in oleic acid, palmitic acid,  
linoleic acid, and stearic acid with better oxidative stability and  
biodiesel quality.  
1
00 million kg of hazardous contaminants including sodium  
hydroxide, chlorinated phenol, lignin and other derivatives with  
high COD are discharged into the environment every year from  
the paper industry [75]. This raised serious environmental  
concerns and consequences to our wildlands and communities.  
Fig. 4 illustrates the process flow of pulp and paper industry  
wastewater for Oleaginious yeast cultivation and biodiesel  
production. It is reported that Rhodosporidium kratochvilovae has  
unique ability to utilize the pulp and paper industry effluent as a  
284  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 280-288  
2
Conclusions  
The application of Oleaginous microorganisms is a win-win  
strategy where the nutrient-rich wastewaters can be act as the  
medium to produce bioenergy and also, the unwanted nutrient or  
COD can be removed simultaneously. Owing to its advantages,  
the application of oleaginous microorganisms in industrial scale  
seems feasible only if the challenges mentioned above can be  
resolved. The future research direction should be more focussed  
on the economic and environmental studies in order to benchmark  
with the conventional biological (anaerobic) and chemical  
wastewater treatment.  
Figure 4: Utilization of pulp and paper industry effluent in cultivating  
Oleaginous yeast and producing sustainable biodiesel [71]  
Ethical issue  
Other than paper and pulp industry, industrialization  
processes including textile, leather, dyeing, cosmetic and  
pharmaceutical industries have an increasing demand for  
synthetic lignin-like dyes. Discharge of such hazardous effluents  
from these industries into water bodies will ultimately give rise to  
detrimental effects to the environments and aquatic flora. Besides  
that, the use of oleaginous microorganism including yeast,  
bacterial and fungi offers another environmentally friendly  
biological remediation method to decolorize recalcitrant synthetic  
dyes and valorising lignin while producing sustainable biodiesel.  
Such method also offers low operating cost, low energy  
requirement, easy process control, and also the excellent  
operation flexibility under a wide range of conditions.  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
In a recent study of Ali et.a l [77], a novel oleaginous yeast  
consortium, OYC-YBC.SH is developed using three yeast  
cultures (Viz. Yarrowia sp. SSA1642, Barnettozyma californica  
SSA1518 and Sterigmatomyces halophilus SSA1511) for textile  
dye removal, lignin valorisation and lipid production. The  
oleaginous yeast consortium exhibited superior decolorization  
performance when tested with real dyeing effluent sample at pH  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing.  
References  
1
.
Meena, R. A. A., Yukesh Kannah, R., Sindhu, J., Ragavi, J., Kumar,  
G., Gunasekaran, M., & Rajesh Banu, J. Trends and resource  
recovery in biological wastewater treatment system. Bioresource  
8
. It is able to grow on a wide range of carbon sources with the  
highest lipid productivity of 1.56 g/L/day and lipid activity of  
70.3 U/mL Moreover, substantial detoxification performance is  
2019.  
1
2
3
.
.
Tran, N. H., Ngo, H. H., Urase, T., & Gin, K. Y. H. A critical review  
on characterization strategies of organic matter for wastewater and  
also observed when the textile effluent sample is treated with  
OYC-Y.BC.SH consortium under static conditions at 30 °C for  
2
4 hrs, which further suggesting its suitability for degrading most  
of the textile constituents under alkaline pH environments. The  
TOC, BOD, COD and color removal performances are reported  
as 54%, 74%, 95% and 98%, respectively.  
Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J.,  
Liang, S.,  
& Wang, X. C. A review on the occurrence of  
micropollutants in the aquatic environment and their fate and removal  
2
4
Challenges of the application of oleaginous  
4
5
.
.
Kikuchi, T., & Tanaka, S. Biological removal and recovery of toxic  
heavy metals in water environment. Critical Reviews in  
microorganisms  
treatment  
in  
industrial  
wastewater  
Maddela, N. R., Sheng, B., Yuan, S., Zhou, Z., Villamar-Torres, R.,  
Meng, F. Roles of quorum sensing in biological wastewater  
Technology.  
As discussed in the above, the use of oleaginous  
microorganisms is a breakthrough in wastewater treatment as they  
are inexpensive, environmentally friendly, simple system  
configuration as well as short fermentation period [78-80].  
However, the COD removal by oleaginous microorganisms is still  
far lower than that of traditional chemical technologies. In fact,  
the total COD removal of industrial and municipal wastewaters  
can be up to 95% by using the ion exchange or chemical reduction  
&
6. Abu Hasan, H., Muhammad, M. H., & Ismail, N. I. A review of  
biological drinking water treatment technologies for contaminants  
7
.
Saleh, I. A., Zouari, N., & Al-Ghouti, M. A. Removal of pesticides  
from water and wastewater: Chemical, physical and biological  
treatment approaches. Environmental Technology and Innovation.  
[
81-83]. On top of that, the COD removal obtained by the  
conventional biological anaerobicaerobic biological treatment  
80-90%) is also much higher than the use of oleaginous  
microorganisms [67].  
(
8. Sousi, M., Liu, G., Salinas-Rodriguez, S. G., Chen, L., Dusseldorp,  
J., Wessels, P., Schippers, J. C., Kennedy, M. D., & van der Meer, W.  
Multi-parametric assessment of biological stability of drinking water  
285  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 280-288  
produced from groundwater: Reverse osmosis vs. conventional  
Bioresource 2008.  
Research.  
2020.  
25. Peng, W., Huang, C., Chen, X., Xiong, L., Chen, X., Chen, Y., & Ma,  
L. Microbial conversion of wastewater from butanol fermentation to  
microbial oil by oleaginous yeast Trichosporon dermatis. Renewable  
9
1
.
Colussi, I., Cortesi, A., Vedova, L. Della, Gallo, V., & Robles, F. K.  
C. Start-up procedures and analysis of heavy metals inhibition on  
2013.  
2
0. Lettinga, G., van Velsen, A. F. M., Hobma, S. W., de Zeeuw, W., &  
Klapwijk, A. Use of the upflow sludge blanket (USB) reactor concept  
for biological wastewater treatment, especially for anaerobic  
26. Feng, Y., Li, C., & Zhang, D. Lipid production of Chlorella vulgaris  
27. Lin, C.-Y., Nguyen, M.-L. T., & Lay, C.-H. Starch-containing textile  
wastewater treatment for biogas and microalgae biomass production.  
bioengineering.  
1980.  
1
1
1
1. Kato MT, Field JA, Versteeg P, Lettinga G. Feasibility of expanded  
granular sludge bed reactors for the anaerobic treatment of low-  
strength soluble wastewaters. Biotechnology and bioengineering.  
2017.  
28. Nagarajan, D., Lee, D.-J., & Chang, J.-S. Integration of anaerobic  
digestion and microalgal cultivation for digestate bioremediation and  
1
2. Chung, J., Lee, I., & Han, J. I. Biodiesel production from oleaginous  
yeasts using livestock wastewater as nutrient source after phosphate  
biogas 2019.  
Fuel.  
2016.  
29. Paul, T., Sinharoy, A., Pakshirajan, K., & Pugazhenthi, G. Lipid-rich  
bacterial biomass production using refinery wastewater in a bubble  
column bioreactor for bio-oil conversion by hydrothermal  
30. Goswami, G., Makut, B. B., & Das, D. Sustainable production of bio-  
crude oil via hydrothermal liquefaction of symbiotically grown  
biomass of microalgae-bacteria coupled with effective wastewater  
3. Ali, S. S., Al-Tohamy, R., Koutra, E., El-Naggar, A. H., Kornaros,  
M., & Sun, J. Valorizing lignin-like dyes and textile dyeing  
wastewater by a newly constructed lipid-producing and lignin  
modifying oleaginous yeast consortium valued for biodiesel and  
1
1
4. Nagarajan, D., Kusmayadi, A., Yen, H. W., Dong, C. Di, Lee, D. J.,  
&
Chang, J. S. Current advances in biological swine wastewater  
5. Chatzifragkou, A., Makri, A., Belka, A., Bellou, S., Mavrou, M.,  
31. Lamers, D., van Biezen, N., Martens, D., Peters, L., van de Zilver, E.,  
Jacobs-van Dreumel, N., Wijffels, R. H., & Lokman, C. Selection of  
Mastoridou, M., Mystrioti, P., Onjaro, G., Aggelis, G.,  
&
Papanikolaou, S. Biotechnological conversions of biodiesel derived  
32. Li, Q., Du, W., & Liu, D. Perspectives of microbial oils for biodiesel  
1
1
1
1
6. Economou, C. N., Aggelis, G., Pavlou, S., & Vayenas, D. V. Single  
7. Ratledge, C. Single cell oils  have they a biotechnological future?.  
33. Zhang, J., Fang, X., Zhu, X.-L., Li, Y., Xu, H.-P., Zhao, B.-F., Chen,  
L., & Zhang, X.-D. Microbial lipid production by the oleaginous  
34. Evans, C. T., & Ratledge, C. Phosphofructokinase and the Regulation  
of the Flux of Carbon from Glucose to Lipid in the Oleaginous Yeast  
35. Wang, J., Hu, M., Zhang, H., & Bao, J. Converting Chemical Oxygen  
Demand (COD) of Cellulosic Ethanol Fermentation Wastewater into  
Microbial Lipid by Oleaginous Yeast Trichosporon cutaneum.  
Trends 1993.  
8. Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A.  
&
Commercial applications of microalgae. Journal of Bioscience and  
9. Alvarez, H. M., Kalscheuer, R., & Steinbüchel, A. Accumulation of  
storage lipids in species of Rhodococcus and Nocardia and effect of  
Fett. 1997.  
biotechnology.  
2017.  
2
0. Covarrubias, S. A., De-Bashan, L. E., Moreno, M., & Bashan, Y.  
Alginate beads provide a beneficial physical barrier against native  
microorganisms in wastewater treated with immobilized bacteria and  
36. Schneider, T., Graeff-Hönninger, S., French, W. T., Hernandez, R.,  
Merkt, N., Claupein, W., Hetrick, M., & Pham, P. Lipid and  
carotenoid production by oleaginous red yeast Rhodotorula glutinis  
2
2
2
2
1. Yamaguchi, K., Nakano, H., Murakami, M., Konosu, S., Nakayama,  
O., Kanda, M., Nakamura, A., & Iwamoto, H. Lipid composition of  
2. Karatay, S. E., & Dönmez, G. Improving the lipid accumulation  
properties of the yeast cells for biodiesel production using molasses.  
37. Xue, F., Gao, B., Zhu, Y., Zhang, X., Feng, W., & Tan, T. Pilot-scale  
production of microbial lipid using starch wastewater as raw material.  
2010.  
38. Hena, S., Znad, H., Heong, K. T., & Judd, S. Dairy farm wastewater  
treatment and lipid accumulation by Arthrospira platensis. Water  
3. Santos, C., Lucas, M. S., Dias, A. A., Bezerra, R. M. F., Peres, J. A.,  
Sampaio, A. Winery wastewater treatment by combination of  
2010.  
2018.  
39. Gupta, N., Manikandan, N. A., & Pakshirajan, K. Real-time lipid  
production and dairy wastewater treatment using Rhodococcus  
opacus in a bioreactor under fed-batch, continuous and continuous  
&
4. Zhu, L. Y., Zong, M. H., & Wu, H. Efficient lipid production with  
Trichosporonfermentans and its use for biodiesel preparation.  
40. Hall, J., Hetrick, M., French, T., Hernandez, R., Donaldson, J.,  
Mondala, A., Holmes, W., & Mississippi State University. Oil  
286  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 280-288  
production by a consortium of oleaginous microorganisms grown on  
primary effluent wastewater. Journal of chemical technology and  
57. Ahammad, S. Z.; Gomes, J.; Sreekrishnan, T. R. Wastewater  
treatment forproductionofH2S-free biogas. Journal of Chemical  
Technology & Biotechnology. 2008. https://doi.org/10.1002/jctb  
58. Liu, J. X., Yue, Q. Y., Gao, B. Y., Ma, Z. H., & Zhang, P. D.  
Microbial treatment of the monosodium glutamate wastewater by  
59. Chebbi, H., Leiva-Candia, D., Carmona-Cabello, M., Jaouani, A., &  
Dorado, M. P. Biodiesel production from microbial oil provided by  
oleaginous yeasts from olive oil mill wastewater growing on  
4
1. Liu, J.-X., Yue, Q.-Y., Gao, B.-Y., Wang, Y., Li, Q., & Zhang, P.-D.  
Research on microbial lipid production from potato starch wastewater  
as culture medium by Lipomyces starkeyi . Water science and  
2. Yeesang, C., & Cheirsilp, B. Low-Cost Production of Green  
Microalga Botryococcus braunii Biomass with High Lipid Content  
Through Mixotrophic and Photoautotrophic Cultivation. Applied  
4
4
3. Arun, J., Gopinath, K. P., SundarRajan, P., Felix, V., JoselynMonica,  
M., & Malolan, R. A conceptual review on microalgae biorefinery  
through thermochemical and biological pathways: Bio-circular  
approach on carbon capture and wastewater treatment. Bioresource  
60. Deeba, F., Pruthi, V., & Negi, Y. S. Aromatic hydrocarbon  
biodegradation activates neutral lipid biosynthesis in oleaginous  
2020.  
Technology.  
2018.  
4
4
4
4. Lam, M. K., Loy, A. C. M., Yusup, S., & Lee, K. T. Chapter 9 -  
61. Gen, Q., Wang, Q., & Chi, Z. M. Direct conversion of cassava starch  
into single cell oil by co-cultures of the oleaginous yeast  
Rhodosporidium toruloides and immobilized amylases-producing  
62. Anbarasan, T., Jayanthi, S., & Ragina, Y. Investigation on Synthesis  
of Biodiesel from Distillery Spent Wash using Oleaginous Yeast  
5. Altunoz, M., Allesina, G., Pedrazzi, S., & Guidetti, E. Integration of  
biological waste conversion and wastewater treatment plants by  
biochemistry.  
2020.  
6. Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M.  
63. Xue, F., Gao, B., Zhu, Y., Zhang, X., Feng, W., & Tan, T. Pilot-scale  
production of microbial lipid using starch wastewater as raw material.  
4
4
7. Sayre, R. Microalgae: The potential for carbon capture. BioScience.  
64. Hongyang, S., Yalei, Z., Chunmin, Z., Xuefei, Z., & Jinpeng, L.  
Cultivation of Chlorella pyrenoidosa in soybean processing  
2010.  
2
8. Cai, T., Park, S. Y., & Li, Y. Nutrient recovery from wastewater  
streams by microalgae: Status and prospects. Renewable and  
Reviews.  
2013.  
Technology.  
2011.  
4
9. Ryu, B. G., Kim, J., Farooq, W., Han, J. I., Yang, J. W., & Kim, W.  
Algal-bacterial process for the simultaneous detoxification of  
thiocyanate-containing wastewater and maximized lipid production  
under photoautotrophic/photoheterotrophic conditions. Bioresource  
Technology. 2014. https://doi.org/10.1016/j.biortech.2014.03.084  
0. Markou, G., Chatzipavlidis, I., & Georgakakis, D. Cultivation of  
Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated  
65. Muniraj, I. K., Xiao, L., Hu, Z., Zhan, X., & Shi, J. Microbial lipid  
production from potato processing wastewater using oleaginous  
66. Zeng, Y., Xie, T., Li, P., Jian, B., Li, X., Xie, Y., & Zhang, Y.  
Enhanced lipid production and nutrient utilization of food waste  
hydrolysate by mixed culture of oleaginous yeast Rhodosporidium  
5
5
5
1. Venkata Subhash, G., & Venkata Mohan, S. Biodiesel production  
from isolated oleaginous fungi Aspergillus sp. using corncob waste  
67. Chan, Y. J., Chong, M. F., Law, C. L., & Hassell, D. G. A review on  
anaerobic-aerobic treatment of industrial and municipal wastewater.  
2. Zhan, J., Zhang, Q., Qin, M., Hong, Y. Selection and  
substrate. Bioresource Technology. 2011.  
Journal.  
2009.  
&
68. Angerbauer, C., Siebenhofer, M., Mittelbach, M., & Guebitz, G. M.  
Conversion of sewage sludge into lipids by Lipomyces starkeyi for  
characterization of eight freshwater green algae strains for  
synchronous water purification and lipid production. Frontiers of  
Technology.  
2008.  
Engineering.  
2016.  
69. Pirozzi, D., Ausiello, A., Zuccaro, G., Sannino, F., & Yousuf, A.  
Culture of oleaginous yeasts in dairy industry wastewaters to obtain  
lipids suitable for the production of II-generation Biodiesel. Proteins.  
70. Goswami, L., Tejas Namboodiri, M. M., Vinoth Kumar, R.,  
Pakshirajan, K., & Pugazhenthi, G. Biodiesel production potential of  
oleaginous Rhodococcus opacus grown on biomass gasification  
5
5
3. Muniraj, I. K., Xiao, L., Hu, Z., Zhan, X., & Shi, J. Microbial lipid  
production from potato processing wastewater using oleaginous  
4. Bhanja, A., Minde, G., Magdum, S.,  
Comparative Studies of Oleaginous Fungal Strains  
circinelloides and Trichoderma reesei ) for Effective Wastewater  
Treatment and Bio-Oil Production Biotechnology Research  
&
Kalyanraman, V.  
(
Mucor  
Energy.  
2017.  
71. Eida, M. F., Darwesh, O. M., & Matter, I. A. Cultivation of  
oleaginous microalgae Scenedesmus obliquus on secondary treated  
municipal wastewater as growth medium for biodiesel production.  
5
5
5. Du, Y., Wang, Y., Peng, G., Su, Z., Xu, M., Feng, W., Zhang, S.,  
Ding, Y., Zhao, D., & Liu, P. Reducing COD and BOD, as well as  
6. Field, J. A., Lettinga, G., & Geurts, M. The methanogenic toxicity  
and anaerobic degradability of potato starch wastewater phenolic  
Engineering.  
2018.  
72. Cho, H. U., Cho, H. U., Park, J. M., Park, J. M., & Kim, Y. M.  
Enhanced microalgal biomass and lipid production from a consortium  
287  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 280-288  
of indigenous microalgae and bacteria present in municipal  
wastewater under gradually mixotrophic culture conditions.  
2017.  
7
7
3. Chen, X. fang, Huang, C., Xiong, L., Chen, X. de, Chen, Y., & Ma,  
L. long. Oil production on wastewaters after butanol fermentation by  
4. Hall, J., Hetrick, M., French, T., Hernandez, R., Donaldson, J.,  
Mondala, A., Holmes, W., & Mississippi State University. Oil  
production by a consortium of oleaginous microorganisms grown on  
primary effluent wastewater. Journal of chemical technology and  
7
5. Patel, A., Arora, N., Pruthi, V., & Pruthi, P. A. Biological treatment  
of pulp and paper industry effluent by oleaginous yeast integrated  
with production of biodiesel as sustainable transportation fuel.  
Production.  
2017.  
7
7
6. Deeba, F., Pruthi, V., & Negi, Y. S. Bioresource Technology  
Converting paper mill sludge into neutral lipids by oleaginous yeast  
7. Samir, S., Al-tohamy, R., Koutra, E., El-naggar, A. H., Kornaros, M.,  
&
Sun, J. Valorizing lignin-like dyes and textile dyeing wastewater  
by a newly constructed lipid-producing and lignin modifying  
oleaginous yeast consortium valued for biodiesel and bioremediation.  
Materials.  
2021.  
7
7
8
8. Ochoa-Herrera, V., Banihani, Q., León, G., Khatri, C., Field, J. A., &  
Sierra-Alvarez, R. Toxicity of fluoride to microorganisms in  
9. Ochoa-Herrera, V., León, G., Banihani, Q., Field, J. A., & Sierra-  
Alvarez, R. Toxicity of copper(II) ions to microorganisms in  
0. Praveen, P., & Loh, K. C. Photosynthetic aeration in biological  
wastewater treatment using immobilized microalgae-bacteria  
8
8
2. El-Gohary, F., & Tawfik, A. Decolorization and COD reduction of  
disperse and reactive dyes wastewater using chemical-coagulation  
2
8
8
8
8
3. Cheryan, M., & Rajagopalan, N. Membrane processing of oily  
streams. Wastewater treatment and waste reduction. Journal of  
Science.  
1998.  
4. Huang, C., Chen, X. fang, Xiong, L., Chen, X. de, Ma, L. long, &  
Chen, Y. Single cell oil production from low-cost substrates: The  
possibility and potential of its industrialization. Biotechnology  
Advances. 2013. https://doi.org/10.1016/j.biotechadv.2012.08.010  
5. Mu, D., Liu, H., Lin, W., Shukla, P., & Luo, J. Simultaneous  
biohydrogen production from dark fermentation of duckweed and  
6. Diamantopoulou, P., Stoforos, N. G., Xenopoulos, E., Sarris, D.,  
Psarianos, D., Philippoussis, A., & Papanikolaou, S. Lipid production  
by Cryptococcus curvatus growing on commercial xylose and  
subsequent valorization of fermentation waste-waters for the  
production of edible and medicinal mushrooms. Biochemical  
2020.  
288