Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 77-84  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)84  
Adsorption of Chromium from Aqueous Solution by  
Lignocellulosic Biomass (Pinus palustris): Studies on  
Equilibrium Isotherm, and Kinetics  
1
2
Narendrakumar G *, Senthil kumar P  
1
Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu,  
2
Department of Chemical Engineering, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu,  
India  
Received: 16/05/2020  
Accepted: 13/10/2020  
Published: 20/03/2020  
Abstract  
Different methods to convert biomass into useful materials and products without generating pollutants will be useful for global  
environmental protection. The present study deals with the preparation of adsorbent from a suitable lignocellulosic biomass, Pinus palustris  
seeds. The adsorbent thus prepared will be used for the removal of heavy metals from aqueous solutions. Factors influencing the adsorption  
characteristics under batch conditions were studied for chromium concentrations in range of 30  150 ppm. The studies were conducted to  
optimize the size of the adsorbent, temperature and contact time. The maximum adsorption is attained at a pH of 6.5 and a dosage of 3g. The  
o
effective temperature for the reaction was at 37 C. The removal percentage increase when the optimized condition of different parameters  
such as size, temperature, contact time, concentration, pH and dosage. The adsorption isotherms showed that the Freundlich Isotherm is a  
better adsorption model and the characteristic parameters were determined. The results of the kinetic models showed that the pseudo second  
order kinetics was found to correlate with the experimental data. The present analysis, the absorbent that is produced from Pinus palustris  
seed has an efficient adsorption for chromium.  
Keywords: Lignocellulose, adsorption, isotherms, kinetics  
1
aqueous wastewater is one of the most important environmental  
1
Introduction  
issues (9). Even though this issue has been studied for several  
years, effective and precise treatment methods are still scanty due  
to its low adsorption capacity, high chemical oxygen demand  
Lignocellulosic biomass sources range from forestry to  
agricultural residues. Banana plant, cotton stalk, bamboo and  
cotton gin waste are agricultural residues that are not currently  
used as industrial raw materials on a larger scale (1, 2). They  
contain cellulose, and hemicellulose, which could be used as a  
source of monomeric sugars for fermentation to produce high-  
value products. Long ago, these materials were used as firewood,  
building materials and animal feed. Nowadays, lignocellulosic  
materials have expanded its application from pulp and paper  
products to second-generation biofuel (3). The development of  
industrial methods to convert biomass into useful materials and  
products without generating pollutants such as waste gas,  
wastewater and solid waste material will be useful for global  
environmental protection (4-5). The adsorbent which we have  
made is economically feasible and also locally available and has  
an ability to absorb chromium in higher concentration (6). Once  
the absorption is completed, it is easy to dispose of the adsorbent  
by composting, compaction, incineration, ashing, pyrolysis,  
direct disposal, liquid extraction (7,8). The adsorbent was  
obtained from pine plant seeds that were powdered and activated.  
Currently, the removal of heavy metal contaminants from  
(
COD) and biological chemical demand (BOD) as well as total  
organic carbon (TOC) due to release of soluble organic  
compounds contained in the plant materials (10). Excessive toxic  
heavy metals are often discharged by several industries, like  
battery manufacturing and tanneries and they are not  
biodegradable and can lead to accumulation in living organisms,  
causing various diseases such as cancer, dermatological issues  
and disorders like itai-itai disease. Monitoring and subsequent  
removal of toxic heavy metals from industrial wastewater have  
been made mandatory before their discharge into the environment  
(
11). Chromium, one of the heavy metals, is a widely used  
industrial metal for electroplating, tannery, leather industry and  
wood processing industries and the permissible amount  
chromium is 0.1 mg/l (12).  
Conventional methods applied to remove toxic heavy metals  
from effluents include chemical precipitation (13), ion exchange  
(
14), carbon adsorption (15) and membrane separation process  
(
16). Among all kinds of adsorption materials, activated carbon  
Corresponding author: Narendrakumar G, Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute  
of Science and Technology, Chennai, Tamilnadu, Indiagnaren22@gmail.com  
77  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 77-84  
adsorption has been regarded as an efficient and major  
technology, but the process is expensive (17). Some main  
limitations are existent in these alternatives, such as expensive  
cost, labor  intensive operation, and low efficiency. Therefore,  
more approaches have been investigated for the development of  
low-cost adsorbates with a good sorption capacity to remove  
heavy metal ions from wastewater (18). In recent years,  
considerable attention has been devoted to the study of  
application of lignocellulosic biomass as adsorbents (19). Natural  
materials have an advantage of availability in large quantities, low  
cost, and good sorption capacity. These are unutilized materials,  
but they have high potential to be used as adsorbents for heavy  
metals removal. Adsorption is a versatile treatment technique  
practiced widely in fine chemical and process industries for  
wastewater and waste gas treatment (20). The usefulness of the  
adsorption process lies in the operational simplicity and reuse  
potential of adsorbents during long term applications (21).  
At present, adsorption is widely accepted in environmental  
treatment applications throughout the world compared with the  
other methods. The aim of this paper is to use adsorbent obtained  
by processing of Pinus palustris seeds, and to evaluate its  
effective removal of chromium from industrial effluents.  
sodium sulphite solution followed by acidifying with 1 ml of 2.5  
M sulphuric acid, and then boiling for 2 min to remove excess  
SO  
solution was diluted to obtain the working standard. To find the  
concentration of chromium, the solutions was  
2
and diluting with water to 100 ml. A suitable volume of this  
spectrophotometrically analysis and from the absorbance value  
concentrations of the solutions were calculated (24).  
2.4 Optimization of Chromium concentration with adsorbent,  
absorbent size and contact time  
A sample of volume 10 ml of 30, 60, 90, 120 and 150 ppm of  
the chromium solutions were taken and 0.5g of the powder  
ranging from .0750.150 mm was mixed with the solutions. The  
solutions were kept for 10min and then the solutions were filtered.  
The filtrate was given for spectrophotometry analysis. 30ml of the  
solution with the optimized concentration was taken in different  
beakers and to it 1.5g of the adsorbent of sizes pan and mesh no  
25 and 52 are added, respectively. These solutions were mixed  
thoroughly for 30 minutes and filtered and then given for  
spectrophotometry analysis. 30ml of the solution containing the  
optimized concentration and 1.5g of the optimized sizes were  
taken in different beakers. They were kept for time durations of  
30, 60, 90 and 120 minutes. The solutions were filtered and  
spectrophotometry analysis was performed (25)  
2
Materials Required  
2
.1 Chemicals and materials  
2
.5 Optimization of temperature  
To optimize the temperature 1.5g of the optimum sized  
Potassium dichromate (K  
2
Cr  
2
O
2 2 3  
7
), Potassium iodide (KI)(1  
M), Sodium thio-sulphate (Na S O ) (1M), 1N and 0.1N  
Hydrochloric acid (HCl), starch solution, Sodium hydroxide  
NaOH (1M), Pinus palustris seeds  
adsorbent was taken and heated in an incubator for 2 hours at  
different temperatures, 32°C, 37°C and 45°C. The adsorbent was  
added to 30ml of the solution of optimum concentration and kept  
for an optimum time (26).  
2
.2 Methodology  
The sample Pinus palustris seeds (Figure 1) was collected  
2
.6 Optimization of pH  
To optimize the pH, 30ml of the solution with optimum  
from Chennai and thoroughly washed using tap water. It was then  
dried in the sun. The further drying of the seeds was done in the  
dryer at a temperature of 70°C. When the seeds are completely  
dried, it was crushed in the blender. This was done until the seeds  
are crushed into fine particles. The crushed seeds are then sieved  
into three sizes namely mesh numbers 25 and 52, and pan (22,  
concentration is maintained with different pH, namely 2, 4, 6, 8  
and 10. To maintain the acidic pH of 2, 4 and 6 0.01N HCl was  
added and to maintain the alkaline pH of 8 and 10 1M NaOH was  
used. 1.5g of the optimized size adsorbent was taken and heated  
at the optimized temperature and added to the solutions and kept  
for the optimum contact time (27).  
2
3).  
2
.7 Optimization of dosage  
To optimize the dosage, 1.5, 3.0 and 4.5 g to 30 ml of the  
solution with optimized concentration was maintained at  
optimum pH. The adsorbent with optimum size was heated at  
optimum temperature and added to the solution. These solutions  
were mixed thoroughly and kept for an optimum contact time  
(
28).  
2.8 Models for adsorption isotherms  
Langmuir isotherm (Model 1)  
The theory for Langmuir isotherms assumes monolayer  
Figure 1: Seeds of Pinus palustris  
coverage of adsorbate over a homogenous adsorbent surface.  
Therefore at equilibrium, a saturation point is reached where no  
further adsorption can occur adsorption takes place at specific  
homogeneous sites within the adsorbent by the following  
equation (21).  
2
.3 Estimation of chromium  
A stock solution of chromium (IV) solution (1000 µg ml -1  
)
2 2 7  
was prepared by dissolving 0.2829 g of K Cr O in 100 ml of  
deionised double distilled water . The stock solution was further  
diluted as needed. A stock solution of chromium (III) (1000 µg  
C0  
m
abCe  
=
(1)  
-1  
ml ) was prepared by dissolving 0.2829 g of K  
2
Cr  
O
2 7  
in 50 ml  
1+aCe  
of deionised double distilled water, adding 1 ml of saturated  
78  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 77-84  
Alternate equation  
q
e
= B  
T
lnK  
T
+ B  
T
lnC  
e
(8)  
m
1
1
× +  
C
1
where KT (L/g) is the Temkin isotherm constant, bT (J/mol) is a  
constant related to heat of sorption, R is the ideal gas constant  
=
(2)  
C0  
ab  
b
(
8.314 J/mol K), and T is absolute temperature (K).  
o
where C /m is adsorbed per unit mass of the adsorbent and the  
concentration of color remaining in the in the solution after  
adsorption is complete (Ce) by a relation. where a and b are  
constants representing bond energy and adsorption capacity,  
respectively.  
2
.9 Models of sorption kinetics  
Pseudo First Order Kinetics  
The pseudo first order equation (Lagergren’s Equation)  
describes adsorption in solid liquid system based on the sorption  
capacity of solid. In the following equation:  
Freundlich isotherm (Model 2)  
The theory for Freundlich isotherms describes a monolayer  
dqt  
=
ꢅ (ꢉ ꢊ ꢉ )  
(9)  
1
and multilayer coverage of adsorption over a heterogeneous  
surface area adsorbent (22). An adsorption isotherm is an  
empirical relation between the concentrations of solute on to the  
surface of an adsorbent to the concentration of the solute in the  
liquid with which it is contact. In following equation  
dꢈ  
Alternate equation  
Kꢌ  
log(ꢉ ꢊ ꢉ ) = lꢋgꢉ ꢊ  
(10)  
2
.3ꢍ3  
x
=
KC1/n  
(3)  
where qe and qt refer to the adsorption capacities at equilibrium  
and time t, respectively, in mg/g and k1 is the pseudo-first-order  
rate constant. Plotting the log (qe - qt) against t provides the slope  
and the intercept as -k1/2.303 and log (qe), respectively.  
m
Alternate equation  
x
1
log = logk + logC  
(4)  
m
n
Pseudo Second Order Kinetics  
The pseudo second order rate expression has been applied for  
where X/M is loading, is the amount of impurity adsorbed (X) per  
unit weight of carbon (M); C is equilibrium concentration after  
adsorption; and k, n are constants.  
analyzing chemisorptions kinetics from liquid solutions. In the  
following equation:  
dqt  
2
=
ꢅ (ꢉ ꢊ ꢉ )  
(11)  
1
BET (Brunauer- Emmett -Teller) isotherm (Model 3)  
dꢈ  
This isotherm describes the physical adsorption of adsorbent on  
a solid surface and serves as the basis for an important analysis  
technique for the measurement of the specific surface area of a  
material (29). In following equation.  
Alternate equation  
1
1
=
(12)  
qt  
Kꢏ  
qe  
×KB×Ce×Qo  
q
e
= (  
(5)  
2
where k is the pseudo-second-order rate constant. Plotting the  
t/qt against t provides the slope and the intercept as (1/qe) and  
/k qe, respectively  
Ce  
C −Ce){1+(KB−1)ꢀ  
ꢁ}  
s
Cs  
1
2
Alternate equation  
Ce  
KB−1  
Ce  
Cs  
1
3 Results and Discussion  
3.1 Influence of concentration  
=
×
(6)  
(
C −Ce)qe  
KB×Q0  
KB×Q0  
s
The experiment was carried out with 0.5 g of the adsorbent  
which is added to 10 ml of different concentrations (30, 60, 90,  
120 and 150 ppm) and the filtered solutions were given for  
spectrophotometry analysis. The result showed that percentage  
adsorption increases with lower concentration. Therefore, the  
optimum concentration is 30ppm (Figure -2a). The adsorption of  
chromium on bioabsorbent, was given by Khazaei et al., 2011,  
(27) they also shows a similar kind of adsorption pattern on the  
basis of initial concentration and 0.5ppm shows the maximum  
adsorption.  
where qe is the amount adsorbed at equilibrium (mg/g) which can  
be found by qe = {(Cs-Ce)V}/W where Cs and Ce are initial and  
final concentration, respectively; qm is maximum adsorption; and  
KB is BET coefficient or equilibrium distribution coefficient and  
presenting adsorption intensity.  
Tempkin Isotherm (Model 4)  
This isotherm describes the effects of some indirect  
1
adsorbate/adsorbate interactions on adsorption isotherms  
suggested that the heat of adsorption of all the molecules in the  
layer would decrease linearly with coverage due to these  
interactions. In the following equation:  
3.2 Influence of size  
Three different sizes of adsorbent have been taken, i.e. pan  
and mesh nos. 52 and 25. 0.5g of the adsorbent of different sizes  
was kept in 10 ml of the optimized concentration (30ppm) for 10  
min. The filtered solutions were given for spectrophotometry  
analysis. The adsorption concentration of chromium increases as  
the size of the adsorbent decreases. This is because as the size  
RT  
q
e
=b × lꢄ( ꢆ )  
(7)  
T
Alternate equation  
79  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 77-84  
becomes smaller the surface area increases. Therefore, it was  
concluded that pan size of adsorbent is the optimum size since it  
shows the highest adsorption percentage (Figure-2b). The  
adsorption of chromium on almond and apricot shells occurs at  
the smallest size (100 to 150 µm), given by the Khazaei et al.,  
is not increasing and its remain same. Therefore, after 90 min the  
absorption ceases. Therefore, the 90 minutes is the optimum  
contact time at determined optimum loading of the adsorbent  
(Figure -2c). A comparative study, done by the Hamdi et al.,2001  
2+  
2+  
2+  
2+  
(31), of Cu , Pb , Cd and Ni adsorption onto chitin and  
2+  
chitosan biopolymers was performed. To attain equilibrium Cu  
2+ 2+  
2
011 (27) which is similar to this experiment.  
has taken 480 min, Pb has taken 360min, Cd has taken 240  
2+  
3
.3 Influence of contact time  
The experiment was carried out with the different time  
min and Ni has taken 480 min., but the chromium adsorption on  
Pinus palsturis seeds has only taken 90 min, which is very much  
lesser. The almond shells took 40 min to reach equilibrium and  
the apricot shells takes 30 min to reach equilibrium, which was  
optimized by Khazaei et al., 2011 (27), but it has only lower  
periods, i.e. 30, 60, 90 and 120 minutes. 0.5g of the pan size  
adsorbent is added to 10ml of optimum concentration; 30ppm of  
chromium solution. These solutions are kept at different time  
intervals and filtered and stirred in magnetic stirrer. Then the  
obtained filtrate was then analyzed by spectrophotometric method  
and the adsorption percentage was calculated. It was found that as  
the time increases adsorption percentage increases but after a  
certain time there is no change in the adsorption percentage.  
Because after a certain time the adsorption capacity of adsorbent  
6+  
removal of Cr (60%). The Cr adsorption on Pinus palsturis  
seeds takes 90 min which is more than the almond and apricot  
shells, but Pinus palsturis seeds have a removal capacity of 90%  
which is more than the former.  
(
a)  
(b)  
(
c)  
(d)  
e)  
(f)  
Fig. 2: (a) Influence of size on Cr(VI) removal; (b) Influence of temperature on Cr (VI) removal; (c) Influence of contact time on Cr(VI) removal; (d)  
Influence of concentration on the adsorption; (e) Influence of pH on Cr(VI) removal; and (f) Influence of dosage on Cr (VI) removal  
80  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 77-84  
3
.4 Influence of temperature  
2011 (27), compared to the Pinus palsturis seeds adsorption  
The experiment was carried out at three different temperature  
i.e. 32, 37 and 45 °C. 1.5g of the pan size of adsorbent was dried  
in an incubator for 2 hours at different temperatures to remove the  
moisture. The heated adsorbent was kept in 30ml solution of 30  
ppm concentration for 90 minutes (32). The filtered solutions  
were given for spectrophotometry analysis and the adsorption  
percentage was calculated. It was found that as the temperature  
increases the adsorption percentage also increases but after 37oC  
temperature it decreases. This is because after a certain  
temperature, degradation of adsorbent starts. Therefore, it was  
concluded that among the tested temperature, 37 °C is the  
optimum temperature for adsorption (Figure 2d). Adsorption  
study of chromium on MgO, showed a similar observation in the  
case of temperature. The maximum adsorption occurs at around  
occurs at better dosage (Table 1).  
3.6 Adsorption Isotherms  
Langmuir isotherm (Model 1) (Figure -3a)  
ꢍ  
푎푏퐶푒  
=
=
ꢐ ꢂ 푎퐶푒  
ꢍ  
57.4ꢐꢑ6퐶푒  
ꢐ ꢊ ꢑ.44퐶푒  
a = -3.44 b = -16.69  
Freundlich Isotherm (Model 2) (Figure  3b)  
3
0°C for MgO which was given by Mahmood et al., 2010 (31),  
and the Pinus palsturis seeds take 37°C for maximum adsorption.  
The maximum adsorption of Cr on almond is at 45°C and apricot  
is 50°C which is given by Khazaei et al., 2011 (27), compared to  
the Pinus palsturis seeds adsorption occurs at higher temperature.  
This is because the Pinus palsturis seeds get decayed at high  
temperature.  
=
KC1/n  
= 46.5C-0.66280  
K = 46.5  
n = -1.508  
3
.5 Influence of pH  
To optimize the pH the experiment was carried out with the  
BET Isotherm (Model 3) (Figure -3c)  
different pH values, i.e. 2, 4, 6, 8 and 10. The pH 2, 4, and 6 are  
maintained by adding few drops of 0.1N HCl and pH of 8 and 10  
are maintained by adding few drops of 1M NaOH. 1.5g of pan  
size of adsorbent was heated at 37°C in the incubator for 2 hours.  
The heated adsorbent was kept in 30ml solution of 30ppm  
concentration for 90 min. The filtered solutions were given for  
spectrophotometry analysis and adsorption percentage was  
calculated. It was found that as the pH increases adsorption  
percentage also increases but after a certain pH it decreases. It was  
determined from experimental data and it is shown on the graph  
the influence of pH on adsorption (Figure -2e).  
×ꢓ×푄표  
q
e
=
ꢔ  
(ꢓ −ꢓ ){1+(퐾−1)ꢀ  
⁄ ꢁ}  
푠  
1.99×1ꢍꢓ  
q
e
= (  
ꢔ  
ꢌꢌ1)ꢀ  
1323ꢍꢍ  
1323ꢍꢍ−ꢓ ){1+(3.ꢖꢗꢖ∗1ꢍ  
ꢁ}  
Cs = 132300  
11  
= 3.646*10  
-6  
K
Q
B
0
= 5.485*10  
Temkin Isotherm (Model 4) (Figure -3d)  
3
.5 Influence of dosage  
The experiment was carried out for different dosage of the pan  
푅푇  
=
× lꢄ(ꢚ 퐶 )  
q
q
e
ꢙ  
size adsorbent, i.e. 1.5, 3 and 4.5g. Different weights of the  
adsorbent were kept in the incubator at 37 °C for 2 hours. The  
heated adsorbent was kept in 30ml solution of 30ppm  
concentration with 6.5 pH for 90min.The filtered solution were  
given for spectrophotometry analysis and the adsorption  
percentage was calculated. It was found that as the weight  
increases the adsorption percentage also increases but after a  
certain dosage it decreases (32). This is because adsorptive force  
between the adsorbent and chromium gets week at higher dosage.  
So it was concluded that 3g of adsorbent is the optimum dosage  
for adsorption (Figure 2f).  
The study of Boehmite nano powder on Chromium uses 2.5g  
of the powder for maximum adsorption i.e. 60%, given by  
Sharawy et al., 2013 (33), whereas in this study the Pinus  
palsturis seeds uses 3g and the adsorption percentage is 98.25%  
in absorbing chromium. The maximum adsorption of chromium  
on almond and apricot is at 6g, which showed by Khazaei et al.,  
e
=7ꢛ.8ꢑꢜꢑ × 푙푛(ꢝ.4ꢜ7ꢜ퐶)  
B
K
T
= 72.8393  
T
= 0.4979  
2
Table: 1 Adsorption Isotherms with R values  
Isotherms  
Langmuir Isotherm  
Freundlich Isotherm  
BET Isotherm  
2
R value  
0.9857  
0.9961  
0.9172  
0.9316  
Temkin Isotherm  
Table 1 shows that the Freundlich isotherm is the most  
suitable isotherm for the experiment, since the R value of the  
Freundlich isotherm is 0.9961 which is closer to linearity.  
2
81  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 77-84  
Fig. 3: (a) Langmuir Isotherm; (b) Freundlich Isotherm; (c) BET Isotherm; and (d) Temkin Isotherm  
3
.7 Adsorption Kinetics  
Pseudo first order kinetics (Figure -4a)  
푑푞푡  
푑ꢞ  
=
ꢚ (ꢟ ꢊ ꢟ )  
1 푒 ꢞ  
ꢠꢟꢞ  
ꢠꢡ  
=
ꢝ.ꢝ6ꢐꢜ(ꢐꢐ8.7ꢐꢑ ꢊ ꢟ)  
= 118.73 mg/g  
K
1
= 0.0619 min-1  
q
e
Pseudo second order kinetics (Figure -4b)  
푑푞푡  
푑ꢞ  
2
=
ꢚ (ꢟ ꢊ ꢟ )  
2 푒 ꢞ  
ꢠꢟꢞ  
ꢠꢡ  
=
ꢝ.ꢝꢐꢜꢐ5(7ꢜ.ꢑ6 ꢊ ꢟ)2  
-1  
-1  
K
2
= 0.01915 g mg min  
e
q = 79.36 mg/g  
Table 2 shows that the Pseudo second order is the most  
2
suitable kinetics for the experiment, since the R value of the  
Pseudo second order is 0.9961 which is closer to linearity.  
2
Table 2: Adsorptions Kinetics with R value  
2
Kinetics  
R
Pseudo first order  
Pseudo second order  
0.8616  
0.9534  
Fig. 4: (a) Pseudo first order and (b) Pseudo second order  
82  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 77-84  
The analysis of the adsorbent under the influence of different  
parameters was concluded as the adsorption isotherms and  
adsorption kinetics were studied on these parameters.  
Instrumental analysis was done for the adsorbent to study its  
characteristics. The studied showed that the adsorption takes  
place more at lower concentration, so the further studies were  
done on 30 ppm concentration. Using this concentration value,  
the size of the adsorbent particle was found. The fine particles  
have more adsorption, since the surface area increases as the size  
decreases. So this concluded that pan size is having more  
adsorption capacity. According to these concentration and size, a  
study was done on the contact time. It was found that after 90 min  
there was no adsorption occurring. So this is the optimum time  
for the adsorption process. By the above characteristics, a study  
was done based on temperature. The maximum adsorption was  
determined at 37°C.  
A pH of 6.5 was found to be the optimum when a study was  
conducted on different pH. The adsorbent dosage of 3g per 30ml  
was found to be the optimum concentration for adsorption. The  
different isotherms were done, and the regression parameter  
showed that Freundlich isotherm has the best fit among tested  
equations used for adsorption models (34, 35). Furthermore, the  
studies showed that this adsorption follows the pseudo second  
order kinetics (Fig 3b).  
2. Boschi C, Maldonado H, Ly M, Guibal E. Cd (II) biosorption using  
Lessonia kelps. Journal of colloid and interface science. 2011 May  
1
5: 357(2):487-96.  
3.  
Robak, K. and Balcerek, M., 2018. Review of second generation  
bioethanol production from residual biomass. Food technology and  
biotechnology, 56(2):174-187.  
4
5
.
.
Ho, Y.S., McKay. G., 1999 Pseudo-second order model for sorption  
processes. Process Biochemistry. 34(5). 451465.  
Hu Yun, Wu, M.H., 2005, Removal of chromium (VI) from dilute  
aqueous solution by Maghemite nanoparticle. J. Water. Pollut.  
Control. Federation. 47(8).389-393.  
6. Baral SS, Das SN, Rath P. Hexavalent chromium removal from  
aqueous solution by adsorption on treated sawdust. Biochemical  
Engineering Journal. 2006 Oct 1;31(3):216-22.  
7. Sas-Nowosielska A, Kucharski R, Małkowski E, Pogrzeba M,  
Kuperberg JM, Kryński KJ. Phytoextraction crop disposalan  
unsolved problem. Environmental pollution. 2004 Feb 1;128(3):373-  
9
.
8
9
.
.
Rathore SS, Tiwary RK, Birendra K, Padma P. Microbial removal of  
Hexavalent chromium from chromite waste dump. Malaya Journal  
of Biosciences (MJB). 2014, 20;1(2):109-16.  
Swami, D., Buddhi, D., 2006, Removal of contaminants from  
industrial  
wastewater  
through  
various  
non-conventional  
technologies. a review, International Journal of Environment and  
Pollution. 27 (4).324 346.  
10. Ngah WW, Hanafiah MM. Removal of heavy metal ions from  
wastewater by chemically modified plant wastes as adsorbents: a  
review. Bioresource technology. 2008, 1;99(10):3935-48.  
4
Conclusion  
1
1. Verma, A., Chakraborty, S., Basu, J.K, 2006, Adsorption study of  
hexavalent chromium using tamarind hull-based adsorbents.  
Separation and Purification Technology. 50(3):336-341.  
The adsorbent was identified as a good candidate for the  
removal of chromium. Different parameters such as size,  
temperature, contact time, concentration, pH and dosage were  
evaluated and the effective adsorption of the compounds. The  
1
2. Valix, M., Cheung, W.H, Zhang, W., 2006, Role of heteroatoms in  
activated carbon for removal of hexavalent chromium from  
wastewaters. Journal of Hazardous Materials. 135 (1-3). 395-405.  
o
adsorption was maximum at pan size, 37 C temperature, 30 mins  
-
contact time, 30 ppm - concentration, 6 - pH and 3 g - dosage  
13. Matlock MM, Howerton BS, Atwood DA. Chemical precipitation of  
The adsorption isotherms showed that the Freundlich Isotherm is  
a better adsorption model and the characteristic parameters were  
determined. The results of the kinetic models showed that the  
pseudo second order kinetics was established to be related with  
the experimental data. The biosorption process was endothermic  
and non-spontaneous. Results suggest that Pinus palustris seeds  
is an effective low-cost biosorbent with high biosorption capacity  
to remove Chromium from aqueous solutions.  
heavy metals from acid mine drainage. Water research. 2002  
1
;36(19):4757-64.  
1
1
1
1
4. Lee IH, Kuan YC, Chern JM. Equilibrium and kinetics of heavy metal  
ion exchange. Journal of the Chinese Institute of Chemical  
Engineers. 2007, 1;38(1):71-84.  
5. Stafiej A, Pyrzynska K. Adsorption of heavy metal ions with carbon  
nanotubes. Separation and purification technology. 2007, 1;58(1):49-  
5
2.  
6. Bakalár, T., Búgel, M. and Gajdošová, L., 2009. Heavy metal  
removal using reverse osmosis. Acta Montanistica Slovaca, 14(3),  
2
50-254.  
Acknowledgment  
Facilities provided by Sathyabama Institute of Science and  
Technology to carry out the study are gratefully acknowledged.  
7. Singarea, P.U, Dhabarde, S.S., 2014, Toxic metals pollution due to  
industrial effluents released along Dombivali Industrial Belt of  
Mumbai. European Journal of Environmental and Safety Sciences.  
2
(1).5-11.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
1
8. Hajeetha T.K. Vijayalakshmi, T, Gomathi, Sudha, P.N., 2013,  
Removal of Cu(II) and Ni(II) using cellulose extracted from sisal  
fiber and cellulose-g-acrylic acid copolymer. International Journal of  
Biological Macromolecules, 62.5965.  
1
2
9. Song, Z., Williams, C.J, Edyvan, R.G.L., 2004, Treatment of tannery  
wastewater by chemical coagulation. Desalination. 164(3).249-259.  
0. Shajahan Siraj, Md. Monarul Islam, Prokash Chandra Das, Shah Md.  
Masum, Ismet Ara Jahan, Md. Aminul Ahsan and Md. Shajahan.,  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing  
2
012., Removal of Chromium from Tannery effluent using Chitosan-  
Charcoal Composite. Journal Of Bangladesh Chemical Society..  
5(1).53-61.  
References  
2
1
.
Tamirat Dula, Khalid Siraj, and Shimeles Addisu Kitte., 2014,  
Adsorption of Hexavalent Chromium from Aqueous Solution Using  
Chemically Activated Carbon Prepared from Locally Available  
Waste of Bamboo (Oxytenanthera abyssinica). ISRN Environmental  
Chemistry. Volume 2014, Article ID 438245, 9 pages.  
2
1. Kumiawan, T.G., Jumasiah, A., Azni. I., Katayon, S., Choong,  
S.Y.T., 2005 Rice husk as a potentially low-cost biosorbent for heavy  
metal and dye removal. An overview. Desalination, 175 (3)305316.  
83  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 77-84  
2
2. Ho, Y.S., McKay, G, 1998, A comparison of chemisorption kinetic  
models applied to pollutant removal on various sorbents. Process Saf.  
Environ. 67(4).332-340.  
2
2
3. Wongjunda J and Saueprasearsit P., 2010, Biosorption of Chromium  
(
VI) using rice husk ash and modified rice husk ash. Environmental  
Research Journal. 4(3).244250.  
4. El Harti M, H. Hannache, E. Khouya, N. Hanafi, M. El Bouchti, A.  
Zarrouk , S. Fakhi, L. Afrin, A. Saoiabi and Hammouti. B., 2013,  
Hexavalent chromium removal from aqueous solution by adsorbent  
prepared from Moroccan oil shale of Timahdit. Der Pharma Lettre.  
5
(2). 338-346).  
2
5. Aravind Kumar. J, Joshua Amarnath, D, Narendrakumar, G., Vijai  
Anand, K., 2018., Optimization of process parameters for  
naphthalene removal onto nano iron oxide/carbon composite by  
response surface methodology, isotherm and kinetic studies,  
Engineering.  
3:17.  
2
2
6. Singh V, Kumari P, Pandey S, Narayan T., 2009, Removal of  
chromium (VI) using poly(methylacrylate) functionalized guar gum.  
Bioresource Technology. 100(6). 1977-1982.  
7. Alok Mittal, Lisha Kurup, Jyoti Mittal., 2007, Freundlich and  
Langmuir adsorption isotherms and kinetics for the removal of  
Tartrazine from aqueous solutions using hen feathers. Journal of  
Hazardous Materials. 146 (1-2).243248.  
2
2
3
8. Khazaei, I., Aliabadi, M. and Hamed, M.H., 2011. Use of agricultural  
waste for removal of Cr (VI) from aqueous solution. Iranian Journal  
of Chemical Engineering. 8(4).11-23.  
9. Singh, I.B, Singh, D, R., 2002, Cr(VI) removal in acidic aqueous  
solution using iron-bearing industrial solid wastes and their  
stabilisation with cement. Environmental Technology. 23 (1).8595.  
0. El Qada, E,N., Allen, S.J., Walker, G.N., 2001, Adsorption of  
Methylene Blue onto activated carbon produced from steam activated  
Bituminous coal. A study of equilibrium adsorption isotherm.  
Chemical Engineering Journal. 124 (1-3).103110.  
3
3
3
1. Hamadi K.N.K., Chen, D,. Farid, M,M., Lu, M.G.Q., 2001,  
Adsorption kinetics for removal of Cr (VI) from aqueous solution by  
adsorbents derived from used tyres and sawdust. Chem. Eng. J.  
8
4(2).95-105.  
2. Mahmood M. Barbootia, Mumtaz A. Zabloukb, Usama A. Al-  
zubaidi., 2010, Recovery of Chromium from Waste Taning Liquors  
by Magnesium Oxide. International Journal of Industrial  
Chemistry.1(1).29-38.  
3. Ying Zhang, Ru Zheng, Jiaying Zhao, Fang Ma, Yingchao Zhang,  
and Qingjuan Meng., 2014, Characterization of -Treated Rice Husk  
Adsorbent and Adsorption of Copper(II) from Aqueous Solution.  
BioMed Research International, Volume 2014, Article ID 496878, 8  
pages  
3
3
4. Sharawy., H, Ossman., M.E, and Mansour MS., 2013, Kinetics  
modeling and Adsorption isotherm studies for Cr(III) removal using  
Boehmite Nano-powder. International Journal of Chemical and  
Biochemical Sciences.3.9-18.  
2
+
5. Sirianuntapiboon, S, Hongsrisuwan, T., 2007, Removal of Zn and  
2
+
Cu by a sequencing batch reactor (SBR) system. Bioresource  
Technology. 98(4):808818.  
84