Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 218-223  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)223  
Adsorptive Removal of Dyes onto Cost Effective  
Biomaterials A Review  
Mary Jency I , Gowrisankar L , Krishnaveni J , Renugadevi. N  
1
2
3*  
4
1
,2  
Department of Chemistry, Karpagam College of Engineering, Coimbatore. Tamilnadu, India  
Department of Chemistry, Suguna college of Engineering, Coimbatore. Tamilnadu, India  
3
4
Department of Chemistry, Faculty of Science, Avinashilingham University, Coimbatore, Tamilnadu, India  
Received: 25/06/2020  
Accepted: 13/10/2020  
Published: 20/03/2021  
Abstract  
A higher percentage of dyes from the industrial waste water are being released into aquatic ecosystems and polluted the natural  
ecosystem. An abundance of technologies available for removal of Dyes from the industrial waste water are expensive and ineffective.  
Many of these processes are economically not viable for small and medium scale industries due to large scale applications.Recent  
Investigational researches have proved that the successful elimination of dyes is obtained using numerous economically available non-  
conventional adsorbents also. Several experimental investigations on adsorption provedthattremendous treatment for dye removal and  
can be obtained using cheaply available non-conventional adsorbent.This review is mainly focused to the systematic study on utilizing  
low cost absorbent of dye removal from the effluents discharged from the industries. The data on economically cheap adsorbents and its  
properties for removing dyes resulted from the recent literature survey are summarized. Therefore, this review provides the various  
methods to treat the wastewater using low-price natural sources of adsorption materials, non-viable biomaterials.  
Keywords: Classification of dye, Dye removal method, Adsorption, Industrial effluents, Biomass  
1
2
.1.1Dye Removal Methods  
Selection of dye, uses and its application were not given  
1
Introduction  
With growing technology and science, global has reached  
great importance with regard to environmental impact before  
few decades earlier. Many information is available in the last  
few years regarding the effects of using the dyestuff in the  
environment. Control measures to treat the dye wastewater are  
done by government, users and the dye manufacturers.  
According to physical, chemical and biological process some  
treatment methods can be done i.e., shown in Table 2.  
to a very fresh horizon. Dyes are highly objectionable pollutant  
leads to the issues such as sensitization of skin, eye and skin  
irritation and dyes are highly carcinogenic nature. Due to  
demand on economical source and space to install the facilities  
of on-site treatment, the major donors of industrial effluents are  
the enterprises of small and medium size. The essential and  
environment challenge in recent years are the wastewater dye  
removal process that should be cheap and efficient. Most of the  
industries used to treat the effluent before discharging them to  
the environment, they are recycling off-site and diluted to  
decrease the toxicity that have proven to be highly economic  
and ultimately unsustainable. Therefore, it is required to create  
an effective process that can efficiently remove color is now at  
an utmost priority, one out of them is adsorption using activated  
carbon. Many investigations on adsorption reveal that the  
process is effective for the colour removal from the dye  
effluents. Commercial activated charcoal (carbon) is found to  
be effective but expensive one. Thus, it is necessary to find an  
adsorbent which is abundant, cheap and also effective (63).  
2
.1.2 Adsorption Process  
Generally, the process of adsorption is used for removing  
the colour and for the treatment of wastewater (10). Among all  
the methods available for removal of dye from industrial waste  
waters, the adsorption process only proved as possible method  
for removal of dye in waste water treatment. Hippocrates and  
Pliny the Elder studied the carbon adsorption of porous for  
medicinal purpose and earlier the adsorption on carbon method  
was studied in an ancient Egyptian Papyrus. The quantity of  
absorbate that gather on the outer layer of the absorbent that  
commonly contains high surface area and porous structure are  
the significant properties to be noticed. The important point to  
consider is that the time required for achieving adsorption  
equilibrium should be as short as possible; therefore it is used  
for removing the dye from waste in shorter time. The physical  
and chemical methods are the two basic activation methods that  
are known to be the oldest for activated carbon adsorbent which  
is prepared from coal, lignite, wool and coconut shells. The  
formation of product is porous in nature along with a surface  
2
Classification of Dye  
Based on the application mode, dyes are generally  
classified according to their structure. It is virtue to point that  
the principal system adopted to classify by its applications are  
Color Index (C.I) with its five-digit number and hue (51) shown  
in Table 1.  
2
2
area ranges from 500m /g to 2000m /g which is large. As a  
result, many researchers attempted to develop an alternate  
Corresponding author:Krishnaveni J, Department of Chemistry, Suguna college of Engineering, Coimbatore. Tamilnadu, India. E-  
mail: trustfulmejency@gmail.com  
2
18  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 218-223  
cheap adsorbent and for controlling the pollution that may  
replace the available commercial activated carbon by  
Adsorption process.  
Therefore, adsorption processes are more advantageous over  
the available process due to its low capital cost, operation cost  
and also for simpler design. Absorbents which are naturally  
available, wastes and by products obtained from industries and  
synthetic products which are economical are called low price  
adsorbents. Researchers suggest and adopt this concept  
according to the various discussions on forming, using and  
applying the low-price adsorbents. The low-price adsorbents  
studied on the based on their availability as follows: (a) natural  
available materials; (b) industrial/ Domestic/ Agricultural  
Table 1: Classification of Dyes  
Types  
Solubility  
Sources  
Ink jet printing, nylon, paper,  
Soluble in water leather modified acrylic, wool,  
food and cosmetics.  
Acid  
Dyes  
Polyesters that modified,  
wastes and  
(biomass).  
by-products; and (c) synthesized products  
Basic  
Dyes  
medicine, nylons, polyethylene  
terephthalate of dyeing cation,  
Soluble in water  
paper and polyacrylonitrile.  
Insoluble in  
water  
Cellulosic fibers, cotton, rayon  
and wool.  
2.2.1 Naturally available Materials  
The naturally available materials are used as cost  
Vat Dyes  
low adsorbents which exist in natural environment and are used  
as such or with small treatment. The bark of the Eucalyptus can  
be used as an absorbent without any minor treatment for dye  
removal. Wood is used for the acid removal and basic dye  
removal to overcome the economic drawback of activated  
charcoal. Coal which exists naturally is used for removing both  
acid and basic dye. For the removal of Triazo direct dye, coal-  
based adsorbents like lignite coal, bituminous coal and char  
fines have been used. Peat is another adsorbent which is  
naturally available and used for the various pollutants and dyes  
by most of the researchers. Ramakrishna and Viraraghavan (46,  
Solvent  
Dyes  
Insoluble in  
water  
Gasoline, waxes, oils, petrol and  
lubricants.  
Direct  
Dyes  
Anionic dyes  
which are  
soluble in water  
Nylon, cotton dyeing, rayon,  
leather and paper.  
Reactive  
Dyes  
Disperse  
Dyes  
Cotton, other cellulosic, nylon and  
wool.  
Nylon, polyester, cellulose and  
fiber acrylics.  
Soluble in water  
Water-insoluble  
non-ionic dyes  
2
.2 Low cost Adsorbents  
Physical methods like ion exchange and reverse osmosis  
48) identified the potential of adsorbent such as peat, bentonite  
clay, fly ash and slag for removing the acid, base and disperse  
dye. Of many naturally available materials, clay occupies a  
very good place in being cheap, abundant and possessing  
excellent property of adsorption. Sepiolite were used for the  
removing the reactive blue 221.  
were used for the removal of dyes form the industrial waste  
water. However, due to their high capital and operational costs,  
these methods restrict the use in large scale level in the  
industries. Among all the process that are available for treating  
the effluents, adsorption method shows possible treatment to  
remove the organic pollutant from industrial wastewater.  
Table 2: Methods of Dye Removal  
Methods  
Types  
Drawback  
Advantages  
Economically attractive. Good  
removal efficiency Cost  
intensive regeneration process,  
Regeneration with low loss of  
adsorbents, Good sorption for  
specific colourant, Effective  
removal for a wide range of  
colourants at low volumes (6).  
Effective for both soluble and  
insoluble colourants, Capable  
of decolourizing wide variety  
of wastes, Short detention time  
and low capital costs, Good  
removal efficiencies (6, 59,  
Sedimentation process, Reverse  
Osmosis, microfiltration,  
ultrafiltration, nanofiltration  
Life span of membrane is short, membrane  
is costly, energy consumption is high and  
high pressure on working (61).  
Physical  
Treatment  
Coagulation, Flocculation Process,  
2
Oxidation process (H O2, Cl, Fenton’s The pH range less than 3.5 shows sludge  
reagent, KMnO and O  
Chemical  
Treatment  
4
3
), Ozonation  
formation, long reaction time (2, 22, 33,  
49, 60, 68).  
process, Photo catalysis, Advanced  
Oxidation Process.  
67).  
Colour removal is facilitated  
along with COD removal,  
Resistant to wide variety of  
complex colourants. Bio gas  
produced is used for steam  
generation, Good removal  
efficiency for low volumes and  
concentrations. Very effective  
for specific colourant removal  
Conditions like Anaerobic, Aerobic  
or both anaerobicaerobic  
Bacteria and fungi such as  
Large landscape is required, longer times,  
cost-effective, biodegradability is low,  
flexibility is low in design and operation  
(4, 11, 13, 44, 50, 52).  
Biological Phanerochaetechrysosporium,  
Treatment Escherichia coli, Pseudomonas  
aerogenosia, Bacillus species, and  
various microorganisms of  
Klebsiellaspecies.  
(
6, 59, 67).  
2
19  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 218-223  
Besides  
smectites,diatomite and alunite clays are also used as adsorbent  
for dye removal. TiO nanoparticles are used for the removal of  
methyl violet and Zeolite is the adsorbent which is microporous  
in nature utilized mainly for eliminating pollutants and dyes  
these,  
montmorillonite,  
kaolinite,  
The possibility of using palm oil ash as a low-price adsorbent  
for the successfully removed the Two commercial dyes i.e.  
disperse blue and disperse red dyes (26). Attempt has been  
made to utilize the boiler bottom ash, saw dust ash, rice husk  
ash and wood coal with impregnation of an adsorbent for the  
removing the dye of basic nature (58). Shale oil ash was used  
as an adsorbent for the removal of dyes. Red mud, a by-product  
of aluminium industry has been investigated (37) for the  
removal of various dyes such as fast green, rhodamine B,  
methylene blue, congo red and also by diatomite. Another  
productive investigation was also done with the various basic  
dyes on process of adsorption and also onto Microporous  
activated carbon prepared from Euphorbia antiquorum L was  
impregnated with polyvinyl alcohol (62, 69).  
2
(
39, 42). Beach sand coated with polyaniline were used as an  
efficient green adsorbent for removing dye from aqueous  
solution (7).It has proved that beach sand has extremely cost-  
effective substrate for coating with polyaniline in order to be  
used as efficient adsorbent for dye removal from aqueous  
solutions.  
The removal of the anionic dyes using natural sepiolite and  
bentonite are related with the activated carbon was studied  
(
17). A surfactant removal of 90% was achieved in within 15  
min due to the more affinity between adsorbent and surfactant.  
Natural bentonite activated with 0.5 M H2SO4 was proved that  
the most successful adsorbent for ethoxylatednonylphenol.  
During the combustion of liquid fuel in fertilizer plants,  
carbon slurry waste is generated and it has been transformed  
into activated carbon which is inexpensive. Generally, Sewage  
sludge is used to develop the material which is carbonaceous  
with the help of chemical activation. This material was utilized  
to remove dyes and phenol along with the wastes of blast  
furnaces slag, sludge and dust from the steel industries. To  
control the environment impact and to improve the low- price  
concept, an attempt was made to eliminate the dyes such as  
Methylene Orange and Methyl Blue by alginate beads that has  
activated carbon and carbon nanotubes(55).They showed the  
better results in The dye removal using 40 g L-1 of CNTs was  
above 90% and also the amount of dye adsorption improved  
with increasing the initial concentration of the dye, CNTs  
dosage, and temperature.  
2
.2.2 Industrial/ Domestic/Agricultural wastes and its by-  
Products  
Besides many naturally available materials, numerous  
wastes from agricultural and its by-products were explored to  
be an adsorbent for eliminating the pollutants by a bunch of  
workers. Sawdust, almond shells, walnut and poplar has been  
studied for removing the acid red 183 and green 25 dyes from  
the aqueous solution. Some cheap adsorbents such as walnut  
sawdust, pitch pine, cherry, oak and ground hazelnut materials  
were carried out to remove the Acid Blue and Methylene Blue  
dyes from the effluents (19). To remove basic and direct dyes,  
Sunflower stalks and cotton stalk were studied as adsorbent  
Many materials like polymer materials, bottom ash, waste  
tyre rubber, de-oiled soya (34), double layered hydroxides,  
pyrite, black tea leaves and artificial iron sulphide, impregnated  
alum activated alumina, sorel’s cement, rosacanina and  
calcined alunite seeds was studied as an adsorbent and proved  
as a effective removal efficiency percentage onto to the dyes.  
Utilization of waste peels of potato and activated orange (35),  
husk of potato (43), peels of mandarin and yellow passion fruit,  
Brazilian pine fruit shell, coffee bean, babassu, cupuassu  
related to cocoa, tree leaves, wood shavings (12), powders of  
different plant leaves (57) were investigated and showed the  
better results in efficiency of dye removal percentage in  
different pH range and high removal dye at 333K. The powder  
of orange peel (18,29) was also used as an adsorbent and  
proved to be cheap and economical. Adsorbent like Mehagoni  
leaf and Neem is used for dye removal from the effluents  
discharged in textiles (9, 56). The efficiency for Neem leaf was  
found Blue BFG 50.5%, Orange MERL 66.02%, Red  
EV8V5(dye) 57%, and for Mahagoni leaf Red EV8V5(dye)  
77%, Blue BFG 67.77%, Orange MERL 60%, respectively.  
The adsorption of metals by different materials namely  
used tyres carbon, phosphate treated sawdust, olive cake/stone  
and pine needles, moss, risk husk carbon, cactus, maize cob,  
sphagnum moss peat, sugar beet pulp, cane bagasse, cow dung  
carbon, waste slurry, rice straw, quaternised wood, carbon  
slurry and hen feathers. Activated groundnut husk carbon, husk  
of coconut, ground nut shell, coconut shell, leaf mould, palm  
pressed fibers, wood and coconut juice carbon and coconut  
fiber (16, 23, 32). From the above investigations proved that  
Activated Rice Husk, at 500 mg/L the highest of 62%, 68% and  
65% elimination of Zn (II), Cu(II) and Cr(VI) were obtained  
respectively, but in Activated Coconut Fiber, at 500 mg/L the  
greatest of 64%, 67% and 72% removal of Zn(II), Cu(II) and  
Cr(VI) were obtained respectively.  
(
15). Subha and Namasivayam, 2009, studied on coir pith  
which is an agriculture residue as a good adsorbent for  
adsorptionof Rhodamine B and Acid Violet dyes that proved.  
The adsorption capacity was found to be 2.6mg/g of acid violet  
dyes (64). An attempt of removing industrial dye using dried  
green seaweeds was carried out (47). The maximum removal  
percentage and efficiency was 100mg fine biomass of green  
seaweeds 100 mg/L dye solution. Another appealing  
agriculture waste is the sawdust, mainly used for removing  
heavy metals and dyes (38). The study was also carried out with  
timber sawdust for the methyl violet dye biosorption and dye  
adsorption dependency by other workers (40) the chemically  
tailored adsorbent behaves proficiently in a extensive pH range  
throughout the consistent and quick sorption process.  
The wastes and the by-products which are formed from  
steel, sugar, metal, thermal power planta and industrial  
fertilizer has been used as an adsorbent. From the bamboo pulp  
mill by-product spherical sulphonic lignin was prepared and  
Lignin was prepared from the paper mills discharge waste and  
by-product reviewed (24, 25). They also highlighted the  
utilization of Lignin adsorbent and its effective  
removalperformance and recovery of cationic dyes.  
Coal based thermal power plant discharges high amount of  
fly ash and by-product materials. Fly ash as a cheap adsorbent  
were studied to remove cationic dye such as crystal violet and  
rosaniline hydrochloride. Dye removal such as acid yellow,  
disperse blue and direct yellowcan be done utilizing the fly ash  
adsorbent (5). By-products and wastes of steel plants  
discharges wastes and by-products such as blast furnaces slag,  
sludge and dusts wasstudied for the dye removal. Different dye  
removal like disperse red and acid red was achieved by fly ash  
adsorbent compare with other three adsorbents like peat,  
bentonite clay, and steel plant slag were suggested by other  
workers (31,46).  
Orange peel is used for the removing acid violet dye from  
aqueous solution and resulted in the maximum removal of 87%  
was proved at pH 2.0 for an adsorbent dose of 60 g/50 ml of 1  
Rice mills contains waste residues of rice husk ash, were  
used as an adsorbent for removing the dye of acidic in nature.  
2
20  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 218-223  
g/L dye concentration (45). Banana pith is utilized for the  
process of adsorption of basic violet dyes from the waste water  
and Bagasse pith is used to eliminate the dyes which are acidic  
and basic nature. Another adsorbent such as husks of barley,  
corncobs and wheat straw was used for the adsorption of  
Cibacron Red, Blue and Yellow and Remazol Red, Black and  
palm fruit bunch was explored for the adsorption method to  
remove the Basic Red, Basic Yellow and Basic Blueby  
Robinson et al., 2001. Agricultural waste rice straw as  
adsorbent was employed to remove Malachite green (30), it  
was effectively removed more than 87% at concentration of 5  
g/L and at pH 8.  
on Spirogyra Rhizopus. The monolayeradsorption capacity of  
S. rhizopus was found to be 1356.6 for AB 290 and 367.0 mg/g  
for AB 324 dyes. The biosorption data of AB 290 and AB 324  
dye best fits with Koble-Corrigan and the Redlich-Peterson  
models. The thermodynamic parameters such as entropy,  
enthalpy and free energy change shows reversible and  
exothermic nature of the biosorption of the dyes by Spirogyra  
Rhizopus (41).  
Algae such as Oscillatorialimosaand Nostoc commune are  
used for phycoremediation (8). This investigation showed that  
both algal species are effective for the degradation of several  
nutrients, chlorides and Electrical conductance from the  
wastewater. On all the selected algae Oscillatoriahasbest  
potential and act better for the large-scale treatment. Both the  
species have good performance for nitrogen fixation and the  
biomass produces act as bioresource for cultivation of paddy.  
Phycoremoval of nutrients, chlorides etc was found to be in  
lower concentration of wastewater and can be a sustainable  
method for wastewater treatment.  
2
.2.3 Biomass as an Adsorbent  
Microorganisms such as Bacteria, Fungi and Algae have  
great potential for degradation of dyes and has tendency to  
absorb the dyes from industrial effluents and also from aqueous  
solution. Many live microbial organisms namely Yeast, Fungi,  
Algae and Bacteria were investigated to confer the capability  
to uptake massive amount of dyes and heavy metals. Biomass  
is abundant and available at low cost that drives huge attraction  
in dye wastewater treatment. From Water Hyacinth having dry  
roots and are non-living, biomass can be produced as an  
adsorbent for removing dyes. Hydrillaverticillata has been  
reported as an absorbent for the elimination of Basic dye, Basic  
Violet and Methylene Blue (53). This Hydrillaverticillata plant  
was exposed to different dye concentrations under the  
hydroponic culture medium. The plant growth was normal at  
low concentration of dye and found to greater dye removal  
efficiency. The rate of removal efficiency decreased with  
increase in dye concentration. Studies like Langmuir and  
Freundlich isotherm, SEM, FTIR data were found to fit well.  
The investigation concluded that H. Verticillate can be used as  
biosorption for waste water effluent management.  
A massive potential and physicochemical property were  
identified in biomass adsorbent. By Fu and ViraRaghavan(21)  
investigation on biosorption using Aspergillusniger fungus  
from the discharged wastewater of textile industry by using  
Spirogyra species, a fresh water green algae removes dyes such  
as Congo Red, Disperse Red, Basic Blue 9 & Acid Blue 29.  
The different functional groups present in the biosorbents are  
capable of biodegrading and biosorbing the dye from the  
wastewater and becomes more selective. Alternative to old  
treatment, biosorbent emerges as a best one on various research  
studies. Biomasses of Algae and fungi shows the excellent  
capability to discoloration (21). Using industrial fermentation  
processes, fungal biomass can be obtained economically for the  
adsorption of dyes and also which is a non-pathogenic material  
to human and animals. Spirogyra majuscule has high capability  
for binary uptake of dyes from the aqueous solution and this  
species has huge potential and could be very effective for the  
treatment of textile wastewater in industrial scale. The species  
could be a natural adsorbent without high cost. All these fungal  
biomasses can be used in the treatment dye contaminated  
effluent (1). Fomitopsisfeei and Spirogyra majuscula are the  
low-price fungal biomasses, which have been used as  
adsorbents for removing dyes (1, 14, 27, 65). The most  
promising biosorbent was identified to be Algae due to its  
abundance in salt water and fresh water. The potential of Algae  
biosorption is widely used because of their excellent binding  
affinity, huge surface area and the properties of cell wall  
contains functional groups of carboxylates, amino, hydroxyl  
and phosphate. This property is responsible for removal of dye.  
Spirogyra rhizopus may have the property of accumulating the  
dyes on the outer surface of Algal Biopolymers (41). The  
kinetic and equilibrium studies of biosorption were carried out  
Recent studies showed that among all the unicellular algae  
species,  
Rhizocloniumspecies,  
Dinoflagellates) of  
heterogeneous  
Diatoms,  
fresh  
species  
(Microsporaspecies,  
Lyngbyaspecies  
water algae  
and  
and  
Chlamydomonasreinhardtii has added huge interest in the  
treatment of dye pollutant in aqueous solution (20). The result  
of this investigation reveals the process of metal ion binding is  
due to the biosorption. The Chlamydomonasreinhardtii best fit  
for removing copper and lead (II) ions from the aqueous  
solution. The conditions like medium, pH, biomass  
preparation, metal  ion and biomass concentration have  
greater effect on copper and lead uptake. Regularizing these  
conditions increased the affinity of algal cells for the metals.  
The species are found to be efficient and economic biomaterials  
for removing the heavy metals from metal  contaminated  
wastewater (20). Marine green algae, Ulva lactuca and  
Sargassum are relatively large in surface area used for the  
removal of dye. Biosorption experiments were carried out for  
the removal of Methylene Blue onto dried Enteromorpha,  
Mediterranean green alga, onto Posidoniaoceanicafibers, a  
marine lignocellulosic biomass (38,66). The experimental data  
shows a chemisorption process. The P. Oceanicafibres  
indicates that the experimented Mediterranean biomass,  
revealed a high biosorption towards basic dye (36). Natural  
biosorbentulvalactuca and sargassum species reveals  
a
potential adsorption capacity rather than commercial adsorbent  
alumina. This Biosorbent shows 96% removal. All these were  
concluded by the adsorption models and shows spontaneous  
behavior (66). Mousavi et al., were investigated for the removal  
of Pb (II) ion in the aqueous solution by using the  
KombuchaScoby and GO/Fe  
adsorption efficiencies for GO/Fe O  
4
were found to be 98.08 and 99.73%.  
3
O
4
adsorbent (36). The maximum  
3
and KombuchaScoby  
Although Biosorption& Biomass acts as an excellent  
process replacing the non-renewable method for removing the  
dyes, there is only limited information available on the  
interactions and more studies are needed to confirm the  
interactions (3, 50, 54). To change the biosorption process  
economical wise, it is necessary to regenerate the spent  
adsorbent in multiple sorption cycles. Several methods are  
investigated in the literature about the regeneration of organic  
pollutant loaded biomass. But detailed study is needed on spent  
biosorbent regeneration (3).  
3
Conclusion  
The review article highlighted the different methods that  
are usingthe easily available and cheap adsorbents for removal  
2
21  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 218-223  
of dyes from the effluents.It is also identifiedthat many  
researchers use adsorption method to remove the organic and  
inorganic contaminants from the industrial effluents. Non-  
viable biomaterials are found to be effective, easier and have  
the capability to remove the color excellently. It is reviewed  
that the research on biomaterials reveals that they emerge to be  
a promising alternative to conventional treatment system. It’s  
evidently proved that adsorption method hasmany natural  
biomaterials are available for removal of dyes from effluents.  
Many of these natural bio materials have excellent potentials  
for the dye removal from the effluents.  
[12]Cardoso NF, Lima EC, Pinto IS, Amavisca CV, Royer B, Pinto  
RB, Alencar WS, Pereira SFP. Application of Cupassu shell as  
biosorbent for the removal of textiles dyes from aqueous solution.  
Journal of Environmental Management. 92 (2011) 1237  1247.  
[13]Crini G. Non-conventional low-cost adsorbents for dye removal: a  
review. Bioresour. Technol. 97 (2006) 10611085.  
[14]Demir G, Ozcan K, Tufekci N, Borat M. Decolorization of  
Remazol Yellow RR Gran by white  
rot  
fungus  
Phanerochaetechrysosporium. Journal of Environmental Biology.  
28 (2007)813 817.  
[
[
[
[
15]Deng H, Lu J, Li G, Zhang G, Wang X. Adsorption of methylene  
blue on adsorbent materials produced from cotton stalk. Chemical  
Engineering Journal. 172 (2011) 326 334.  
16]Edwin Vasu A. Surface modification of activated carbon for  
enhancement of Nickel (II) adsorption. E  Journal of Chemistry.  
5 (2008) 814 819.  
17]Espantaleon AG, Nieto JA, Fernandez M, Marsal A. Use of  
activated clays in the removal of dyes and surfactants from tannery  
wastewater. Appl. Clay Sci. 24 (2003)105110.  
18]Fahim Bin AbdurRahman, MaimunaAkter, Zainal Abedin M.  
Dyes removal from textile wastewater using orange peels.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
International Journal of Scientific and Technology Research.  
(2013) 47-50.  
2
[19]Ferrero F. Dye removal by low cost adsorbents: hazelnut shells in  
comparison with wood sawdust. J. Hazard. Mater. 142 (2007) 144–  
Competing interests  
1
52.  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
[
20]Flouty R, Estephane G. Bioaccumulation and biosorption of  
copper and lead by a unicellular algae Chlamydomonasreinhardtii  
in single and binary metal systems: A comparative study. Journal  
of Environmental Management. 111(2012) 106 114.  
21]Fu YZ, Viraraghavan T. Fungal decolorization of dye wastewaters:  
a review. Bioresour. Technol. 79 (2001): 251262.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
[
[
22]Ghorai TK, Biswas SK, Dalai S, Pramanik P. Photooxidation of  
2
different organic dyes using Fe (III)- doped TiO nanophotocatalyst  
References  
prepared by novel chemical method. Applied Surface Science. 254  
(2008)7498 7504.  
[
1] AbuzerÇelekli, Mehmet Yavuzatmaca, Hüseyin Bozkurt. Binary  
adsorption of reactive red 120 and yellow 81 on Spirogyra  
majuscula. Middle-East Journal of Scientific Research.2 (2013)  
[23]Gopalakrishnan, Jeyadoss T, Manivannan V. Biosorption of Zn  
(II), Cu (II) and Cr (IV) from textile dye effluent using activated  
coconut fiber. Indian Journal of Science and Technology. 2(2009)  
1 4.  
[24]Gupta VK, Ali I. Chapter 2  Water Treatment for inorganic  
Pollutants by Adsorption Technology. Environmental Water;  
Advances in Treatment, Remediation and Recycling. (2013) 29 –  
91.  
[25]Gupta VK, Suhas, Application of low-cost adsorbents for dye  
removal  A review.Journal of Environmental Management. 90  
(2009) 23132342.  
[26]Hasnain Isa M, Siew Lang L, Asaari FAH, Aziz HA, AzamRamli  
N, Dhas JPA. Low cost removal of disperse dyes from aqueous  
solution using palm ash. Dyes and Pigments. 74(2007) 446453.  
[27]HimaBinduNidadavolu SVSSSL, Krishna Gudikandula, Shiva  
Krishna Pabba, SingaraCharyaMaringanti. Decolorization of  
triphenyl methane dyes by Fomitopsisfeei. Natural Science.  
5(2013) 30-35.  
7
40-748.  
[
2] Aguedach A, Brosillon S, Morvan J, Lhadi EK. Photocatalytic  
degradation of azo-dyes reactive black 5 and reactive yellow 145  
in water over a newly deposited titanium dioxide. Appl. Catal.B.,  
5
7 ( 2005) 5562.  
[
3] Aksu Z. Application of biosorption for the removal of organic  
pollutants: A review. Process Biochem. 40 (2005) 9971026.  
4] ALAhmed GK, Saud. Some aerobic bacterial degradation and  
decolorization of different azo dyes. Journal of Biology,  
Agriculture and Healthcare. 4 (2014) 72-81.  
[
[
5] Albanis TA, Hela DG, Sakellarides TM, DanisTG,Removal of  
dyes from aqueous solutions by adsorption on mixtures of fly ash  
and soil in Batch and Column Techniques. Global Nest: The Int.  
Journal. 2 (2000) 237 244.  
[
6] Anjaneyulu Y, Sreedhara Chary N, Samuel Suman Raj D.  
Decolourization of industrial effluents: available methods and  
emerging technologiesa review. Rev Environ Sci Bio/Technol,  
[28]Ho YS, McKay G.Sorption of dye from aqueous solution by peat.  
Chem.Eng. J. 70 (1998) 115124.  
2
005, 4: p. 245273.  
[
7] Ansari R, Mohammad-khah A, Nazmi M. Application of  
chemically modified beach sand as low-cost efficient adsorbent for  
dye removal. Current Chemistry Letters. 2 (2013) 215223.  
[29]Indira Khatod. Removal of methylene blue dye from aqueous  
solutions by neem leaf and orange peel powder. International  
Journal of Chem Tech Research. 5(2013) 572-577.  
[
8] Azarpira H, Behdarvand P, Dhumal K, Pondhe G. Potential use of  
cyanobacteria species in phycoremediation of municipal  
wastewater. International Journal of Biosciences. 4 (2014) 105–  
[30]Jagdish Singh, Gagndeep Kaur. Freundlich, Langmuir adsorption  
isotherms and kinetics for the removal of malachite green from  
aqueous solutions using agricultural waste rice straw. International  
Journal of Environmental Sciences. 4(2013) 250258.  
[31]Janos P, Buchtova H, Ryznarova M. Sorption of dyes from  
aqueous solutions onto fly ash. Water Res. 37(2003) 49384944.  
[32]Kannan N, Vijayakumar A. Comparative study on the removal of  
Red Industrial dye using Groundnut shell and Coconut shell  
Carbon. Indian J. Environmental Protection.28 (2008) 1034 –  
1040.  
1
11.  
[
9] AzharulArafath Md, Mobarak Hossain, Alam SS, RaihanSourav.  
Studies on adsorption efficiency and kinetics of dye removal from  
textile effluent using some natural bio-adsorbent. International  
Journal of Scientific Engineering and Technology. 2 (2013) 853-  
8
56.  
[10]Bansal R.C, Goyal M. Activated Carbon Adsorption. Taylor &  
Francis Group. Boca Raton. 2005.  
2
[33]Konstantinou IK, Albanis TA. TiO -assisted photocatalytic  
[11]Barragan B.E, Costa C, Carmen Marquez M. Biodegradation of  
azo dyes by bacteria inoculated on solid media. Dyes Pigments.75  
degradation of azo dyes in aqueous solution:kinetic and  
mechanistic investigations-A review.Appl.Catal.B. 49 (2004)1–  
14.  
(2007)7381.  
2
22  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 218-223  
[
34]Mittal A, Mittal J, Malviya A, Dipika Kaur, Gupta VK. Adsorption  
of hazardous dye crystal violet from wastewater by waste  
materials. Journal of Colloid and Interface Science. 343(2010)  
[56]Sharma A, Bhattacharyya KG. Utilizaion of a biosorbent based on  
Azadirachtaindica (Neem) leaves for removal of water - soluble  
dyes. Indian Journal of Chemical Technology. 12(2005) 285 295.  
[57]Sharmila S, Shashi Bala, Jeyanthi Rebecca L. Adsorption of  
Rhodamine B on different plant leaf powder. Journal of Chemical  
and Pharmaceutical Research. 5(2013) 144147.  
[58]Shri Ram Chaurasi, Shashikant. Removal of Basic Dye from  
aqueous solution using natural adsorbents: Kinetic studies. Indian  
J. Environmental Protection. 27 (2007) 782  788.  
[59]Sivarajasekar N, BaskarRajoo. Agriculture waste biomass  
737-748.  
4
63- 473.  
[
35]Monika, Drivjot, Amita. Adsorption of dyes from aqueous solution  
using Orange Peels: Kinetics and Equilibrium studies. Journal of  
Advanced Laboratory Research in Biology. (2012) 3:1.  
[
36]Mousavi S.M, Hashemi S.A, Amani A.M, Mojoudi F, Arjomand  
O. Pb(II) removal from synthetic wastewater using  
KombuchaScoby and graphene oxide/Iron oxide. Physical  
Chemistry Research. 6 (2018) 759-771.  
[37]Namasivayam C, Arasi D. Removal of Congo Red from  
wastewater by adsorption onto waste red mud. Chemosphere.  
3
4(1997) 401417.  
[60]Soares OSGP, Orfao JJM, Portela D, Vieira A, Pereira MFR.  
Ozonation of textile effluents and dye solutions under continuous  
operation: Influence of operating parameters. J. Hazard. Mater.  
137 (2006)16641673.  
[
38]Ncibi MC, BorhaneMahjoub, MongiSeffen. Kinetic and  
equilibrium studies of methylene blue biosorption by  
Posidoniaoceanica(L.) fibres. Journal of Hazardous Materials B.  
1
39 (2007) 280285.  
[61]Sostar-Turk S, Simonic M, Petrinic I. Wastewater treatment after  
reactive printing. Dyes Pigments.2005, 64:147152.  
[
[
[
[
39]Nezamzadeh Ejhieh, Banan Z. Sunlight assisted photo  
decolourisation of crystal violet catalyzed by CdS nanoparticles  
embedded on Zeolites. Desalination, 284(2012) 157  166.  
40]Ofomaja AE. Ho YS. Effect of temperatures and pH on methyl  
violet biosorption by Mansonia wood sawdust. Bioresour.  
Technol. 99(2008) 54115417.  
[62]Srinivasan P,SivakumarP,Raja S. PVA supported microporous  
adsorbents for the remediation of dye house wastewater.Journal of  
Scientific and Ind. Research. 72(2013)193-197.  
[63]Srinivasan A, Viraraghavan T. Decolorization of dye wastewaters  
by biosorbents:A review. 91(2010)1915  1929.  
41]Ozer A, GonulAkkaya, MeralTurabik. Biosorption of Acid Blue  
[64]Subha R, Namasivayam C. Zinc chloride activated coir pith as low-  
2
90 (AB 290) and Acid Blue 324 (AB 324) dyes on Spirogyra  
cost adsorbent for the removal of 2,4 dichlorophenol:  
Equilibrium and Kinetic studies. Indian Journal of Chemical  
Technology. 16(2009) 471 479.  
rhizopus.Journal of Hazardous Materials, B. 135(2006) 355364.  
42]Panneerselvam P, SathyaSelvaBala V, Thinakaran N,  
Baskaralingam P, Palanchamy M, Sivanesan S. Removal of  
Nickel (II) from aqueous solutions by adsorption with Modified  
ZSM 5 Zeolites. E Journal of Chemistry. 6(2009) 729 736.  
43]Pooja V Shrivastava. Study on Color Removal of Basic Dye by  
Potato Husk as an Adsorbent. Journal of Chemical, Biological and  
Physical Sciences. 2(2012) 597-600.  
[65]Swamy J, Ramsay JA. The evaluation of white rot fungi in the  
decoloration of textile dyes. Enzyme and Microbial Technology.  
24(1999)130 137.  
[66]Tahir H, Muhammad Sultan, QaziJahanzeb. Removal of basic dye  
methylene blue by using bioadsorbentsUlva lactucaand  
Sargassum. African Journal of Biotechnology. 7 (2008)2649-  
2655.  
[
[
44]Rai HS, Singh S, Cheema PPS, Bansal TK, Banerjee UC.  
Decolorization of triphenylmethane dye-bath effluent in an  
integrated two- stage anaerobic reactor Journal of Environmental  
Management. 83 (2007) 290 - 297.  
[67] Wang SA. Comparative study of Fenton and Fenton-like reaction  
kinetics in decolourisation of wastewater. Dyes and Pigments.  
7
6(2008) 714720.  
[
45]RajeshwariSivaraj, Namasivayam C, Kadirvelu K. Orange peel as  
an adsorbent in the removal of Acid Violet from aqueous solutions.  
Waste Management. 21 (2001) 2001.  
[68] Wu J, Doan H, Upreti S. Decolorization of aqueous textile  
reactive dye by ozone. Chemical Engineering Journal.  
1
42(2008)156-160.  
[46]Ramakrishnan KR, Viraraghavan T. Dye removal using low cost  
adsorbents, Water Sci. Technol. 36(1997)189196.  
[
47]RekhaDeokar, AnajaliSabale. Biosorption of methylene blue from  
aqueous solution onto green seaweeds. International Journal of  
Recent Scientific Research. 5(2014) 347-351.  
[69] Yi Liu, Zheng Y, Wang A. Enhanced adsorption of Methylene  
Blue from Aqueous solution by Chtosan  g  poly (acrylic  
acid)/ Vermiculite hydrogel composites. Journal of  
Environmental Sciences. 22(2010) 486 493.  
[
[
[
48]Renugadevi N, Rajalakshmi R, Subhashini S, Lalitha P,  
Malarvizhi T. Usefulness of activated carbon prepared from agro  
waste in the removal of dyes from aqueous solution. Indian.J.  
Environmental Protection. 29(2009) 250 254.  
49]Rishi  
Ananthashankar,  
Abdel  
Ghaly.  
Photocatalyticdecolourization of textile effluent containing  
reactive red 120 dye with UV/TIO2, American Journal of  
Engineering and Applied Sciences. 6(2013) 252-262.  
50]Robinson T;,Chandran B, Nigam P. Studies on the production of  
enzymes by white rot fungi for the decolurisation of textile dyes.  
Enzyme and Microb. Technol. 29(2001) 575 -579.  
[51]Sabnis RW. Handbook of Biological Dyes and Stains. John Wiley  
&
Sons, Inc., Hoboken, New Jersey.2010.  
[
52]Sani R, Banerjee U. Decolorization of triphenylmethane dyes and  
textile and dye-stuff effluent by Kurthia sp. Enzyme and Microb.  
Technol. 24(1999) 433437.  
[
[
[
53]Saranya G, Saravanan P, Dharmendira Kumar M, Renganthan S.  
Equilibrium uptake and bioaccumulation of Basic Violet 14 using  
submerged MacrophyteHydrillaverticillata. CLEAN  Soil, Air,  
Water, 39(1999) 283 288.  
54]Sarwa P, Verma SK. Decolourization of orange G dye by  
microalgae AcutodesmusObliquusstrain PSV2 isolated from  
textile industrial site. International Journal of Applied sciences and  
Biotechnology. 1(2013) 247-252.  
55]Shahryari  
Z,  
AtaallahSoltaniGoharrizi,  
Mehdi  
Azadi.  
Experimental study of methylene blue adsorption from aqueous  
solutions onto carbon nano tubes. International Journal of Water  
Resources and Environmental Engineering. 2 (2010) 016-028.  
2
23