Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 7-16  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)16  
An Overview on Major Design Constraints, Impact  
and Challenges for a Conventional Wastewater  
Treatment Design  
1
2
3
2
Saidur R Chowdhury *, Feras Alhelal , Mohammad Alahmadi , Naif Alqahtani , Abdullah  
2
3
Alkhaldi , Andi Asiz  
1
Assistant Professor, Civil Engineering Department, Prince Mohammad Bin Fahd University (PMU), Al khobar, Saudi Arabia  
2
Saudi Consolidated Engineering Company, Khatibalami, Khobar, King Faisal Road. KSA  
3
Civil Engineering Department, Prince Mohammad Bin Fahd University (PMU), Al khobar, Saudi Arabia  
Received: 08/07/2020  
Accepted: 04/09/2020  
Published: 20/12/2020  
Abstract  
The conventional wastewater (WW) treatment plant includes physical, chemical, and biological treatment processes that can protect the  
receiving water bodies from water pollution. The common design constraints, challenges as well as environmental impact would make the  
wastewater treatment plant’s (WWTP) construction and operation more complex and demanding tasks. Major project constraints for WW  
plant design are economics, accessibility, fulfilling technical requirements, institutional set-up, health and environment, personnel capacity,  
and political commitment etc. Design methodology adopted in the current study included project location, unit selections, the design capacity,  
design period as well as proximity to the population and layout plan. The present manuscript discussed briefly about effluent quality  
requirements, design issues, environmental impacts, details, and safety concerns. It also highlighted the necessary flexibility to carry out the  
treatment satisfactorily within the desired range of influent WW characteristics and flows. In the present study, every step of the design was  
verified with Environmental Regulations and suggested to overcome all constraints while designing WWTPs so that standard operational  
code for the specific region could be implemented to achieve the best treatment performance. The results obtained from analytical calculation  
were optimized to achieve the best design parameters for field application. The optimized values also reduce the construction and operation  
cost during the field application.  
Keywords: Wastewater (WW), Challenges, Constraints, Design, Impact, Treatment, Plant  
1
depending on the resources’ availabilities (7). The conventional  
1
Introduction  
steps include primary, secondary to tertiary treatment (1). Primary  
treatment considers as the first step of WW treatment. Many  
advanced WWTPs located in the developed countries started with  
primary treatment and then equipped with other treatment units as  
increasing wastewater loads and the requirement to produce clean  
water prior to final disposal into receiving bodies (7). The  
treatment also increases the production of treated water for  
agriculture and other developments. Primary treatment is used to  
reduce suspended and floating solids from raw WW. This level  
can be defined as mechanical or physical treatment, although  
chemicals are often applied to complete the sedimentation process  
Wastewater (WW) treatment plant is very important as any  
other necessary facility for constructing a sustainable city.  
Domestic wastewater treatment consists of various units to  
remove different types of contaminants from WW (1-3). It  
includes physical, chemical, and biological treatment processes  
that can protect the receiving water bodies from water pollution,  
make recycled water as well as reduce the volume of sewage  
water and sludge (4). Environmental benefits from WW include  
safer and more stable healthy aquatic ecosystems and reduce  
amount of wastewater released into the environment without any  
treatment (5). Any wastewater treatment provides an opportunity  
for sustainable solution to some aspects of the water scarcity  
problem (6). The proper management of wastewater develops the  
sustainable and healthy environment (5). The common design  
constraints, challenges as well as environmental impact would  
make the WW treatment plant’s construction and operation more  
complex and demanding tasks. WW treatment contains a series of  
steps that can have increasing effectiveness and complexity  
(
8). Primary treatment can reduce the biochemical oxygen  
demand (BOD ) and chemical oxygen demand (COD) of the  
5
incoming wastewater by 25-50% (8-9). During primary treatment,  
the total suspended solids are removed by approximately 50-70%  
as well as 65% removal could be achieved for oil and grease (9).  
Secondary to tertiary treatment applies to purify wastewater more  
and can also act as a resource recovery unit (7).  
*
Corresponding author: Saidur R Chowdhury, Civil Engineering Department, Prince Mohammad Bin Fahd University (PMU), Al-khobar,  
Saudi Arabia. E-mail: schowdhury1@pmu.edu.sa  
7
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 7-16  
The production and maintenance cost of treated water exceeds  
that of potable water in many regions of the world where sources  
of fresh water supply are plentiful. However, introduction to  
innovative technology in the water industry, the reclaimed water  
is usually sold to citizen at a cheaper rate to encourage its use (7).  
Ouda (7) further reported that fresh water supplies to the  
community would be inadequate due to increased population  
demands, or unplanned urbanization, and reducing clean water  
sources. In addition, using reclaimed water for non-potable uses  
save potable water for drinking, since less potable water is used  
for non-potable uses such as irrigation. Every human being uses  
the water in different way such as domestic, agriculture, and  
industrial or even for drinking. In the present study, design  
constraints, environmental impacts, costs and few challenges  
were highlighted to develop any conventional treatment plant in  
any newly developed cities. The outcome of the present study was  
extracted from the student capstone project in the civil  
engineering department at Prince Mohammad bin Fahd  
University (PMU) in Saudi Arabia. The study explored the  
processes to complete any conceptual treatment design within  
limited resources. In the present study, a large area in Al Firdous  
District under Jubail Industrial City in Eastern Province was  
selected to develop a sustainable new housing district. This new  
district includes houses, commercial complexes, multi-storey  
building, and gas stations. It is expected that in addition to the  
current volume of wastewater, a significant amount of wastewater  
would be generated from the area in the near future. If this  
wastewater would be discharged into the environment without  
treatment, it could be a severe threat to the public health and  
hazard to the environment. Thus, the proposed wastewater  
treatment plant within the new districts can help to reduce the  
pressure on the existing wastewater treatment plant (WWTP) in  
Jubail Industrial City in Kingdom of Saudi Arabia (KSA).  
The present study aimed to design a wastewater treatment  
plant to serve the community. The scope and objectives of the  
study were to evaluate major design constraints, impact and  
challenges while designing any conventional WW treatment  
plants. The manuscript also included the required consideration  
for plant construction site, the degree of effluent quality, design  
issues and details, outfalls, important facilities and common  
safety issues. The study also calculated volume of WW to be  
generated during the design period of 25 years; to develop the  
conceptualized design for the primary and secondary wastewater  
treatment units (based on the estimated wastewater); to assess the  
environmental impact of the proposed wastewater plant. The  
present study also verified major design requirement and  
consideration for successful WW plant operations. Till to date,  
very few studies have investigated constraints, impact and  
challenges for a conventional WW treatment plant design. This  
was one of the studies that focused on the basic information  
necessary to overcome the design constraint, sustainability and  
key challenges for constructing conventional WW treatment plant  
within newly developed cities under different environmental  
conditions.  
WW, applying standard practices for the necessary design  
parameters and optimizing design parameters based on applicable  
constraints and regulations. A proposed WWTP project intended  
to be located in Al Firdous District of Jubail Industrial City was  
used as the main vehicle for analyzing and synthesizing design  
information, process, and optimization. In the study, all analytical  
calculations for different design parameters were optimized by  
MS Excel Solver for verification and Justification.  
Environmental Impact Assessment (EIA) was evaluated by  
field visits and document study. The results of EIA for the  
proposed project were verified and contrasted with the recent  
design practices. Important information about the project site and  
existing environmental condition was discussed with the Local  
City Corporation and stakeholder to ensure its feasibility. All  
observations and design constraints were identified, compared,  
verified as well as provided justification for solution by the  
investigators. Design steps were evaluated based on applicable  
theories, expert opinion, site condition, and optimum standard  
values. At the end, all potential challenges were summarized in  
this study and their possible solutions were discussed. The  
manuscripts also listed some important considerations to  
successfully complete any WWTP design that could fit with site  
condition for a newly developed plant.  
3
WW Project Constraints and operational code  
Sustainable development provides a good standard of living  
in any society. It can facilitate important solutions to the financial,  
environmental, and societal challenges without causing a hazard  
to human and environmental issues. Environmental protection  
and conservation of natural water body consider design  
requirement and design consideration significantly while any  
sustainable development in environmental sector takes place.  
Water pollution from wastewater discharges may vary depending  
on their types, sources and strength. These wastewaters entered  
into the natural water body through various channel can cause a  
great concern to community. The conventional WW treatment can  
reduce this problem. Prior to constructing WW plant, numerous  
constraints need to be checked for sustainability. Any design  
constraint for WW project means the list of problems that are  
counted to overcome prior to the final design approval in case of  
successful construction and plant operation. Major project  
constraints for wastewater plant design (WWTP) are economics,  
accessibility, health and environment, prevailing wind direction,  
suitability of hydrogeological condition, fulfilling technical  
facilities, institutional set-up and personnel capacity and  
policy/political commitment etc.  
Another major constraint for wastewater treatment plant is  
enforcement of standards monitoring. The design capacity for  
wastewater plant should be such that the treated effluent would  
continuously meet accepted quality criteria that can reduce any  
risk. WWT related risk occurs due to the failure to meet  
established standards at source (i.e. WW treatment outflow); not  
complying standard operation procedure (SOPs); lack of qualified  
employees to monitor treatment facilities; ineffective monitoring  
of WW reuse system; absence of skilled personnel; lack of proper  
monitoring equipment; and expensive operation and monitoring  
costs (Ministry of the Environment 2008) (10).  
2
Study Methodology  
The methodology used in the study included: by reviewing  
and verifying literatures on WWTP design, recent site related  
WW document studies, site history, evaluating feasibility of site  
condition through field visits, verification of existing sources of  
An area selected for treatment plant also requires some  
important consideration such as distance from wastewater source  
and final discharge point for treated effluent, landscape as well as  
8
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 7-16  
neighbourhood community. Local temperature, rain, humidity as  
well as climate also affect different treatment unit performance.  
For example, bacterial growth in aeration tank during high  
temperature as well as excess flows due to rainwater could affect  
the processes and removal capacity. Readily available materials  
and chemicals should be considered during the plant’s  
construction and operation. These constraints could affect the  
project cost. Lack of sufficient skilled personnel also affects the  
equipment handling during plant operation. Those common  
constraints should be checked prior to finalize the treatment plant  
projects. After constraint study, another important factor such as  
operation/design code followed by environmental rules and  
regulation in any country should be verified. In the present study,  
every step of the design was verified with Royal Commission  
Environmental Regulations (2004) as well as Presidency of  
Meteorology and Environment Regulations and rules in KSA  
order to carry out the EIA of proposed wastewater treatment plant,  
a
baseline study was conducted for project location,  
neighbourhood or site surrounding environmental study,  
population growth, climate, effluent discharge, operational, and  
ecology. Parameters of importance can be defined from this EIA  
study as well as standards for discharge can be selected to  
establish permissible limits of contaminants in WW effluents  
being treated at the plant (14). Appropriate mitigation measures  
were evaluated and recommended to be incorporated into the  
intended plant. Table 1 represents the primary list of items to be  
verified for the purpose of environmental impact assessment prior  
to plant design. An example was provided in Table 1 that showed  
important items of preliminary EIA study for Al- Firdous District  
WWTP under Jubail Industrial City in Eastern Province in KSA  
(prior to WWTP design). The status of important environmental  
parameters (for the development of treatment plant) at the  
proposed site was checked and verified.  
(
2001) (11-12). The conceptualized discharge water quality was  
established as per performance standards for discharge according  
to KSA environmental regulation. Figure 1 shows the major  
constraints for a wastewater treatment plant design. All  
constraints should be overcome so that standard operational code  
for the specific region can be implemented to achieve the best  
treatment performance.  
In the first stage of EIA, the historical documents about  
neighbourhood, their life style and standard, site information, any  
accidental spillage or event as well as population growth etc. were  
checked for the proposed location. Prior to finalizing the design,  
different environmental parameters such as prevailing wind  
direction, land, location and accessibility of the plant site, hydro-  
geologic condition, soil and topography, discharged point, as well  
as sludge management were checked and compared with Saudi  
Environmental Regulation standards (2001) (12). The second  
portion of the study was field investigation (FI). If the result from  
portion one study fails to fulfil the requirement as per standard,  
FI would be deemed necessary to confirm the findings obtained  
from the portion one study. FI generally includes soil,  
groundwater collection and field or laboratory investigation as  
well as hydrogeological parameters’ identification, such as wells  
or groundwater flow.  
5
Important Steps for WWTP design  
Design methodology adopted in the current study included  
project location, unit selections, capacity, the design capacity,  
design period, environmental assessment (e.g. wind direction) as  
well as proximity to the population and layout plan.  
Figure 1: The flow chart of major constraints for a WW treatment plant  
design  
5.1 Location of treatment plant  
A new WW treatment plant site or an expansion of an existing  
4
Environmental Impact Assessment (EIA) and  
WW treatment plant must be evaluated by the Professional  
Engineers (Ministry of the Environment 2008) (10). The  
treatment plant should be situated close to the point of disposal.  
An important care should be considered while selecting the site.  
The plant site should be located on the downstream portion of the  
city and also sufficiently away from water intake works, drinking  
water sources, and groundwater wells. If the final disposal of  
treated effluent would be on natural water bodies or abandoned  
ponds/low land, the plant must be located near to the disposal  
point so that the site can receive the treated sewage directly under  
gravitational forces. The plant site should not be far away from  
the town so that the length of the sewer line could be less.  
WW Project  
EIA study is an essential part for any sustainable WW project  
implementation. It can help to decide the best project location for  
the construction of treatment plants and also protect individuals,  
society and environment from any bad effect due to the  
construction of WW treatment plant. The investigation also  
identifies adequate safety measures to be introduced to ensure  
public safety and local environment, which might arise due to any  
emergency or unexpected situation (13). They reported that it  
would also evaluate the proper monitoring and operational  
condition to be required for wastewater treatment plant.  
In the present study, EIA was divided into two portions. First  
portion was documents or historical information review and  
second portion included site visit and field investigation (FI). In  
9
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 7-16  
Table 1: Selected items to be verified for the preliminary environmental impact assessment (EIA) prior to the design (an example for Al-  
Firdous District WWTP under Jubail Industrial City in Eastern Province in KSA)  
Not checked/  
not satisfied  
Selected items for EIA  
Satisfied  
Remarks/Comments  
Historical document studies around the  
project site  
Checked previous land uses, living standards, population etc.  
The subject site is vacant and plain land. Enough space available for  
future expansion and sludge disposal/utilization close to the site  
Nothing (e.g. natural significance area, parks or institute) observed  
within 250 m of the proposed location. The study protects human, all  
living being and their surrounding such as air and soil from  
environmental hazards.  
Proposed land area for WWTP facilities  
Neighborhood or site surrounding  
environment study for project site  
evaluation  
Wastewater or toxic substances could be collected (within the plant  
capacity) without deleterious effects and without destruction to aquatic  
environment or humans who consume/use the water.  
Capacity of the treatment plant to be  
handled  
WW sources and physical condition (e.g.  
temperature, flow, size, types of waste  
Sources as well as quantity of wastewater checked  
etc.)  
Location and accessibility of the project  
site  
Population Centers  
from project site  
Prevailing wind direction of the project  
site  
Easily accessible to the plant. Few kilometers from the WW sources.  
Population centers are an advantage for WWTPs from the point of  
view of ease of supply planning.  
Odor (generation from wastewater plant) towards the sea  
Shrubs need to be cleared at the project location during the excavation  
work  
No wells on or near the site. Groundwater depth approximately 2 m  
below the grade. Cautious required to prevent GW contamination  
Sludge collected from plant to be used for different engineering  
purposes  
Soil and topography of the project site  
Hydro-geologic condition of the project  
site  
Waste management and constraints of the  
project site  
Soil types or condition for any facility  
development in proposed WWTP  
Mostly sand  
Ambient air parameter of the project site  
Soil and groundwater testing  
Discharged point  
Not checked  
All laboratory investigations were conducted by third party. No toxic  
substance detected.  
Final disposal towards Sea  
Checked with KSA  
Environmental Regulation  
Performance standards for discharge  
Notation: √ = Checked and Satisfied  
On the other hand, the plant site should not be too close to the  
city, that it can create problems in the expansion of city and can  
contaminate the neighbourhood or general atmosphere by smell,  
fly and nuisance (15-17). The building orientation and location  
can be utilized to reduce the effects of odours. Susceptibility of  
site to flooding, soil conditions, and suitability of subject site with  
respect to access to receiving body of water should be investigated  
by Professional Engineers prior to finalizing the WWTPs location  
developments, feasibility for addition or expansion, financial  
constraints and interest rate (1, 18-19)  
The treatment plant is commonly designed and constructed  
that can meet the demand for plant operation over 20 to 25 years’  
period (8, 10). The time lag between the design and completion  
of plant construction should not be more than 2-3 years. A WWTP  
also involves installing of underground sewer pipes that can carry  
all WW as well as construction of costly treatment units. The units  
which cannot be replaced or increased in their capacities easily or  
conveniently at a later date should be considered always while  
designing any plant. The future expansions of the city and  
consequent growth in the WW quantity should be forecasted  
(within design period) in order to avoid such complications. All  
units can serve the community satisfactorily for a reasonable year.  
A care should be considered that the plant should not be under  
loaded in the initial stages, particularly the sedimentation tank.  
The design engineer should set the ultimate design period to be  
(
Ministry of the Environment. 2008) (10). In the selected location  
of WWTPs, the design engineers should consider a plant layout  
where the different processing units would be constructed or  
arranged in a logical progression. The plant layouts are facilitated  
to offer for convenience of operation and ease of flow splitting for  
different treatment units. In addition, the selected site has enough  
space to accommodate future plant expansion so that any  
additional processes can be installed to recover the treatment  
quality.  
20 to 25 years and to that extent sufficient accommodation should  
be accommodated for all the units necessary to fulfil the need of  
forecasted population.  
5
.2 Design period  
The design period should be chosen based on useful life, wear  
and tear, expected population growth and infrastructural  
10  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 7-16  
design consideration for WWTP project.  
5
.3 Layout Plan  
Proper wastewater layout plan must be completed before  
design flow establishes. A site for WWTP would be considered  
on the basis of evaluation of the entire drainage area, the  
topographic map, subsurface conditions and natural grades that  
could facilitate the necessary services at a minimum cost  
6 Degree of Treatment and Basic Design  
The degree of treatment would be based on the influent  
characteristic and the required effluent quality. Final sludge  
disposal options or resource recovery options can dictate the  
choice of treatment processes as well as the effluent quality. The  
available land area, soil or geo-hydrological conditions, treated  
WW during periods of the year (where receiving streams  
experience insufficient flows) and downstream recreational water  
uses also have direct indirect influences in case of the treatment  
method selection (Ministry of the Environment, 2008) (10). The  
technical supports such as operator skills, mechanical  
performance, future loads such as hauled septage as well as  
leachate handling, operation and maintenance (O&M) costs are  
one of the considerations to select the degree of treatment. Before  
deciding upon the WW treatment processes, the designer should  
assess the alternative options available to conduct the required  
level of treatment (in terms of treatment capability, overall capital  
and operational costs). If the effluent is discharged into the natural  
water, it should comply with the national discharge quality  
requirements. If treated water used for land irrigation, the plant  
effluent must also satisfy the health regulation governing the  
types of crops that are irrigated. The treated effluent can be used  
for recreational lakes, agriculture, industrial and municipal  
purposes. Thus, requirement for WW discharge based on uses  
may dictate the effluent quality and the degree of treatment (18).  
Figure 3 shows the conventional domestic wastewater treatment  
units for the conventional project.  
(
Ministry of the Environment, 2008) (10). The preliminary layout  
of wastewater is most commonly prepared from the topographic  
map (18). In general, wastewater sewers are located on streets or  
on available right of way and are sloped in the same direction as  
the slope of the natural ground surface. Preliminary layout and  
routing of wastewater flow can be done by considering several  
feasible alternatives. In each alternative, factors (such as total  
length of wastewater treatment, cost of construction, operation  
and maintenance) also consider to build a cost effective  
wastewater system. Finally, these flow channel layout plans are  
revised after several field visits and investigation to the location.  
On the other hand, all building structures proposed in the layout  
of the plant should facilitate adequate allowances for the future  
linear expansions of the various treatment stages and process for  
different unit. The designer orients the plant so that the best  
advantage can be provided from the prevailing wind and climate  
conditions. The building orientation can be set to decrease effects  
of odours, energy usage (heating) and other operational problems.  
To avoid the necessity for major pipelines or conduits to convey  
WW, sludges from one units to other, the various processing units  
are set in a logical progression so that the arrangement of plant  
layout can provide for convenience of operation and ease of flow  
splitting for proposed and future treatment units. Moreover,  
designer should keep some space for the provision of future  
treatment plant expansions if necessary. Figure 2 shows the major  
Figure 2: The major design consideration for WWTP project  
11  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 7-16  
Figure 3: The proposed domestic wastewater treatment units  
The conventional WWTP design would focus on the maximum  
removal of Biochemical Oxygen Demand (BOD), Total Solid  
The notations of all parameters for activated sludge tank were  
included in Column 2 under the Table 2. All important equations  
used for calculating design parameters were presented in the,  
Table 2 Column 1. At the beginning, the predicted populations  
were calculated using the basic growth equation. Then, receiving  
water chamber was designed. This tank structure at the entrance  
of the treatment plant to receive the wastewater approaching  
through a wastewater system and main pipe would be connected  
to the first unit tank. Three Bar screens such as two mechanicals  
with 90 degrees and one manual with 45 degrees were proposed  
to trap and remove the floating materials such as cans, papers, tree  
leaves, timber pieces etc. In the design, grit chamber would be  
proposed to be placed after the screening to remove the inorganic  
particles. A settling tank called primary sedimentation tank was  
designed to remove the organic solids. In this study, aeration tank  
was designed for secondary treatment facilities. The amount of  
activated sludge from secondary sedimentation tank was  
calculated and to be used for the aeration tank. Table 2 shows all  
important equations used to calculate the design parameters for  
the aeration tank design. The overall successful design could be  
achieved by accomplishing environmental system design,  
hydraulic flow design as well as physical and structural design of  
the plants (20).  
(
TS) and Suspended Solids (SS), Settleable Solids, Total Kjeldahl  
nitrogen (TKN) and Total Phosphorus (TP). In the present study,  
the treatment plant was proposed to treat domestic or municipal  
WW. WW would require the primary treatment to remove large  
objects, grits and sludge (as shown in Fig 3). Then, the WW  
would be conveyed to the secondary WWTPs for further  
treatment. The medium strength of wastewater was considered as  
influent wastewater for different treatment units while designing  
the WWTP project.  
The study assessed the performance of suspended solid aerobic  
treatment unit for municipal wastewater generated from almost  
8
3000 population in Al Jubail residential area. The design also  
considered assessing the site condition, biomass calculation, Food  
and micro-organism (F/M) ratio, amount of recycled activated  
sludge, TSS, VSS, COD, BOD removal efficiency as well as  
physical and process design of the proposed wastewater. The  
study also evaluated important design parameters (e.g.  
environmental and Hydraulic) for screening, grit removal,  
primary/secondary treatment units and also verified with Royal  
Commission Environmental Regulations as well as Presidency of  
Meteorology and Environment Regulations and rules in KSA.  
Table 2 listed few basic equations necessary for activated sludge  
tank design proposed in the study.  
12  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 7-16  
Table 2: Few basic equations necessary for activated sludge tank design (8)  
Equations  
Parameters  
Descriptions  
Q= Maximum WW flow rate; P= future population;  
Q’= Wastewater produced (Liter per capita)  
Estimation of maximum  
designed flow rate  
Q = P *Q’/1000  
휃 =  
= hydraulic retention time (days);  
V= aerated tank volume, V (m )  
From flow rate  
3
Y = Yield coefficient or bacteria growth rate; 휃푐 =  
sludge age, days ; So = Concentration of dissolved  
pollutants such as BOD, mg/L; S= Concentration of  
dissolved pollutant in aerated tank and the effluent,  
푌푄휃푐 (푆표 − 푆)  
Estimation of aerated tank  
volume, V (m )  
푉 =  
3
푋 (1 + 퐾푑휃푐)  
d
mg/L; k = Decay rate of the bacteria; X = The  
mixed liquor suspended solid concentration MLSS  
3
Q
w
= Waste sludge flow rate m /day; X  
r
=
푌푋  
휃푐 =  
Concentration of recycled activated sludge; X  
Effluent suspended solid concentration, mg/L;  
e
=
Estimation of sludge age  
푄푤푋푟 + (푄 − 푄푤)푋푒  
3
푄푟 = 푄  
Qr = Return sludge flow rate, m /day;  
푋푟 − 푋  
F = Food ( e.g. amount of COD or BOD  
concentration, mg/L); M = Micro-organisms ( e.g.  
concentration of VSS, mg/L)  
Food and micro-  
organisms ratio for  
optimum operation  
푄푆표  
=
푉푋  
푑푥  
푑푡  
푉푋  
휃푐  
The rate of sludge  
production  
=
dx = the change of VSS; dt = the change of time  
Total substrate  
U = Substrate utilization rate (e.g. food consumption  
by micro-organisms); Ks = half velocity constants;  
μm SX  
consumption calculated  
by multiplying tank (v)  
U =  
Y (KsꢀS)  
-1  
m
 = maximum growth rate constant, d  
3
volume, m .  
results were optimized to achieve the best design parameters for  
field application. The optimized results also reduce the  
construction and operation cost as well as overcome all design  
constraints identified prior to the design approval. The optimized  
parameters fit well with filed application and save construction  
time.  
7
Design Optimization  
After the analytical calculation, the calculated values need to  
be justified or optimized so that the accuracy of the design  
parameters would be fitted well with the environmental processes  
as well as construction operation during the field application.  
Design constraints also control the parameter selection. In this  
project, MS excel solver was used to solve and optimize the  
design parameters. The solver results act as criteria or standard.  
Solver can work with a group of compartments, called decision  
variables or simply variable cells that are used in computing the  
formulas in the certain scope and constraint cells. It can adjust the  
values in the decision variable cells to fulfill the limits on  
constraint cells and calculate the results the design engineer wants  
for the objective cell.  
In this project, some parameters used were constant and some  
were variable while operating the excel solver to evaluate the  
targeted parameters. The solver optimized the results within the  
range. Those calculations were based on the width, depth, area,  
slope, friction with slope and flow rate. Table 3 shows an example  
of design of Bar Screen and the channel flow using analytical and  
solver solutions that was used while designing Al Firdous District  
WWTP under Jubail Industrial City in Eastern Province in KSA.  
Similarly, all other parameters calculated by analytical methods  
for other units (e.g. sedimentation tanks, aeration tank, filtration  
or coagulation) were verified with the solver results so that the  
8 A Conventional Challenges in WW plant  
The common challenge in WW industry is to remove  
contaminants as per requirement so that the desire goals can be  
achieved. The application of treated WW can control the  
treatment mechanisms as well as the effluent quality. For  
example, WW usage in agricultural activities should be always  
treated at the level that always conforms the standard limit set for  
agricultural water quality. If treated water is discharged into  
natural water bodies, the level of treatment should be able to  
control any detrimental effect generated from the disposal in  
aquatic environment. Thus, the primary challenge in WW  
industry is to maintain the quality of WW. The selected treatment  
needs to meet with current regulatory standards as well as reduce  
the environmental impact on the receiving water body (21).  
Another challenge in the WW treatment project is construction  
and operating costs. It should be optimized. Cost estimation for  
wastewater treatment plant is one of the major tasks in any  
project.  
13  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 7-16  
Table 3: Design of Bar Screen and the channel flow using analytical and solver solutions (for Al- Firdous District WWTP under Jubail  
Industrial City in Eastern Province in KSA)  
Optimum  
Input data  
Solver  
Hand calculation  
Values  
(Davis, 2011)  
Coefficient of roughness ( n)  
0.012  
0.456  
0.0001  
1
0.012  
0.456  
0.0001  
1
-
3
Discharge, Q (m /s)  
-
-
Slope of energy grade line, S (m/m)  
Width, m  
Depth, m  
1
1
Calculated velocity  
Adjusted Area (m2)  
Perimeter, m  
A =  
1.04  
2.89  
0.36  
0.506  
0.01  
0.43  
0.45  
-
P =  
3
-
-
-
-
-
-
Hydraulic radius, m  
R =  
0.33  
0.478  
0.01  
0.39  
R^2/3 =  
S^0.5 =  
v
Velocity of channel flow, m/s  
3
Adjusted flow rate, (m /s)  
Q
Cross sectional area of flow, m2  
Q/v=  
1.04  
1
-
Velocity through the bar screen, m/s  
Approach velocity, m/s  
V
thru  
a
0.48  
0.6  
≤ 0.9  
≥ 0.4  
V
Here, velocity = v = 1/n* R2/3*S0.5 and Q = vA  
In particular, energy savings must be taken care of aeration,  
pumping, heating and mixing. In municipal WW treatment,  
biological treatment generally requires high-energy consumption  
in the range of 50 - 60% of plant usage (8). Thus, energy  
consumption is one of the major expenses in operating a WW  
treatment plant. Changes in biological treatment processes by  
introducing different green technology can significantly reduce  
the energy demand at a treatment plant. Chemicals such as  
inorganic salts for phosphorus precipitation or sources for  
denitrification efficiency and the costs associated with the  
collection and disposal of sludge (22) must be considered while  
designing the plants. Activated sludge treatment has many  
challenges. For examples, activated sludge plants are very  
expensive to construct and occupy substantial land areas as well  
as require large footprint as per demands. Moreover, sludge is the  
residue generated during physical, chemical and biological  
treatment. The disposal of excess sludge generated from plant  
operation is one of the environmental challenges for wastewater  
treatment. The recycling of sludge (containing useful organic  
matter and nutrients in agriculture) is considered as one of the best  
solutions. Project items such as machines, man power (salaries),  
purchases, WWTP construction, administration costs, energy and  
maintenance costs, installation and construction costs to be  
evaluated for the optimum cost prediction are the major  
challenges in WW industry. Adequately trained and certified  
individuals must maintain and operate wastewater treatment  
facilities. To recruit skilled operator is one of the challenges in  
WW industry. The appropriate construction materials selection  
under prevailing conditions of exposure to hydrogen sulphide and  
other corrosive gases, greases, oil and other constituents  
frequently present in WW is one of the challenges for design  
engineer. The appropriate selection of metals and paints can  
reduce galvanic action. The water pumping, storage, piping,  
valves, metering and splash guards’ materials should be specially  
selected on the basis of the physical and chemical characteristics  
and their interaction to each corrosive chemical. For WWTP,  
several additional factors must be considered after solving all  
technical or mechanical facilities. First, the challenges from the  
plant adaptation should be resolved for different types of  
perturbations. Very few WWTPs receive a continuous or constant  
influent either in quantity or quality, but are subject to daily,  
weekly and annual variations (23, 24). Secondly, the plant  
instrumentation, control and automation are always required to  
operate the system properly. It is important to measure the  
performance of the controller and the degree of adaptability to  
different perturbations under certain operating conditions (25).  
Thus, the selected alternative must follow the operating variables  
within an operating space defined by a set of constraints, which  
may be process (biomass, oxygen requirements), equipment  
(maximum pumping rates) or safety (effluent requirements)  
related. According to Hreiz et al. (2015), WWTPs are facing an  
important challenge while trying to achieve optimum design and  
operation due to the set-regulatory standards. The designer should  
also consider adequate safety measure to satisfy the particular  
needs for plant personnel, neighborhood or visitors from hazards.  
It increases the construction and operation cost.  
9
Conclusions  
To fulfill the water demand in any city is one of the most  
challenging tasks. Treated WW could be used as alterative  
options for agricultural, gardening, cleaning, industrial  
manufacturing, as well as other household purposes. It can reduce  
14  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 7-16  
the pressures on other water sources in any region where surface  
or groundwater is not sufficiently available. Moreover, some  
WWTPs can operate for the production of biofuel or electricity  
source (i.e. act as a resource recovery option). To achieve the goal  
of best WW treatment, environmental, social, and economical  
costs should be considered as factors determining process  
selection in light of emerging issues of sustainability. Those  
factors can vary with various technological applications during  
system design. Environmental issues or social issues should be  
evaluated properly prior to the approval of plant design. Social  
issues sometimes consider the opportunity cost of spending  
money on water treatment as opposed to other community  
services.  
3. Hreiz R, Latifi MA, and Roche N. Optimal design and operation of  
activated sludge processes: State-of-the-art. Chemical Engineering  
Journal, 2015; 281: 900-920.  
4
. Wakelin SA, Matt J. Colloff MJ, and Kookana1 RS. Effect of  
Wastewater Treatment Plant Effluent on Microbial Function and  
Community Structure in the Sediment of a Freshwater Stream with  
Variable Seasonal Flow. Applied and Environmental Microbiology.  
2008; 74(9): 2659-68.  
5. Hasan HA, Muhammad MH, Ismail NI. A review of biological drinking  
water treatment technologies for contaminants removal from polluted  
water resources. Journal of Water Process Engineering 2020; 33:  
1
01035.  
6
. Antalová V, Slučiaková S, Haluš M. Estimating environmental  
benefits of wastewater treatment in Slovakia. 2018: Institue of Env  
Policy, Ministry of Environment of the Slovak Republic.  
The present manuscript discussed briefly the plant location,  
effluent quality requirements, design issues, environmental  
impacts, details, and safety concerns. It also highlighted the  
necessary flexibility to operate the treatment satisfactorily within  
the expected range of influent WW characteristics and flows. The  
appropriate design of the various process units of WWTPs would  
be based upon the hydraulic, organic and inorganic loading rates.  
All units of WWTPs should be hydraulically capable of handling  
the expected condition. All piping and channels must be designed  
to carry out the design peak instantaneous flows and it can be fully  
or partially equalized. Sampling equipment should be installed at  
all mechanical plants and it could also be facilitated as needed for  
influent sampling and for monitoring of plant performance.  
In conclusion, the designer should accommodate the safety  
facilities while constructing the plants or performing the plant  
operation. The protective equipment (e.g. self-contained  
breathing apparatus, protective clothing, gas detection equipment,  
goggles, gloves, hard hats, steel-toe safety boot and safety  
harnesses) are always be available for employees. Moreover, the  
appropriately placed warning signs, adequate ventilation, all  
health and safety issues must be included to ensure safe operation  
at the construction site.  
7. Ouda OKM. Treated wastewater use in Saudi Arabia: challenges and  
initiatives. International Journal of Water Resources Development.  
2016; 32(5): 799-809.  
8
. Davis ML. Water and wastewater Engineering: Design principles and  
practice. 2011: McGraw-Hill Education, 2 Penn Plaza, New York,  
USA. ISBN 978-007-128924-5.  
9
1
. Seneviratne M. Wastewater Treatment Technologies. 2014: ZDHC  
Publisher.  
0. Ministry of the Environment. Design Guidelines for Sewage Works.  
Chapter 8: Design Considerations for Sewage Treatment Plants.  
Ontario, Canada. 2008: Ontario Ministry of the Environment. ISBN  
978-1-4249-8438-1.  
1
1
1. Royal commission environmental regulations. Volume I:  
Environmental Control Department. 2004: Kingdom of Saudi Arabia.  
2. General Environmental Regulations and Rules for Implementation.  
2
001: Kingdom of Saudi Arabia Presidency of Meteorology and  
Environment.  
1
1
3. Abugdera AF, Faris BM, Abugderha MM. Analytical Study of  
Environmental Impact Assessment for a Wastewater Treatment Plant  
in Sabratha Libya. International Journal of Scientific and Engineering  
Research. 2018; 9(5): 199. ISSN 2229-5518.  
4. Abaza H, Bisset R, and Sadler B. Environmental Impact Assessment  
and Strategic Environmental Assessment: Towards an Integrated  
Approach. UNEP.  
2004:  
http://www.unep.ch/etb/publications/EnvImpAss/textONUBr.pdf.  
Ethical issue  
15. Azad AS. Design of primary sewage treatment plant. Madras  
Agricultural Journal 1995; 81(5): 272 273.  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
1
6. Besnarek W, Tkaczyk P. Waste water treatment and disposal.  
Agricultural journal. 2001; 50 (72)  
(
avoidance of guest authorship), dual submission, manipulation  
1
7. Singh A. Design of Primary Sewage Treatment Plant. M.Tech  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
Thesis. BIT Mesra Campus, Allahabad, India. 2011:  
https://www.academia.edu/6078256/design_of_primary_sewage_tre  
atment_plant  
18. Qasim, SR. Wastewater Treatment Plants: Planning, Design, and  
Operation. 1998: CRC Press. ISBN 9781566766883.  
1
9. Teklehaimanot GZ, Kamika I, Coetzee, M A A, Momba MNB.  
Population Growth and Its Impact on the Design Capacity and  
Performance of the Wastewater Treatment Plants in Sedibeng and  
Soshanguve, South Africa. Environmental Management. 2015: DOI  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
1
0.1007/s00267-015-0564-3.  
2
2
0. Alsina XF. Conceptual design of wastewater treatment plants using  
multiple objectives. PhD Thesis. 2008: Department of Physics and  
Environmental Technology, University of Girona.  
1. Copp J. The cost simulation benchmark. Description and Simulator  
Manual. 2002:Office for Official Publications of the European  
Communities, Luxembourg.  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing.  
References  
1
.
Tchobanoglous G, and Burton FL, Stensel, HD. Wastewater  
22. Vanrolleghem PA, and Gillot S. Robustness and economic measures  
as control benchmark criteria. Water Science and Technology, 2002;  
45 (4-5): 117-126.  
th  
Engineering. Treatment Disposal Reuse (5 Eds.). 2003: Metcalf and  
Eddy Inc. McGraw-Hill Education ISBN.  
2
. Hu Z, Houweling D, and Dold P. Biological Nutrient Removal in  
Municipal Wastewater Treatment: New Directions in Sustainability.  
Journal of Environmental Engineering, 2012; 138 (3): 307-317.  
23. Gernaey KV, Van Loosdrecht MCM, Henze M, Lind M, and  
Jørgensen, SB. Activated sludge wastewater treatment plant  
modelling and simulation: State of the art. Environmental Modelling  
15  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 7-16  
and 763-783.  
Software,  
2004;  
19(9):  
2
4. Isaa HM. Optimization of Wastewater Treatment Plant Design  
using Process Dynamic Simulation: A Case Study from Kurdistan,  
Iraq. The Scientific Journal of Koya University. 2019; Article ID:  
ARO.10488:  
5. Olsson G, and Newell B. Wastewater Treatment Systems-  
modelling, diagnosis, control. 1999: IWA. ISBN13: 9781900222150.  
6
DOI:  
10.14500/aro.10488.  
2
16