Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 1-6  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)6  
Analysis of Windows Element for Energy Saving in  
a Tropical Residential Buildings in Order to  
Reduce the Negative Environmental Impacts  
1
2
1
Aidin Nobahar Sadeghifam *, Iman Kiani , Nurul Noraziemah Mohd Pauzi , Saman  
Mostfapour 2  
1
Faculty of Engineering and Science, Curtin University Sarawak, Malaysia  
2
Faculty of Civil Engineering, Department of Construction Management, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia  
Received: 02/06/2020  
Accepted: 30/09/2020  
Online: 05/10/2020  
Abstract  
In the contemporary milieu of today, sustainability and environmental concerns have become a great subject of debate. Matters  
related to sustainability are often linked to other crucial concerns like energy consumption. Energy is a key factor in ensuring continuous  
economic growth and development. One of the highest energy consuming systems in buildings specifically residential homes in tropical  
regions  is the air conditioning system. Windows have been identified as the weakest link in the fabric of a building as they serve as  
thermal holes. Thus, the selection of proper window materials is crucial to reduce energy usage by minimizing the cooling and heating  
requirements of the building. The aims of this paper are analysis of energy performance for diverse types of window’s glazing with  
different frames in order to find the most optimized window materials for the tropical residential buildings. The selected case study in  
this paper is modeled and then simulated by Building Information Modeling (BIM) application, which is appropriate for energy analysis.  
For simulation, some factors of the window materials were taken into consideration including, four physical properties of the U-factor,  
solar heat gain coefficient, visible transmittance, and emissivity. The result was shown windows types 02 and 03 were the most optimized  
of window materials and led to 10% energy saving into the base model and the windows type 05 was high U-factor, results in a greater  
transfer in internal zones and led to high energy consumption.  
Keywords: Sustainability, Energy, Tropical countries, Residential buildings, Windows, BIM application  
1
Introduction and Background  
The past two decades had witnessed the parallel increase in  
energy usage and population growth, thus causing the incessant  
hike in energy prices as well as excessive emissions of CO2 and  
greenhouse gas (1,2). The International Energy Agency (IEA)  
had indicated a 48% hike in global energy intake in the last 20  
years (3). The major increase in energy consumption has led to  
other critical issues including supply shortage, energy resource  
diminution, and grave environmental effects such as ozone  
depletion, climate change and global warming. Despite rising  
demands against the exploitation of energy and natural  
resources, environmental and sustainability concerns remain a  
leading global issue (4).  
A number of critical issues related to the construction  
industry demand solutions in the form of global persistent  
efforts to change and adapt our actions to be more  
environmentally friendly. The construction of buildings require  
approximately 50% raw materials, 71% electricity intake and  
Figure1: Overall Electricity Consumption in Malaysia from 2000 to  
2018 (7)  
The highest energy intake comes from the building sector,  
which accounts for over one-thirds of the total energy intake  
and one-half of the total electricity usage globally (8). The IEA  
delineates energy efficiency as the “fuel” that reinforces the  
change towards establishing an energy system that is more  
sustainable. Along with this is the substantial untapped  
prospect of improving energy efficiency in the building sector  
to up to 80% (3). The rise in population is expected to increase  
the demands for building comfort and services including the  
need for higher energy consumption, parallel with the increase  
in the amount of time spent indoors. Energy consumption in  
the context of residential buildings in tropical regions is mainly  
contributed by the usage of air conditioning systems, which are  
used to control indoor temperatures and provide the occupants  
with thermal comfort. The aforesaid comfort is delineated as  
1
6% water reserves while generating 40% landfill-bound  
wastes (5), all of which pose a heavy toll on the environment.  
The operations of buildings are also responsible for 50% carbon  
dioxide (CO2) emission and 18% indirect material usage and  
transferal (6). As a developing nation with rapid economic and  
technological growth, Malaysia is experiencing higher levels of  
energy intake than ever before. Figure 1 shows the overall trend  
of electricity usage in Malaysia over the past 18 years, with a  
significant surge from 53 Billion kWh in 2000 to the current  
1
33 Billion kWh (7).  
1
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 1-6  
the “condition of mind that expresses satisfaction with the  
thermal environment” (4). Yu et al. (2009) highlighted a  
number of issues related to the usage of air conditioning  
systems. A majority of buildings in tropical regions have air  
conditioning units that run on electricity generated from  
primary energy sources including oil, coal, and natural gas.  
These sources release CO2 and greenhouse gases into the air;  
on a wide and prolonged scale, these emissions can deplete the  
ozone layer and cause grievous health risks for humans and  
other living beings. Therefore, reducing energy consumption  
for indoor cooling purposes can significantly help in energy  
conservation and environmental protection (9,10). In this  
context, sustainable strategies for residential buildings are  
capable of solving such problems i.e. by effectively controlling  
and reducing the amount and the ways of energy consumption  
and improvement of thermal comfort at the same time in  
residential buildings. Reducing energy consumption for indoor  
cooling purposes can substantially contribute to energy  
conservation and environmental protection (10).  
The solutions offered by the Building Information  
Modelling (BIM) give architects and engineers the opportunity  
to come up with sustainable designs through the proper  
analysis, simulation and visualization of building performance.  
Energy simulation is a practical way for analysing various  
systems including the manufacturing system in a construction  
process (11). The Autodesk Revit and other BIM applications  
facilitate designers in designing, simulating, visualizing and  
collaborating on projects that can capitalize on the benefits  
offered by the interrelated data in the BIM model. Computer  
simulation also helps in analysing the energy usage in  
buildings. The amount of energy intake in buildings can be  
efficiently examined using BIM’s simulation applications  
including Ecotect, EnergyPlus and Transys (12,13,14).  
EnergyPlus offers a broad and comprehensive simulation  
setting for the ephemeral simulation of various systems  
including buildings with multiple zones (15,16).  
can be determined by the window’s properties and the  
location’s climatic conditions (17).  
In the past decade, many studies had been carried out in  
analysing the energy performance of windows according to  
their various properties (20, 21). G.F. Menzies and J.R.  
Wherrett examined four buildings and rated their levels of  
comfort and sustainability by looking at the various types of  
multi-glazed windows and their architectural design (22).  
Singh an Garg (2009) studied the effect of a building’s floor,  
roofs, walls, and building zones in terms of their thermal  
transference capacity on the building’s overall energy savings  
by looking at the different types of windows. The authors  
developed an equation for calculating the total amount of  
energy savings per window. They found that the energy saving  
capacity of a window relies on its type, the building’s  
dimensions, the climate as well as the wall and roof’s thermal  
transferral. The last two factors were found to save energy the  
most (23). Banihashemi et al. (2012) examined the capacity of  
double-glazed windows in reducing heating and cooling loads  
throughout a year of extremely cold weather. The authors found  
that the double-glazed windows in the aforementioned context  
cause extra cooling loads on buildings i.e. an outcome that is  
negligible when compared to the savings in heating load (24).  
Ihara et al. (2015) indicated that energy demand could be  
reduced by minimizing the solar heat gain coefficient and  
window U-value as well as increasing the solar reflectance of  
the opaque components (25). Meanwhile, He et al. (2019)  
studied 20 typical and prospective glazing alternatives in  
predicting possible energy savings in various buildings with  
similar orientations situated in various climate zones in China.  
Taking into consideration the multiple parameters and other  
elements, the authors found that the Low-E window glazing  
showcased the best energy performance for all the climate  
zones; however, it approximates traditional glazed windows in  
terms of energy savings capacity, which hinders its current  
adoption (26).  
In terms of energy usage, the main consideration is on the  
materials required for the main components and envelope of the  
building. According to Sadeghifam et al. (2019), the energy  
intake for residential buildings in tropical areas can be  
A holistic review of the previous literature and despite the  
public and governmental demands for energy-saving methods,  
there are rare investigations on the analysis of the potential  
window's glazing and frame alternatives together to investigate  
the potential energy savings for residential buildings in tropical  
countries. Therefore, the overarching aim of this study is to  
analyze the energy performance of potential windows  
alternatives (various types of window’s glazing with different  
frames) in order to find the most optimize windows materials  
for the tropical humid climate residential buildings in Malaysia.  
significantly  
reduced  
by  
choosing  
the  
right  
components/materials for the ceiling, windows, walls, roof, and  
floor (4). A building would require high levels of cooling if the  
envelope has extreme heat transmission. The design for the  
building envelope includes the shell as well as the walls, floors,  
roofs, and windows (17). On average, thermal loss quantities in  
the country’s prevailing residential buildings are: 35% for  
walls, 7.5% for floors, 7.5% for ceilings, and 50% for windows  
2
Case study  
(
18).  
A properly designed glazing decreases the need for cooling  
2
.1 Location and climate  
A case study of a double story building with one unit on each  
and heating thus decreasing overall energy intake. The frame  
design could benefit from the use of sustainable materials as  
well as materials with the least possible embodied energy like  
timber and aluminium covered timber. Normally, windows are  
constructed at the front façade and the back, serving as natural  
lighting and ventilation outlets-inlets: heat from the sun can  
easily enter the indoor space and becomes trapped inside due to  
restricted openings (19). Hence, windows are crucial  
components of all buildings as they provide natural light and  
ventilation as well as protect against the weather. Nevertheless,  
windows have also been identified as thermal holes i.e. the  
weakest link in the fabrication of a building. They cause  
significant heat loss and thermal discomfort resulting from  
insulation properties such as the glass material that conducts  
heat. Hence, installing double-glazed windows can reduce  
energy loss via windows. The energy performance of windows  
floor which was selected for simulation of duelling the  
conventional kind of residential building in Johor BahruJohor  
Bahru city is situated in south Malaysia, specifically latitude  
1.48° N and longitude 103.73° E. The city is relatively humid  
(
ranging between 82% and 86%) with high temperatures  
throughout the year. On average, it experiences dry-bulb  
temperature ranging between 21.9°C and 32.8°C, with monthly  
precipitations of 196 mm. Throughout the year, the city  
typically receives wind speed fluctuations of between 0 m/s and  
5
m/s (calmly to moderately breezy), and occasionally goes  
beyond 7 m/s (Table 1).  
2
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 1-6  
Table 1: Climate data for Johor Bahru  
3.1 Modelling of the Case Study  
At this stage, the buildings in the selected case studies are  
modelled or simulated using the Autodesk Revit i.e. one of the  
most useful software in BIM for dynamic building simulation.  
In simulating the case buildings, CAD drawings were imported  
to Autodesk Revit entailing explicit parametric design features.  
Table 2 shows the characteristics of the materials used in the  
original model, which are important in establishing the energy  
consumption baseline of a standard house.  
3
.2 Energy Simulations and Analysis of the Case Study  
This step is to simulate and analyze the model considering  
the energy factor. This step entails the simulation and analysis  
of the model taking into consideration the energy factor. Energy  
Plus i.e. a prominent software used in studies on energy  
analysis was chosen as the platform for measuring the cooling  
loads. Accurate analysis requires the usage of variables such as  
building type, building orientation, and climatic data for the  
building’s location. The weather was simulated by referring to  
the weather report for Johor Bahru. Energy intake was  
simulated by considering each room in the building as a zone  
with distinct thermal properties. In this study, the building’s  
model was separated into 7 zones for each level, each having  
its own set of specifications with respect to behaviour activity,  
HAVC systems, and comfort temperature. To ensure thermal  
comfort, the thermostat was fixed at 22 °C - 26 °C according to  
the ASHRAE standards. Both levels 1 and 2 use the same data  
as shown in Table 3 for level 1.  
2
.2. Description of the case study buildings  
As a scope limitation, the chosen building is assumed to  
represent the residential building constructed using commonly  
found materials in Malaysia. A case study is a double story  
building with one unit on each floor and each unit of this  
residential building has the main living space including the  
kitchen, living room, two bedrooms with their toilet, and  
bathroom along to corridor. The total area of the building is 152  
m2 and the total windows area ratio to the total floor area is  
1
0%. This house has two levels of similar designs that are  
divided into fourteen thermal zones, which have separate  
thermal properties on each level. The division of building in  
different zones in the simulated model is shown in (Figure 2).  
Table 3: Occupant Profiles for the different zones for each unit  
Area  
Comfort  
Band  
22-26  
22-26  
22-26  
NA  
NA  
NA  
22-26  
Zone  
Activity  
HAVC System  
(
m²)  
80  
24  
17  
16  
3
Living Room  
Bedroom 1  
Bedroom 2  
Kitchen  
Bathroom  
Toilet  
Sedentary  
Sedentary  
Sedentary  
Cooking  
Sedentary  
Sedentary  
Sedentary  
ACꢀ  
ACꢀ  
ACꢀ  
Natural ventilation  
None  
6
6
None  
AC  
Corridor  
Figure 2: The layout of building in separate zones in the simulation  
model  
3.3 Energy Evaluation of the Window Alternatives  
Finally, eight types of window glazing in various frames  
commonly used in residential buildings in Malaysia were  
selected to be compared (Table 4). For the simulation, attention  
was given on the physical properties of U-factor, solar heat gain  
coefficient (SHGC), visible transmittance (VT) and emissivity  
in the selection of the sample windows (27). The eight types of  
window materials utilized for the component were then tested.  
Next, based on the data analysis, the most optimized window  
materials were determined to be used in residential buildings in  
Malaysia. Table 4 shows the chosen window properties for  
simulation. In measuring the effect of the window types on the  
cooling loads, the properties of the other components i.e. walls,  
roofs and others were maintained whilst the simulations were  
conducted by changing the window properties. Lastly, all the  
simulations were carried out to determine the selected  
buildings’ annual loads.  
3
Research Methodology  
Methodology wise, this study compared the physical  
specification alterations of the building’s window components  
focusing on the simulated model’s energy performance as  
analyzed by the BIM. The research scope was limited by  
assuming that the base model is a representation of a residential  
building constructed with commonly used window materials in  
the context of Malaysia.  
Table 2: Component properties of simulated building  
Component  
Floor  
Layer Name  
Concrete (medium density)ꢀCast concrete (Dense) (10  
cm) + tile (1.2 cm)ꢀ  
External  
walls  
Cement sand render (1.3 cm) + brick (22 cm) + gypsum  
plastering (1.3 cm)ꢀ  
Internal  
walls  
Brick (11 cm) + inner/outer gypsum plastering (1.3 cm)  
Alum framed window, single glazing (6 mm)ꢀ  
Acoustic tile suspended (10 mm)ꢀ  
3 Results and Discussion  
In order to analyze the energy consumption of the building  
used as a case study, a model was created in a BIM application.  
The case study as a base model was modelled by using the  
Autodesk Revit software and ready for energy simulation  
through EnergyPlus to calculate the cooling loads. The output  
of the Autodesk Revit software with scaled dimensions and its  
particular details are presented in Figure 3.  
Window  
Ceiling  
Roof  
Wooden batons (20 cm) + air gap (10 cm) + clay tiles (3  
cm)  
3