Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 328-334  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)334  
Antioxidant, Cytotoxic and Antibacterial Activity  
and Total Phenol Contents of the Roots and the  
Shoots of Euphorbia macrostegia and Euphorbia  
microsciadia  
1
,2  
1,2  
1
1*  
Somayeh Zare , Niloofar Moheimanian , Omidreza Firuzi , Amir Reza Jassbi  
1
Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran  
2
Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran  
Received: 06/01/2020  
Accepted: 13/04/2020  
Published: 20/03/2021  
Abstract  
The roots and the shoots of Euphorbia macrostegia and E. microsciadia were extracted using different solvents; dichloromethane  
(
DCM), methanol (MeOH) and MeOH: water (80:20) and the extracts were screened for their cytotoxic, antioxidant and antimicrobial  
properties as well as total phenolic content. Cytotoxicity of the extracts was evaluated against human acute lymphoblastic leukemia  
MOLT-4) cells by MTT reduction assay. The extracts were also subjected to the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) free radical  
(
scavenging and Folin-Ciocalteu total phenolic assays. The MeOH extract of the shoots of E. microsciadia and DCM extract of the roots  
of E. macrostegia were the most cytotoxic ones with IC50 values of 10.5 ± 2.6 and 7.0 ± 1.2 µg/mL, respectively. The MeOH extract of  
the shoots of E. microsciadia showed considerable antioxidant activity (IC50 = 9.95 ± 1.00 µg plant extracted to scavenge 1 mL of a 0.1  
mM DPPH solution), which was consistent with its highest phenolic content (288.50 ± 29.38 mg equivalent of gallic acid in 1g dry plant  
extract: mg EG/g PE). Determination of minimum inhibitory concentrations (MICs) using the broth dilution method, confirmed that all  
the extracts from the plants gave various degrees of antibacterial activity against all tested microorganisms. In thin layer chromatography  
(
TLC) investigations, some compounds previously isolated from Euphorbia species inclduing cycloartenol, 24-methylenecycloartan-3β-  
ol, β-sitosterol and euphol were tested and suggested to be responsible for the above-mentioned biological activities in the plants.  
Therefore, we suggest E. macrostegia and especially E. microsciadia as new sources for isolation and identification of various bioactive  
compounds.  
Keywords: Euphorbia microsciadia, Euphorbia macrostegia, anticancer effect, biological activity, radical scavenging, natural  
compounds and phytochemical analyses  
1
attributed to the  
presences  
of  
quercetin-3-β-O-  
1
Introduction  
galactopyranoside, while myricetin-3-β-O-galactopyranoside  
was less active constituent among the isolated flavonol  
glycosides from the aerial part of the plant (6). On the other  
hand, a dichloromethane (DCM) extract of E. macrostegia  
showed cytotoxicity against two cancer cell lines; MDA-MB-  
Euphorbia is the largest genus of the family Euphorbiaceae  
spurges), with more than 2000 known species and is  
(
characterized by the presence of milky latex and unique flower  
structures. It has about 80 species in Iran, two of which are  
called locally "Dena and Persian spurge", E. microsciadia  
Boiss. and E. macrostegia Boiss., respectively. They grow in  
the mountainous area of Iran (1, 2). Various species of the  
genus Euphorbia have shown different biological activities  
including enzyme inhibition and cytotoxic activity (3). In  
addition to their biological activities, these plants are  
ecologically important in the flora of Iran as weeds, anti-  
vegetative and poisonous plants (2).  
It has been previously shown that a butanol/hexane extract  
of the aerial parts of E. microsciadia had the ability to modulate  
T-cell responses that suggest its possible beneficial effect on  
immune host defense (4). A MeOH extract of E. microsciadia  
showed stimulatory effects on the proliferation of the  
lymphocytes and a n-hexane layer of the MeOH extract had  
significant strong antiproliferative effect against tumor cells  
4
8 and MCF-7 (7). Four cycloartane triterpenoids were isolated  
from the DCM extract. Two of which; cycloart-23(E)-ene-  
β,25-diol and cycloart-23(Z)-ene-3β, 25-diol, showed the  
3
strongest cytotoxicity against the above mentioned cell lines,  
respectively. In addition to the cytotoxic activity, the tyrosinase  
inhibitory activity of constituents of E. macrostegia has also  
been reported recently (8). Among 10 compounds identified in  
the  
plants’  
extract,  
2-(4-hydroxyphenyl)-  
ethylhentriacontanoate, hentriacontan-1-ol, lupenone and  
cycloart-22-ene-3,25-diol were detected as the most active  
tyrosinase inhibitors with IC50s of 71.4-78.6 μM. Also, recently  
we isolated three triterpenoids; 24-methylenecycloartan-3β-ol,  
butyrospermol and cycloartenol and three diglycerides, 1,2-di-  
O-α-linolenoyl-sn-glycerol, 1-O-linoleoyl-3- O-palmitoyl-sn-  
glycerol and 1-O-α-linolenoyl-2-O-palmitoyl-sn-glycerol from  
(
5). The immunosuppressive activity of the plant's extract was  
Corresponding Author: Amir Reza Jassbi: Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical  
Sciences, Shiraz, Iran. Tel: +98-71-32303872, E-mail: jassbiar@sums.ac.ir  
328  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 328-334  
the hexane soluble part of MeOH/DCM extracts of E.  
macrostegia Boiss. (9).  
In this study, we report here antimicrobial potential, DPPH  
radical scavenging activity, total phenolic contents and  
cytotoxicity of different extracts of the roots and shoots of E.  
macrostegia and E. microsciadia.  
of mobile phase were examined to obtain optimum retention  
factor (R  
thymol-sulfuric acid (0.5 g thymol in 95 mL EtOH and 5 mL  
97% H SO ) and vanillin-sulfuric acid (0.3 g vanillin: 28 ml  
f
) and resolution. In addition, two TLC reagents  
2
4
ethanol: 1 ml sulfuric acid), were sprayed followed by heating  
the developed TLCs to distinguish different phytochemical  
classes such as glycosides and terpenes in different colors (12).  
2
Materials and Methods  
2
.1 General Experimental Procedures  
RPMI 1640 (cell culture medium), fetal bovine serum  
(
FBS), trypsin, and phosphate buffered saline (PBS) were  
purchased from Biosera (Ringmer, UK). Chloramphenicol and  
-(4,5-Dimethylthiazol-2-yl) -2,5-diphenyltetrazolium  
3
bromide (MTT) were obtained from Sigma-Aldrich (St Louis,  
MO, USA) and penicillin ⁄ streptomycin were purchased from  
Invitrogen (San Diego, CA, USA). Doxorubicin and Folin-  
Ciocalteu reagents were obtained from EBEWE Pharma  
(
Unterach, Austria) and Fluka, respectively. 2,2'-diphenyl-1-  
picrylhydrazyl (DPPH), Vanillin and p-iodonitrotetrazolium  
violet (INT) were purchased from Merck chemical companies.  
All the solvents were purchased from Merck. Thymol was  
purchased from Riedel-de Haen (Germany).  
2
.2 Plant material  
Euphorbia microsciadia Boiss. and Euphorbia  
Figure 1: Structures of some compounds previously isolated from  
Euphorbia plants  
macrostegia Boiss. were collected in July 2012 from the Dena  
mountain (N 30 52′ E 51 31, 2980 m altitude), Yasuj, Iran. The  
plants were identified by Mr. Mehdi Zare and Dr. Mojtaba  
Asadollahi, plant taxonomists, in Medicinal and Natural  
Products Chemistry Research Center (MNCRC), Shiraz  
University of Medical Sciences, Iran. A voucher specimen for  
E. macrostegia (PC-91-4-1-1.2) and E. microsciadia (PC-91-  
2
.5 Cytotoxic bioassay  
Human acute lymphoblastic leukemia (MOLT-4) cells  
were obtained from the National Cell Bank of Iran, Pasteur  
Institute, Tehran, Iran. MTT assay was performed to assess  
viability after the exposure of cells to the extracts (13, 14). The  
cells were cultured in RPMI 1640 medium supplemented with  
4
-2-1.2) has been deposited in the herbarium of MNCRC.  
1
00 unitsmL penicillin-G, 10% FBS, and 100 µg⁄mL  
°
streptomycin and maintained at 37 C in humidified air  
containing 5% CO . The experiments were performed in 96-  
2
.3 Extraction procedure  
The shade-dried powdered shoots and roots of E.  
2
well microplates and 3000 cells were seeded in each well. The  
wells containing growth medium alone were used as blank for  
background correction. After overnight incubation at 37°C,  
half of the growth medium was removed and medium  
supplemented with different concentrations of extracts were  
added in triplicate. The extracts of E. microsciadia and E.  
macrostegia were first dissolved in DMSO and then diluted  
several times in complete growth medium. Maximum  
concentration of DMSO in the wells did not exceed 0.5%, a  
concentration that showed no cytotoxicity in the cells. Standard  
cytotoxic agents; cisplatin and doxorubicin were used as  
positive controls. After incubation for further 72 h, the medium  
was removed and MTT was added to each well at a final  
concentration of 0.5 mg⁄mL and plates were incubated for  
another 4 h at 37°C. In the end, formazan crystals were  
dissolved in 200 μl DMSO. The optical density was evaluated  
at 570 nm using a microplate reader (Bio-Rad, Model 680) with  
background correction at 655 nm. The percentage of viability  
compared to control wells was calculated for each  
concentration of the extracts and IC50 values were estimated  
with the software Curve Expert (for Windows, version 1.34).  
Each experiment was repeated at least 3 times and data were  
presented as mean ± S.E.M.  
microsciadia (120 g) and E. macrostegia (120 g) were  
extracted twice separately and sequentially in 1500 mL of  
DCM, MeOH and 80% MeOH, by maceration for 24 h. at room  
temperature. Each filtered extract was concentrated to remove  
traces of the solvents under reduced pressure using a rotary  
evaporator to afford the respective dried solvent extracts. The  
weight of the shoots and the roots extracts of the plants were  
respectively as follows: DCM (1.04 and 5.8 g), MeOH (12.4  
and 4.2 g), and 80% MeOH (4.16 and 1.44 g) for E.  
microsciadia and DCM (2.4 and 1.44 g), MeOH (0.8 and 2.8  
g), and 80% MeOH (4.08 and 1.04 g) for E. macrostegia.  
2
.4 Preparation of the extracts, pure compounds, and TLC  
conditions  
The dried MeOH and 80% MeOH extracts were dissolved  
in MeOH to a concentration of 5 mg/mL for TLC analysis. Also  
for the bioassays, the extracts were prepared in their extracting  
solvents in different concentrations. Pure phytochemicals,  
previously isolated from Euphorbia plants in our group, named  
cycloartenol (1), 24-methylenecycloartan-3β-ol (2), β-  
sitosterol (3) and euphol (4), were selected for the assessment  
of their existence in the above extracts (Figure 1). They were  
extracted from the hexane soluble part of methanol-  
dichloromethane extracts of the aerial parts of E. macrostegia  
2
.6 DPPH radical scavenging activity  
The antioxidant activities of all extracts of E. microsciadia  
(
1 and 2) (9), methanol-dichloromethane extracts of E.  
erythradenia (3) (10), and acetone extract of the roots of E.  
microsciadia (4) (11). They were dissolved in MeOH (5  
mg/mL) for spotting on TLC plates. We analyzed the chemical  
constituents of the extracts compared to the standard  
phytochemicals 1-4 using pre-coated TLC plates (silica gel 60  
F254, 0.25 mm film thickness, Merck). Different composition  
and E. macrostegia were determined according to the modified  
method that we have previously described (9, 15-17). Briefly,  
5
μL of the extracts was mixed with 195 μL of 0.1 mM DPPH  
in 96-well microplate. After incubation in the dark at room  
temperature for 30 minutes, the absorbance of the reaction  
329  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 328-334  
mixture was measured at λ 517 nm using a Bio-Rad microplate  
reader. Inhibition ratio (percent) was calculated from the  
following equation:  
micro-dilution (NBMD) assays (19). To perform the test, the  
stock solution of plant extracts were serially diluted in dimethyl  
sulfoxide (DMSO) to afford different concentrations of test  
samples. Chloramphenicol solution in DMSO was also  
prepared as the positive control. Breifly, 5 µL of the tests  
sample solutions was added to 95 µL of the fresh media and  
DPPH radical scavenging activity (%) = [(AbsControl - AbsSample  
AbsControl] × 100  
)
/
100 µL of bacterial suspension culture (OD = 0.1 at 600 nm) in  
We used butylated hydroxytoluene (BHT) and quercetin as  
a 96-well microplate. After 24 h incubation at 37 °C in a  
shaking incubator, 10 µL of a 0.5% INT solution in water was  
added to each well. Afterwards, at the above-mentioned culture  
conditions, the microplates were incubated for further 30 min.  
Finally, the MIC was calculated as the minimum concentration  
of the test sample extract or antibacterial standard inhibiting the  
growth of bacterial strain by discoloration of the purple INT  
solution (6).  
the standards radical scavenger. The IC50 values were  
calculated by linear regression equations of the DPPH  
inhibition percentage from different concentrations of the  
extracts and the standards, using Microsoft Excel and Curve  
Expert statistical programs (15).  
2
.7 Determination of total phenolic content  
The concentration of total phenolics in the DCM, MeOH  
and 80% MeOH extracts were determined separately by the  
Folin-Ciocalteu colorimetric method as described previously  
3
Results and Discussion  
Cytotoxicity of DCM, MeOH and 80% MeOH extracts of  
(
18). Briefly, in each test plate, 5 μL of the 10 mg/mL plant  
the roots and shoots of E. macrostegia and E. microsciadia  
were tested against MOLT-4 cells (Table 1). Among the tested  
extracts of E. microsciadia, the DCM extracts showed no  
activity. The MeOH and 80% MeOH extracts of the shoots of  
this plant with IC50 values of 10.5 ± 2.6 and 17.1 ± 2.9 µg/mL,  
respectively, showed stronger activity compared to the same  
extracts from the roots with the IC50 values of 46.0 ± 3.5 and  
extracts or the standard gallic acid solution, 158 μL distilled  
water and 10 μL Folin-Ciocalteu reagent were added and the  
solution was shaken briefly on a vortex mixer well, then after  
8
.5 min incubation at room temperature 30 μL of a 0.25%  
sodium carbonate was added to each solution. The reaction  
mixtures were kept in the dark at room temperature for 2 h and  
the absorbance of the solutions were measured at λ 765 nm  
against the blank. The concentrations of the total phenolics  
were measured against a series of gallic acid standard solutions  
and expressed as mg equivalent of gallic acid in 1 g plant  
extract (mg EG/g PE) (18).  
40.0 ± 3.7 µg/mL, respectively. Unlike E. microsciadia, all the  
three extracts of E. macrostegia showed strong activity against  
MOLT-4 cells with IC50 values in the range of 7.0- 38.4 μg/mL.  
Unlike E. microsciadia, the root extracts of E. macrostegia  
exhibited lower IC50s compared to the extracts from the shoots  
of this plant.  
The MeOH and 80% MeOH extracts of the shoots of E.  
microsciadia showed the highest radical scavenging potentials  
in the DPPH free-radical test, with IC50 values of 9.95 ± 1.00  
and 10.82 ± 1.64 µg/mL, respectively (Table 2). Their activities  
are more than that measured for butylated hydroxytoluene  
2
.8 Antibacterial minimum inhibitory concentration using  
nutrient broth microdilution  
To examine the antibacterial activity of the plant extracts,  
four Gram-negative bacteria (Escherichia coli: PTCC1330,  
Klebsiella pneumoniae: PTCC1053, Pseudomonas aeruginosa:  
PTCC 1074, and Salmonella typhi: PTCC1609) and three  
Gram-positive bacteria (Staphylococcus aureus: PTCC1112,  
Staphylococcus epidermidis: PTCC1114, Bacillus subtilis:  
PTCC1023) were chosen to measure the minimum inhibitory  
concentrations (MIC) of the active extracts using nutrient broth  
(
BHT: IC50ꢀ=ꢀ51.09 ± 1.35 μg/mL, P < 0.05) but less than the  
quercetin’s radical scavenging potential with an IC50 value of  
.0 ± 0.16 µg/mL (P < 0.05). The other extracts exhibited  
radical scavenging activity in the range of 28.51- 85.22 μg/mL.  
2
Table 1: Cytotoxic activity of different extracts of E. macrostegia and E. microsciadia  
MOLT-4 IC50 (µg/mL)  
MeOH extract)  
MOLT-4 IC50 (µg/mL)  
(80% MeOH extract)  
MOLT-4 IC50 (µg/mL)  
(DCM extract)  
Sample name  
(
E. macrostegia, shoots  
E. macrostegia, roots  
E. microsciadia, shoots  
E. microsciadia, roots  
Doxorubicin (nM)  
Cisplatin (µM)  
34.1 ± 4.2  
7.9 ± 1.0  
10.5 ± 2.6  
46.0 ± 3.5  
17.2 ± 2.0  
3.1 ± 0.7  
38.4 ± 3.2  
34.8 ± 3.3  
17.1 ± 2.9  
40.0 ± 3.7 (11)  
-
-
13.4 ± 2.3  
7.0 ± 1.2  
-
>100  
-
-
Table 2: DPPH radical scavenging activity and total phenolic contents (mg EG/g PE) of different extracts of E. macrostegia and E.  
microsciadia  
DPPH IC50 (µg/mL)  
MeOH extract)  
Total phenol  
(MeOH extract)  
78.94 ± 3.89  
71.65 ± 1.01  
288.50 ± 29.38  
37.59 ± 2.07  
-
DPPH IC50 (µg/mL)  
(80% MeOH extract)  
28.51 ± 2.37  
35.55 ± 3.14  
10.82 ± 1.64  
85.22 ± 2.98  
51.09 ± 1.35  
2 ± 0.16  
Total phenol (80%  
MeOH extract)  
147.12 ± 5.46  
132.53 ± 4.43  
203.61± 28.58  
18.29 ± 1.45  
-
Sample name  
(
E. macrostegia, shoots  
E. macrostegia, roots  
E. microsciadia, shoots  
E. microsciadia, roots  
BHT  
47.64 ± 4.74  
41.68 ± 2.97  
9.95 ± 1.00  
45.39 ± 2.93 (20)  
51.09 ± 1.35  
2 ± 0.16  
Quercetin  
-
-
330  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 328-334  
Table 3: Minimum inhibitory concentrations (mg/mL) of different extracts of E. macrostegia and E. microsciadia by nutrient-broth  
micro-dilution bioassay  
Microorganisms (rows)  
Plants  
S.a.  
S.e.  
B.s.  
S.t.  
P.a.  
E.c.  
K.p.  
E. macrostegia, shoots (DCM extract)  
E. macrostegia, shoots (MeOH extract)  
E. macrostegia, shoots (80% MeOH extract)  
E. macrostegia, roots (DCM extract)  
E. macrostegia, roots (MeOH extract)  
E. macrostegia, roots (80% MeOH extract)  
E. microsciadia, roots (DCM extract)  
E. microsciadia, roots (MeOH extract)  
E. microsciadia, roots (80% MeOH extract)  
E. microsciadia, shoots (DCM extract)  
E. microsciadia, shoots (MeOH extract)  
E. microsciadia, shoots (80% MeOH extract)  
Chloramphenicol  
NA  
5
1.25  
NA  
2.5  
5
NA  
5
2.5  
5
5
NA  
1.25  
1.25  
NA  
2.5  
1.25  
NA  
1.25  
1.25  
5
1.25  
1.25  
5
1.25  
1.25  
2.5  
1.25  
1.25  
1.25  
5
NA  
1.25  
1.25  
NA  
5
NA  
5
5
NA  
5
5
1.25  
2.5  
NA  
1.25  
5
1.25  
2.5  
NA  
1.25  
5
2.5  
5
1.25  
2.5  
5
2.5  
5
1.25  
5
5
2.5  
1.25  
2.5  
NA  
2.5  
2.5  
2.5  
NA  
NA  
NA  
1.25  
2.5  
NA  
NA  
NA  
2.5  
5
5
5
2.5  
2.5  
0.05  
5
0.0125 0.025  
0.0125 0.05  
0.05 0.05  
NA: not active (>5). S.a., Staphylococcus aureus; S.e., Staphylococcus epidermidis; B.s., Bacillus subtilis; S.t., Salmonella typhi;  
P.a., Pseudomonas aeruginosa; E.c., Escherichia coli; K.p., klebsiella pneumoniae  
0.12  
0.10  
0.08  
0.06  
MeOH extracts  
0% MeOH extracts  
0.04  
8
0.02  
0.00  
0
100  
200  
300  
Total phenolic content (mg EG/g PE)  
Figure 2: Correlation graphs for DPPH 1 /IC50 values and total phenolic contents for MeOH and 80% MeOH extracts  
The 80% MeOH extract of the roots of E. microsciadia had  
the weakest antioxidant activity against DPPH radicals, as the  
result of the highest IC50 value (85.22 ± 2.98 µg/ml). The  
increasing order of total phenol contents (18.29 ± 1.45 to  
DCM extract of E. macrostegia was only active at MIC 1.25  
mg/mL against the growth of B. subtilis, E. coli, and K.  
pneumonia. Generally, among the microorganisms, B. subtillis  
was the most susceptible ones to almost all extracts.  
2
88.50 ± 29.38 mg EG/ g PE) of the plant extracts were in  
We have analyzed the bioactive plant extracts using TLC  
in comparison to Euphorbia derived phytochemicals. The TLC  
analyses of DCM, MeOH and 80% MeOH of the roots and the  
shoots of E. macrostegia and E. microsciadia, resulted in  
several purple colored spots after vanillin-sulfuric acid reagent  
treatments after development by chloroform: acetone (95:5)  
agreement with the decreasing order of the IC50 (85.22 ± 2.98  
to 9.95 ± 1.00 μg/mL) of DPPH test (Figure 2). The most  
prominent total phenolic contents was measured in the shoots  
of E. microsciadia, while the roots of E. microsciadia had the  
least TP contents. Antimicrobial activity of the DCM, MeOH  
and 80% MeOH extracts of the plants were measured against  
four different Gram-negative and three Gram-positive bacteria  
f
mobile phase (Figure 3). Two spots with R values between  
0.45 and 0.80, were present in all extracts, while the  
chromatogram of the methanol roots extract of E. macrostegia  
was the most chemically diverse among them. On the other  
hand, all of the tested extracts were analyzed by silica-gel TLC  
using more polar mobile phase (chloroform: formic acid:  
methanol: water (5:0.2:3:0.5)).  
(
Table 3). The MeOH extracts of the shoots and roots of E.  
macrostegia, and methanol and 80% MeOH extracts of the  
roots of E. microsciadia, were the most active antibacterial  
extracts that inhibited the growth of all tested microorganisms  
at MIC values between 1.25-5 mg/mL (Table 3). In addition,  
331  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 328-334  
Figure 3: Spots in daylight after spray with vanillin-sulfuric acid using silica gel- TLC plates and chloroform: acetone (95:5) mobile phase. Spots are the  
MeOH extracts of the shoots (A) and the roots (B) of E. microsciadia, the MeOH extracts of the shoots (C) and the roots (D) of E. macrostegia, the 80%  
MeOH extracts of the shoots (E) and the roots (F) of E. microsciadia, the 80% MeOH extracts of the shoots (G) and the roots (H) of E. macrostegia,  
DCM extracts of the shoots (I) and the roots (J) of E. microsciadia, and DCM extracts of the shoots (K) and the roots (L) of E. microsciadia  
phases (Figure 6, (2), (3)). In literature, compound 1 and 4  
showed antioxidant and cytotoxic activity, while compound 3  
showed antibacterial activity (20-24). Compounds 1 and 2 are  
present in almost all extracts in different ratios (Figure 6 (1),  
(
3)), while the presence of compound 3 was confirmed in the  
MeOH extracts of the shoots of E. microsciadia, the roots of E.  
macrostegia, 80% MeOH extracts of the roots of E.  
microsciadia and the shoots of E. macrostegia and all the DCM  
extracts. To distinguish compounds 1 and 2, we used silica gel  
TLC plates impregnated with 5% AgNO  
acetone (97:3) as the mobile phase, followed by treatment with  
the thymol-sulfuric acid reagent spray. In AgNO -silica gel  
3
, using chloroform:  
3
TLC plate, compound 1 is clearly present in all MeOH and 80%  
MeOH extracts of the roots of the plants (Figure 6, (2)).  
Figure 4: Spots in daylight after spray with thymol using a TLC plate  
and chloroform: formic acid: methanol: water (5:0.2:3:0.5). The  
extracts numbers are the same as described in Figure 3  
Then, after visualizing the chromatogram by thymol spray  
reagent followed by heating, all the TLCs except DCM one,  
exhibited two major pink colored spots that suggested the  
glycosides character of compounds (Figure 4). While, the pink  
colored compounds were appeared as green-gray color spots  
Figure 5: Spots in daylight after spray with vanillin-sulfuric acid  
reagent using an TLC plate and chloroform: formic  
acid:methanol:water (5:0.2:3:0.5). The extract numbers are the same as  
described in Figure 3  
(
except the 80% extracts of roots and shoots of E. macrostegia)  
when the chromatogram sprayed with vanillin-sulfuric acid  
reagent (Figure 5). Co-TLC analyses of the extracts along with  
common phytochemicals 1, 2, 3 and 4 were performed using  
3
silica gel (Figure 6, (1)) and AgNO - silica gel stationary  
332  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 328-334  
Figure 6: (1) Spots in daylight using chloroform: acetone (97:3) as the mobile phase (left) spray with vanillin-sulfuric acid reagent using an TLC plate,  
2) and (3) spray with thymol reagent using AgNO coated TLC plate. cycloartenol [1] 24-methylenecycloartan-3β-ol [2], β-sitosterol [3] and euphol [4].  
The extract numbers are the same as described in Figure 3  
(
3
4
Conclusion  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
The MeOH and DCM extracts of the roots of E.  
macrostegia are good candidates to isolate cytotoxic  
compounds. While the shoots DCM, and 80% MeOH extracts  
of the plant are suitable for extraction of cytotoxic and radical  
scavengers. However, the shoots of E. microsciadia is the best  
for exploring cytotoxic, and antioxidants when the plant is  
extracted with MeOH and 80% MeOH. The shoots MeOH  
extracts and roots MeOH and 80% MeOH extracts of E.  
macrostegia are the best for exploring antibacterial agents,  
while the last two solvent extracts of E. microsciadia shoots are  
preferred for isolating moderate antibacterial agents. The  
above-mentioned results indicated that the semi-polar to polar  
substances are responsible for the studied biological activity of  
the shoots of E. microsciadia in addition to the nonpolar to  
polar phytochemicals in both roots and shoots of E.  
macrostegia. It seems that terpenoid and glycosylated  
phytochemicals are the major phytochemicals in the DCM,  
MeOH and 80% MeOH extracts of E. macrostegia and E.  
microsciadia, which need to be isolated and identified. The  
antibacterial, cytotoxic and antioxidant activity of the plant  
extracts may be attributed to the presence of compounds 1-4 as  
these activities have been reported for them previously in the  
literature. For instance, compound 1 and 4 showed antioxidant  
and cytotoxic activity, while compound 3 showed antibacterial  
activity (12, 14, 19, 21, 22). However, the other compounds  
detected in the TLCs maybe isolated, identified, and further  
tested for the above biological activities in future.  
References  
1
.
Mozaffarian V. A Dictionary of Iranian Plant Names: Latin,  
English, Persian. Farhang Mo'aser, Tehran. 2003.  
2. Pahlevani AH. Notes on some species of the genus Euphorbia in  
Iran. Rostaniha. 2007 8(2):89-103.  
3
4
.
.
Jassbi AR. Chemistry and biological activity of secondary  
metabolites in Euphorbia from Iran. Phytochemistry. 2006  
6
7(18):1977-84.  
Ghafourian Boroujerdnia M, Khosravi N, Malek-Hosseini S,  
Amirghofran Z. Augmentation of lymphocytes activation and T  
cell modulation by the extracts from some Euphorbia species.  
Pharmaceutical biology. 2014 52(11):1471-7.  
5. Amirghofran Z, Malek-hosseini S, Gholmoghaddam H, Kalalinia  
F. Inhibition of tumor cells growth and stimulation of lymphocytes  
by Euphorbia species. Immunopharmacol Immunotoxicol. 2011  
3
3(1):34-42.  
6
.
Ghanadian SM, Ayatollahi AM, Afsharypour S, Hareem S,  
Abdalla OM, Bankeu JJK. Flavonol glycosides from Euphorbia  
microsciadia Bioss. with their immunomodulatory activities.  
Iranian journal of pharmaceutical research: IJPR. 2012 11(3):925.  
7. Baniadama S, Rahiminejad MR, Ghannadian M, Saeidi H,  
Ayatollahi AM, Aghaei M. Cycloartane Triterpenoids from  
Euphorbia macrostegia with their Cytotoxicity against MDA-  
MB48 and MCF-7 Cancer Cell Lines. Iranian Journal of  
Pharmaceutical Research. 2014 13(1):135-41.  
8
.
Demirkiran O, Topcu G, Azarpira A, Choudhary MI. Tyrosinase  
Inhibitory Activity of Chemical Constituents of Euphorbia  
macrostegia. Chemistry of Natural Compounds. 2014 50(5):810-  
3.  
Acknowledgements  
We are grateful to Mr. Mehdi Zare and Dr. Mojtaba  
Asadollahi for collection and identification of the plant material  
and the research council of Shiraz University of Medical  
Sciences for financial support of this project.  
9. Zare S, Ghaedi M, Miri R, Heiling S, Asadollahi M, Baldwin IT,  
et al. Phytochemical Investigation on Euphorbia macrostegia  
(Persian wood spurge). Iranian Journal of Pharmaceutical  
Research. 2015 14(1):243-9.  
1
0. Mirzaei Y. Isolation and structural elucidation of natural products  
in Euphorbia erythradenia [MSc Thesis]. Yasouj: University of  
Yasouj; 2013.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
11. Hashemi SS. Phytochemical investigation on the roots of  
Euphorbia microsciadia & study of it's biological activities [MSc  
Thesis]. Yasouj: University of Yasouj; 2014.  
1
2. Wagner H, Bladt S. Plant drug analysis: a thin layer  
chromatography atlas: Springer Science & Business Media; 1996.  
333  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 328-334  
1
3. Mosmann T. Rapid colorimetric assay for cellular growth and  
survival: application to proliferation and cytotoxicity assays.  
Journal of Immunological Methods. 1983 65(1):55-63.  
1
1
4. Jassbi AR, Miri R, Asadollahi M, Javanmardi N, Firuzi O.  
Cytotoxic, antioxidant and antimicrobial effects of nine species of  
woundwort (Stachys) plants. Pharmaceutical Biology. 2014  
5
2(1):62-7.  
5. Jassbi AR, Singh P, Krishna V, Gupta PK, Tahara S. Antioxidant  
study and assignments of NMR spectral data for 3′, 4′, 7-  
trihydroxyflavanone 3′, 7-di-O-β-d-glucopyranoside (butrin) and  
its hydrolyzed product. Chemistry of Natural Compounds. 2004  
4
0(3):250-3.  
1
6. Firuzi O, Miri R, Asadollahi M, Eslami S, Jassbi AR. Cytotoxic,  
antioxidant and antimicrobial activities and phenolic contents of  
eleven Salvia species from Iran. Iranian journal of pharmaceutical  
research: IJPR. 2013 12(4):801.  
1
1
1
7. Blois MS. Antioxidant Determinations by the Use of a Stable Free  
Radical. Nature. 1958 181(4617):1199-200.  
8. Waterhouse AL. Determination of total phenolics. Current  
Protocols in Food Analytical Chemistry. 2002 6(1):11.1.1-.1.8.  
9. Jassbi AR, Zamanizadehnajari S, Azar PA, Tahara S. Antibacterial  
diterpenoids from Astragalus brachystachys. Zeitschrift fur  
Naturforschung C-Journal of Biosciences. 2002 57(11-12):1016-  
2
1.  
2
2
2
0. Benmerache A, Alabdul Magid A, Labed A, Kabouche A,  
Voutquenne-Nazabadioko L, Hubert J, et al. Isolation and  
characterisation of cytotoxic compounds from Euphorbia  
clementei Boiss. Natural product research. 2017 31(18):2091-8.  
1. Ezzat SM, Choucry MA, Kandil ZA. Antibacterial, antioxidant,  
and topical anti-inflammatory activities of Bergia ammannioides:  
A wound-healing plant. Pharmaceutical biology. 2016 54(2):215-  
2
4.  
2. Hoskeri J, Krishna H, Jignesh V, Roshan S, Vijay S. In-silico drug  
designing using β-sitosterol isolated from Flaveria trinervia  
against peptide deformylase protein to hypothesize bactericidal  
effect. International Journal of Pharmacy and Pharmaceutical  
Sciences. 2012 4:192-6.  
2
2
3. Shaker KH, Al Shehri BM, Oteef MDY, Mahmoud MF.  
Antioxidant compounds from Euphorbia schimperiana scheele in  
Aseer Region, Saudi Arabia. International Journal of  
Pharmaceutical Sciences Review and Research. 2015 32(1):117-  
2
2.  
4. Mali PY, Panchal SS. Euphorbia neriifolia L.: Review on botany,  
ethnomedicinal uses, phytochemistry and biological activities.  
Asian Pacific journal of tropical medicine. 2017 10(5):430-8.  
334