Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 211-217  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)217  
Comparative Biodrying Performance of Municipal  
Solid Waste in the Reactor under Greenhouse and  
Non-greenhouse Conditions  
Katitep Ngamket, Komsilp Wangyao, Sirintornthep Towprayoon*  
1
The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut’s University of Technology Thonburi, Center of Excellence on Energy  
Technology and Environment (CEE), PERDO, Ministry of Higher Education, Science, Research and Innovation, Bangkok  
Received: 01/09/2020  
Accepted: 05/11/2020  
Published: 20/03/2021  
Abstract  
The high moisture content of municipal solid waste yields a lower energy content of solid fuel that affects the thermal conversion  
efficiency. Biodrying is an alternative drying method using bio-heat generated by microbial metabolism to reduce the moisture content of  
municipal solid waste. This research was conducted in three pilot-scale biodrying reactors, two under greenhouse conditions compared with  
one conventional non-greenhouse condition. Two bunkers with greenhouse cladding were connected with aerators, and airflow rates were  
3
set at 0.4 and 0.6 m /(kgwaste·day), respectively. Meanwhile, a passive aeration method was applied to the non-greenhouse bunker. This study  
aims to investigate the effect of the greenhouse condition on the biodrying process and assess the performance of the drying process through  
different operating conditions. The result shows that the greenhouse mainly affects the air temperature rise in the reactor. The aeration rate  
3
is positively correlated with weight reduction (r = 0.93). At 0.6 m /(kgwaste·day) airflow rate, the treatment can reach a moisture content less  
3
than 30% on average within ten days, while at 0.4 m /(kgwaste·day) airflow rate, it takes 15 days to reduce the moisture content to less than  
3
0%. Biodrying under the greenhouse condition with active aeration potentially achieves desirable moisture content reduction and heating  
value increase more efficiently than the common biodrying. However, the airflow rate is a crucial factor in determining the suitable drying  
time in biodrying under the greenhouse condition.  
Keywords: Biodrying, Greenhouse, Municipal Solid Waste, Refuse Derived-Fuel, Solar Radiation  
1
There are many available drying methods for MSW, such as  
1
Introduction  
thermal drying and biodrying. The benefit of thermal drying is the  
shorter drying period (2.64±1.44 h) [2]. Meanwhile, the drying  
time of biodrying is about 16±7 days [2]. Nonetheless, thermal  
drying could have higher maintenance and operation costs for  
large-scale drying applications. Biodrying is an alternative drying  
method that uses metabolic energy from biodegradation for water  
evaporation in MSW or wastewater sludge.  
Aeration is a critical concern for heat generation from aerobic  
decomposition. The various optimal airflow rate in many  
biodrying studies depends on initial moisture content, reactor  
type, and feedstock composition. A study from Shao et al. [3]  
conducted biodrying lysimeter measurements, using 0.34  
The Thai government has been developing the Bio-Circular-  
Green Economy (BCG) model since 2019. This model focuses on  
socio-economic and environmental improvements to reach  
sustainable development goals. The linear economy of the take-  
make-use-dispose concept is being reformed into a circular  
economy. The development of community-based biomass power  
plants using refuse-derived fuel (RDF), which is obtained from  
processed municipal solid waste (MSW), is aligned with the BCG  
model. Additionally, alternative energy will amount to 30% of all  
energy consumption in this country by 2036 [1]. The challenge of  
RDF production is that MSW has a high moisture content (MC)  
and organic fraction. The MSW characteristics cause low energy  
content in RDF, leading to low energy gain from the thermal  
conversion process. Therefore, it is necessary to improve the  
MSW properties for the efficiency of energy production by  
reducing the MC while increasing the heating value (HV), by  
adding a drying process to MSW preparation before the heat  
conversion process.  
3
m /(kgwaste·day) of airflow rate to dry MSW with initially 74%  
MC for 16 days resulting in 30% MC. Research of Tom et al. [4]  
3
set 0.53 m /(kgwaste·day) of airflow rate to reduce MC of MSW  
from 61.25 to 30% in approximately 33 days. In the case of  
Debicka et al. [5], a study in the industrial-scale biodrying reactor  
3
applied an airflow rate at 1.802.16 m /(kgwaste·day) to reduce MC  
by 50% within one week (the final MC was less than 22%). The  
*
Corresponding author: Sirintornthep Towprayoon, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut’s  
University of Technology Thonburi (KMUTT), Bangkok, Thailand. E-mail: sirin.jgsee@gmail.com  
211  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 211-217  
advantages of the biodrying method are the decreases in weight,  
volume, and MC of MSW. However, this method can be a costly  
technology for developing countries.  
2.2 MSW preparation  
MSW feedstock from the On-nut waste transfer station in  
Bangkok, Thailand, was unpacked and mixed until homogenous.  
The feedstock was sampled to determine the initial characteristics  
prior to entering greenhouse bunkers. The MC measurement of  
MSW follows the oven-drying method at 105 °C (ASTM D-3173,  
1997), which employs a bomb calorimeter to estimate the heating  
value of MSW. Each greenhouse bunker loaded approximately  
4,000 kg of MSW. The feedstock in all treatment units was set at  
1.2 m height.  
Biodrying under greenhouse conditions is appropriate for  
developing countries that have high solar radiation intensity. In  
Thailand, the average of daily solar radiation intensity is 17.6  
2
MJ/(m ·day) [6]. The drying process under greenhouse conditions  
contributes to two main effects: 1) higher air temperature and  
relative humidity in the greenhouse is than the external condition  
and 2) an improvement in microbial growth and activity [7].  
Additionally, the research of biodrying under greenhouse  
conditions conducted by Zaman et al. [8] showed that the  
2.3 Experimental design  
biodrying process can abate CO  
2
emission by 13 times and can  
We performed three different conditions: a greenhouse with  
3
produce RDF with an HV up to 6,265 kcal/kg. According to the  
meta-analysis by Tun and Juchelkova [2], most biodrying studies  
were conducted on a laboratory scale. Particularly in biodrying  
under greenhouse conditions, there is no publicised research on a  
pilot or industrial scale. To fill in this gap in the literature, this  
study aims to compare the effect of greenhouse and non-  
greenhouse conditions on the biodrying process on a pilot scale.  
The result of this novel design study can be a practical direction  
for the improvement and implementation of MSW biodrying  
under greenhouse conditions in developing countries.  
an aeration rate of 0.4 m /(kg·day) (0.4AR), a greenhouse with an  
3
aeration rate of 0.6 m /(kg·day) (0.6AR), and a passive aeration  
condition (CB). The CB was operated under a water-proof  
cladding, which is a non-greenhouse condition, to compare to the  
biodrying performance under the greenhouse condition. We  
assigned passive aeration in the control system, and this system  
was simulated as a conventional windrow biodrying. The  
experimental period of all conditions was 15 days.  
2.4 Data collection and monitoring  
In all greenhouse bunkers, four thermocouples were placed  
into the core layer of the MSW feedstock (more than 60 cm from  
the top of the waste pile) and on the waste pile surface.  
Meanwhile, one thermocouple was suspended above the waste  
pile inside the greenhouse, and another was set outside the  
greenhouse for measuring the ambient temperature. We used type  
K thermocouples with a temperature range of -270 to 1,327 °C to  
monitor the temperature change during the experiment. A  
Graphtec (GL240, Japan) data logger recorded all temperature  
data. We installed a pyranometer (RK200-03, China) above the  
greenhouse to measure the solar radiation intensity, which crosses  
the greenhouses daily pending the experiment. The daily  
accumulated intensity values of solar radiation were retained by  
the data logger (RK600, China) connected directly to the  
2
Materials and Method  
2
.1 Greenhouse structure and design  
Three greenhouse bunkers are located at the On-nut sewage  
treatmentplantnear the On-nut waste transferstationin Bangkok,  
Thailand. We designedthe squarebunkersto be 3.50 m wide, 4.35  
m long, and 2.20 m high. The base for the bunkers was raised to  
0
.25 m to provide inner gutters. These internalgutters allowed for  
air pathways and leachate drainage. A centrifuge aerator was  
connected at the posterior of each greenhouse; the air was fed  
through 6 in (0.15 m) diameter pipes. The ventilation fans at the  
superior space inside greenhouses automatically expelled the  
exhausted air when the relative humidity inside the greenhouse  
exceeded 60%. When relative humidity was less than 60%, the  
exhausted air was drained by passive ventilation. The controller  
box at the rear of each greenhouse contained a data logger,  
humidity sensor, and switching power supply. Metal rooftops  
were covered by transparent acrylic material. We set the base  
angles of triangle rooftop at 35º to advance high solar radiation  
transmissivity [9]. Figure 1 illustrates the structure of the  
greenhouse bunker in this experiment.  
th  
th  
pyranometer. Dried MSW at the 10 and 15 days was also  
sampled to determine the product characteristics during the  
drying process. Parameters and analytical methods are the same  
as those mentioned in section 2.2.  
2
.5 Assessment of drying performance  
All treatments in this experiment were compared based on  
various measurements of drying performance. We focused on  
weight loss, temperature differences, and the fraction of HV  
increase. Those indices are described as follows.  
2
.5.1 Weight loss  
Weight loss is related to MC reduction after the drying  
process. We weighed the feedstock before and after the  
experiment to calculate the percentage weight loss (%wl) in  
different operating conditions using Equation 1. This index can  
indicate not only the mass reduction but also the fuel cost  
improvement for waste transportation.  
%wl=(∆w/wi)×100  
(1)  
Figure 1: The structure of greenhouse bunker  
where ∆w is the difference between initial and final MSW weights  
kg), and wi refers to the initial MSW weight (kg).  
(
212  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 211-217  
2
.5.2 Temperature difference  
performed by mesophilic and thermophilic microorganisms [10].  
In this study, the pattern of temperaturechanges varies depending  
on operating conditions. A comparison of the temperature profile  
in different MSW layers is shown in Figure 2. The results show  
that 0.4AR achieved the highest temperature at the surface layer  
(54.53±2.15 °C in daytime and 55.53±2.42 °C at night).  
Remarkably, there is a nonsignificant difference between surface  
temperatures in CB and 0.6AR on daytime (p = 0.51) despite  
0.6AR operating under the greenhouse condition. 0.6AR also  
presentsthe lowest average temperatureat the surface MSW layer  
(49.68±2.62 °C in daytime and 47.22±2.37 °C at night) because  
An important parameter in bioprocessing is temperature, as it  
affects the biodegradation and evaporation of water in MSW. The  
daily temperature change during the experiment can indicate the  
drying behaviour in the system. The difference in operating  
conditions can result in heating moist MSW and, moreover, could  
affect the waste and ambient temperatures. To distinguish the  
temperature differences between the three treatments, the  
temperature integration (TI) indicates the accumulated daily  
differences between the average waste temperature and the  
ambient temperature. The calculation of TI is as follows:  
3
operating under 0.6 m /(kg·day) might release the heat inside the  
system by air ventilation.  
푇퐼 = ∑  1(푇푊푖 − 푇퐴푖)  
(2)  
As shown in Figure 2B, CB presents the highest core  
temperature (54.69±2.92 °C in daytime and 54.39±2.60 °C at  
night) in comparison to the other treatments. It is evident that CB  
can hold the heat in the middle of the waste pile since there is no  
significant difference between the day and night core  
temperatures (p = 0.99). This result differs from the case of the  
greenhouse with the aeration system. In the 0.4AR and 0.6AR  
treatments, a significant difference occurred between the day and  
night core temperatures (p < 0.01). Additionally, there is a  
significant difference between core temperatures of 0.4AR and  
0.6AR in the daytime (p < 0.05), while the result shows no  
significant difference between them at night (p = 0.22).  
Remarkably, 0.6AR is the only treatment that shows a  
nonsignificant difference between surface and core temperatures  
(p = 0.22). Hence, the aeration rate influences the temperature  
profile of feedstock, which is an essential factor affecting the  
drying process in the system.  
where TWi (°C) refers to the average waste temperatures, and  
TAi (°C) is the ambient temperature on the experimental day i.  
The different types of bunker coverages can cause variations in  
the air inside and outside the bunkers. The difference in air  
temperature (DA), defined as the accumulated air temperature  
difference between inside and outside the treatments, indicates the  
effect of the different roof types. The calculation of DA is shown  
below.  
퐷퐴 = ∑  1(푇퐺푖 − 푇퐴푖)  
(3)  
where TGi (°C) refers to the air temperature in the system (or  
above the waste pile), and TAi (°C) is the ambient temperature on  
the experimental day i.  
2
.5.3 Heating value increase fraction  
The initial and final HVs were investigated, and the HV  
increase was reported in terms of an increasing fraction. The  
following equation shows the calculation of the fraction of HV  
Figure 2C shows the air temperature inside the greenhouse  
among the treatments. There are significant differences in air  
temperaturesin the system in the daytime between CB and 0.4AR  
(p < 0.01) and between CB and 0.6AR (p < 0.01). On the other  
hand, there is a nonsignificant difference in the air temperature  
between all treatments at night (p = 0.99). The air temperature  
inside the greenhouse fluctuated extensively. These results  
indicate that solar radiation causes the air temperature to rise in  
the greenhouse condition. In the daytime, the difference in the air  
temperatures above the waste piles in CB and 0.4AR is 8.21 °C,  
while this difference is 8.75 °C for CB and 0.6AR.  
(
HVF) increase:  
HVF=∆HV/HVi,  
(4)  
where ∆HV is the difference between the final and initial  
HVs, and HVi is initial HV. The HV for this equation refers to  
the lower HV (kcal/kg).  
Temperature profiles illustrate the dissimilarity of  
temperature change patterns under various operating conditions.  
These profiles also show the critical role of aeration and  
greenhouse conditions in the biodrying process. Roble-Martinez  
et al. [11] conducted a study with laboratory-scale greenhouse  
dryers under passive aeration. The greenhouse in this study could  
perform drying temperatures between 2332 °C. Fabian et al. [7]  
conducted a similar study with artificial greenhouses under  
passive aeration, and the greenhouse achieved drying  
temperatures of 2937 °C within the first four days. Fabian et al.  
2
.6 Statistical analysis  
The mean values of the hourly temperature at four monitored  
points in each MSW layer were reported. One-way analysis of  
variance was used to investigate the statistically significant  
differences between comparative treatments. To accept the  
alternative hypothesis that refers to a statistically significant  
difference between comparative treatments, a significance level  
of less than 5% (p < 0.05) was applied. The Pearson correlation  
was used to determine the correlation between the two  
parameters. The r-value refers to the correlation coefficient that  
describes the strength of the relationship between two variables  
in the positive or negative direction. The R program for windrows  
was used for all statistical analyses.  
[7] stated that the waste temperature above 45 °C for the  
thermophilic phase was unavailable owing to the low volume of  
the waste pile (0.5 m high and 2.5 m long), and the bio-heat was  
not sufficient to evaporate water in organic wastes in this case.  
Meanwhile, the greenhouses of our study achieved a drying  
temperature range of 43.2257.92 °C in 0.4AR and 42.86–  
3
3
Results and Discussion  
.1 Temperature profiles  
Typical aerobic decomposition is able to heat feedstock or  
52.49 °C in 0.6AR. The crucial factor was that the volume of the  
waste pile in our study was adequate for heat capture inside the  
MSW pile. For CB, the drying temperature range was 42.26–  
organic substrates by microbial metabolism, which drives the  
temperatures above 50 °C, and the organic degradation is  
56.94 °C similar to that of 0.4AR. However, the obvious  
213  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 211-217  
distinction is the air temperature in the bunker. The air  
temperature under the greenhouse condition was higher than in  
the non-greenhouse condition as CB, and the higher air  
temperature indicates a higher water absorbability affecting the  
water content reduction.  
Figure 2: Temperature profiles of all treatments: surface temperatures, (B) core temperatures, and (C) air temperatures inside greenhouses  
3
.2 Solar radiation intensity throughout the drying process  
Solar radiation is the determining factor in raising the air  
receiving solar energy as well as CB. This result reveals the  
importance of airflow rate. Even though 0.6AR operated under  
the greenhouse condition, this airflow rate can be a disturbing  
factor that causes air temperature loss in the greenhouse.  
Nevertheless, there is no relationship between surface  
temperatures and solar radiation intensity  
temperature inside greenhouse cladding. In this experiment, the  
minimum solar radiation was 8.34 MJ/(m ·day), and the  
maximum value was 17.70 MJ/(m ·day). The average value was  
1
2
2
2
5.66 MJ/(m ·day). Figure 3 illustrates the relationship between  
solar radiation intensity and the air temperatures in the treatments.  
There are strong relationships between solar radiation intensity  
and air temperature inside the greenhouses in 0.4AR (r = 0.76)  
and in 0.6AR (r = 0.63). The result also shows a strong correlation  
between both parameters in the case of CB, the non-greenhouse  
condition (r = 0.61). The correlation coefficients, or r-values,  
indicate that operating under the greenhouse condition with the  
low aeration rate (0.4AR) raises the air temperature in the  
greenhouse more significantly than the other cases. Meanwhile,  
3
.3 Product characteristics  
The product from the drying process is RDF. According to the  
American Society for Testing and Materials (ASTM), RDF is  
classified into seven groups depending on physical  
characteristics. In this study, dried MSW is RDF-1 (in the form of  
raw MSW) following the ASTM standard E856-83 (2006) and  
requires an additional mechanical process to treat for RDF  
utilisation. Considering chemical characteristics, the desirable  
properties of RDF based on the market’s needs are: 1) MC is less  
0
.6AR can affect the air temperature inside the bunker when  
214  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 211-217  
than 30% by mass, and 2) LHV is greater than 4,500 kcal/kg [12].  
Table 1 shows the product characteristicsin this experimentat the  
recommended to achieve desirable RDF characteristics for the  
implementation on a commercial scale.  
th th  
1
0 and 15 days of the drying process. The result indicates that  
all treatmentcan reach an LHV of more than 4,500 kcal/kg within  
ten days. Nonetheless, theMC is stilla significant concern for this  
experiment. The average MCs in the 0.6AR and CB cases were  
less than 30% within ten days. After 15 days, all treatments  
reached an average MC of less than 30%. Remarkably, the high  
variability of both MC and HV occurred in this experiment  
because MSW as feedstock has high heterogeneity.  
Homogenising MSW and mixing during the drying process are  
3.4 Assessment of the biodrying process in the experiment  
This section addresses the assessment of biodrying process  
under different conditions. TI and DA were calculated following  
Equation 2 and 3, respectively. The accumulated temperature  
difference in the form of TI indicates the self-heating capability  
under various conditions. Meanwhile, DA can indicate the heat  
capture capacity in the bunkers. The result shows a significant  
difference of TI between the treatments, and CB presents the  
highest TI value (see Table 2).  
Figure 3: Relationship between solar radiation intensity and air temperatures in the bunkers  
Table 1: Product characteristics  
1
0 days  
15 days  
10 days  
15 days  
Initial heating  
value (kcal/kg)  
Treatment  
Initial MC (%)  
Final HV  
Final HV  
(kcal/kg)  
Final MC (%)  
Final MC (%)  
(
kcal/kg)  
CB  
26.24±12.85  
33.62±18.49  
24.62±10.08  
25.88±21.09  
22.01±18.07  
22.35±19.38  
6,070.78±1,057.90  
5,774.56±680.70  
6,337.15±621.40  
6,461.63±1,006.95  
7,550.84±265.55  
7,079.80±17.55  
0
0
.4AR  
.6AR  
68.73±2.21  
901.44±270.65  
Note: heating value refers to lower heating value (LHV) as received  
Table 2: Assessment of biodrying between treatments  
Moisture reduction  
0 days  
Moisture reduction  
HVF  
HVF  
TI (°C)  
DA (°C)  
Weight loss (%wl)  
1
15 days  
62.35%  
67.98%  
67.48%  
10 days  
5.73  
15 days  
6.17  
CB  
607.11  
529.66  
439.91  
23.75  
21.26%  
24.82%  
28.84%  
61.82%  
51.08%  
64.18%  
0
0
.4AR  
.6AR  
163.03  
173.92  
5.41  
7.38  
5.29  
6.85  
215  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 211-217  
Remarkably, the aeration rate is inversely proportional to TI  
with active aeration potentially has higher efficiency in MC  
reduction and HV increase compared to the non-greenhouse  
condition with passive aeration. 0.6AR and CB produced  
desirable characteristics of RDF based on the market’s needs  
within ten days, while 0.4AR yielded this state after 15 days.  
Nevertheless, operation in the CB condition is not recommended  
because an open system is non-hygienic for waste management.  
The heterogeneity of MSW yielding uncertainty of RDF  
characteristics, especially in MC, is a significant concern.  
Homogenising and mixing prior to the biodrying process should  
be added. However, the balance of energy consumption for the  
biodrying process with additional machinery required for  
desirable RDF characteristics should be further evaluated.  
(
r = -0.93), revealing the role of forced aeration on the heat  
capture in the MSW pile. Yuan et al. [13] conducted a study on  
the effects of bulking agent addition in biodrying process, and the  
3
aeration rate of their study was set at 0.43 m /(kgwaste·day). In the  
case of MSW feedstock, TI was 523.7 °C, which is similar to the  
TI in 0.4AR of our study. There is a nonsignificant difference in  
DA between 0.4AR and 0.6AR (p = 0.72) despite operating under  
different aeration rates. This result indicates that the greenhouse  
condition has an effect on heat capture capability of air inside the  
system in comparison to the treatment with the non-greenhouse  
condition.  
When considering weight and moisture reduction, weight loss  
is directly weakly proportional to moisture reduction (r = 0.20).  
Unlike the meta-analysis study of biodrying from Tun and  
Juchelkova [2], this study found that the correlation coefficient  
between weight and moisture reduction was 0.80 in developing  
countries. This difference in results is due to the undefined MSW  
heterogeneity effect on the final MC in our study. However, the  
result shows a strong correlation between aeration rate and weight  
loss (r = 0.93) indicating the critical role of aeration in MSW  
weight reduction. 0.4AR had the least moisture decrease after ten  
days, but, by the 15th day of the experiment, 0.4AR yielded the  
same MC as 0.6AR. Meanwhile, CB exhibited a constant  
moisture reduction rate in both the 10th and 15 days of the  
experiment. MC over 30% causes further bioactivity in the waste  
pile [14], so 0.4AR possibly continued bio-heat generation until  
the end of the biodrying process.  
Aknowledgment  
This research was financially supported by the Thailand  
Research Fund (TRF), Pairojsompongpanich Co. Ltd. (PSP), The  
Joint Graduate School of Energy and Environment (JGSEE),  
King Mongkut’s University of Technology Thonburi (KMUTT),  
and the Center of Excellence on Energy Technology and  
Environment (CEE), PERDO, Ministry of Higher Education,  
Science, Research and Innovation. We extend our sincere thanks  
to Asst. Prof. Dr. Suthum Patumsawad and Assoc. Prof. Dr. Pipat  
Chaiwiwatworakul for their advice. Additionally, we most  
gratefully acknowledge all cohorts in the waste research team at  
JGSEE for their help to facilitate the experiment.  
th  
Ethical issue  
According to Table 2, the HV increased by more than five  
times in all treatments within ten days, and more than six times  
within 15 days of the drying process. Remarkably, the HV  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
th  
increase fraction increased by more than 1.5 from the 10 to the  
th  
1
5 day in the treatments under greenhouse condition with active  
aeration (0.4AR and 0.6AR). Meanwhile, this fraction increased  
by less than 0.5 times in CB.  
Altogether, the results indicate that active aeration is vital for  
the biodrying process, and airflow rate affects the suitable drying  
time to obtain desirable RDF characteristics. Biodrying under the  
greenhouse condition with low active aeration can unlock the  
maximum efficiency of moisture reduction and HV increase in  
comparison to the control system of CB, which has no significant  
change between 10 and 15 days of drying time. Although CB can  
reach the RDF standard of the market’s needs within ten days,  
operating on the open condition has no sanitation on a waste  
management issue. In a study by Malinowski and Wolny-Koladka  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
References  
1
.
MHESI. BGC in Action: The new sustainable growth engine:  
Ministry of Higher Education, Science, Research and Innovation;  
2019  
Available  
from:  
https://www3.rdi.ku.ac.th/wp-  
[
15], the strains of pathogenic microorganisms, such as  
contents/uploads/2019/11/ข  
อ เ ส น อ - BCG-in-action_The-New-  
Sustainable-Growth-Engine.pdf.  
Staphylococcus aureus and Escherichia coli, were present in  
RDF, which is a risk for developing illnesses. Hence, biodrying  
under the greenhouse condition could be a more hygienic option  
for waste treatment.  
2. Tun MM, Juchelková D. Drying methods for municipal solid waste  
quality improvement in the developed and developing countries: A  
review. Environmental Engineering Research. 2018;24(4):529-42.  
3
.
Shao L-M, He X, Yang N, Fang J-J, Lü F, He P-J. Biodrying of  
municipal solid waste under different ventilation modes: drying  
efficiency and aqueous pollution. Waste management & research.  
4
Conclusion  
Biodrying under the greenhouse condition mainly helps to  
2
012;30(12):1272-80.  
raise the air temperature inside the system through solar energy.  
However, the aeration system is an inevitable component in the  
biodrying process because the air movement plays a vital role in  
reducing MSW weight and MC. The aeration rate is of concern  
since it is related to the waste temperature and weight reduction  
in the drying process. Biodrying under the greenhouse condition  
4
.
Tom AP, Pawels R, Haridas A. Biodrying process: A sustainable  
technology for treatment of municipal solid waste with high moisture  
content. Waste management. 2016;49:64-72.  
5. Dębicka M, Żygadło M, Latosińska J. The effectiveness of biodrying  
waste treatment in full scale reactor. Open chemistry. 2017;15(1):67-  
74.  
216  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 211-217  
6
.
DEDE. Total solar radiation intensity in Thailand: Department of  
Alternative Energy Development and Efficiency, Ministry of Energy;  
2
017  
Available  
from:  
http://www.dede.go.th/ewt_news.php?nid=47941&filename=solar_e  
nergy.  
7
8
.
.
.
Fabián R-M, Elizabeth M, Teodoro E-S, Belem P, Carmen C-M,  
Francisco J, et al. Biodrying under greenhouse conditions as  
pretreatment for horticultural waste. Journal of Environmental  
Protection. 2012;2012.  
Zaman B, Oktiawan W, Hadiwidodo M, Sutrisno E, Purwono P.  
Calorific and greenhouse gas emission in municipal solid waste  
treatment using biodrying. Global Journal of Environmental Science  
and Management. 2020.  
9
1
Castilla N. Greenhouse technology and management: Cabi; 2013. p.  
7
8.  
0. Antunes LP, Martins LF, Pereira RV, Thomas AM, Barbosa D,  
Lemos LN, et al. Microbial community structure and dynamics in  
thermophilic composting viewed through metagenomics and  
metatranscriptomics. Scientific reports. 2016;6:38915.  
1
1
1. Colomer-Mendoza FJ, Robles-Martinez F, Herrera-Prats L, Gallardo-  
Izquierdo A, Bovea M. Biodrying as a biological process to diminish  
moisture in gardening and harvest wastes. Environment, development  
and sustainability. 2012;14(6):1013-26.  
2. CNRE. The RDF report: the solution to waste management:  
Committee on Natural Resources and Environment, National  
Legislative from:  
https://library2.parliament.go.th/giventake/content_nla2557/d11166  
-11.pdf.  
Assembly;  
2017  
Available  
0
1
3. Yuan J, Zhang D, Li Y, Chadwick D, Li G, Li Y, et al. Effects of  
adding bulking agents on biostabilization and drying of municipal  
solid waste. Waste management. 2017;62:52-60.  
1
1
4. Diaz LF, De Bertoldi M, Bidlingmaier W. Compost science and  
technology: Elsevier; 2011. p. 57.  
5. Malinowski M, Wolny-Koładka K. Investigation of the self-heating  
process of an alternative fuel derived from municipal solid waste.  
Proceedings of ECOpole. 2015;9(1):261-8.  
217