Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 268-274  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)274  
Design and Analysis a Low-Cost Cementitious  
Waterproofing Mixture Based on the Solution of a  
Mathematical Model  
1
2*  
3
Fatima Alsaleh , Feras Al Adday , Mohamed Bassam Hamami  
1
, 3  
Department of Transportation Engineering, Faculty of Civil Engineering, University of Aleppo.  
2
Middle East University, Amman, Jordan  
3
Mathematics Department, Faculty of Science, University of Aleppo  
Received: 16/09/2020  
Accepted: 13/11/2020  
Published: 20/03/2021  
Abstract  
Most of the investigation results of engineering studies depend on the principle of trial and error in decision-making, which requires a lot  
of time and effort and does not guarantee to reach the optimum solution. Whereas, mathematical models provide mathematically proven  
optimum solutions to problems. This research aims to exploit the huge quantities of fine recycled aggregates (FRA) from the destroyed  
buildings and infrastructure of the city of Aleppo to design a cement-based waterproofing concrete mixes, by developing a mathematical  
model. The optimum proportions of the materials included in the composition of cement-based waterproofing concrete mixes have been  
founded by this model which is derived and solved by a simulated annealing method. Experimental results showed the efficiency and accuracy  
of the proposed model in determining the optimal quantities of the mixture content with a minimum cost according to the required engineering  
conditions.  
Keywords: Fine Recycled Aggregates, Cement-Based Waterproofing Mixture, Linear and Nonlinear Constrains, Simulated Annealing  
Method  
1
above the natural ground level or above the ceiling level [4]. The  
1
Introduction  
waterproofing is divided according to the method of its  
implementation into two main types, namely positive insulation,  
in which the source of moisture is isolated so that it prevents its  
access to the structural element, thus preserving its properties. As  
for negative insulation, which is done if the leaked water has  
entered the element to reduce moisture damage to the cladding  
and inner medium of the structural element, this type is not  
resorted to except in very special cases [5]. The waterproofing  
materials are divided into two main parts: the films are either  
bituminous or polyvinyl chloride (PVC) films or polyethylene  
Concrete buildings are usually exposed to different  
environmental and climatic conditions that may negatively affect  
their efficiency. Moisture resulting from the exposure of buildings  
to water is one of the most important problems that affect not only  
structural damage but also affect the health of the residents of  
these buildings [1]. The moisture leaking into the building causes  
damage to the internal and external cladding elements, it also has  
another destructive role on reinforced concrete elements upon  
constant exposure to moisture, as it leads to the migration of salts  
from the concrete, affecting the properties of the concrete. Not  
limited to this only, but may extend to the reinforcement steel and  
lead to rust and weaken its sections [2]. Therefore, waterproofing  
is the first step to solving this problem to preserve the structural  
elements and increase the service life of the facility.  
Waterproofing can be defined as the process by which surfaces of  
building elements and joints are treated to prevent water from  
leaking into or through them in the event of hydrostatic pressure  
(
PE) films of different types of HDPE, LDPE, LLDPE, and  
VLDPE. These materials vary greatly according to their chemical  
composition, these are divided into waterproofing materials with  
a water-based, polymeric-based, bituminous-based, cement-basis,  
and other. These materials are called liquid waterproofing  
coatings. Or in the form of a mixture of two components, one in  
the form of a cement-base and the other in the form of a  
polymeric-basis [6, 7]. Cement-based waterproofing mixes are  
the most common type due to their ease of use and relatively  
cheapness as well as its homogeneity with the concrete elements  
covered by [8, 9]. Liquid waterproofing coatings it can be formed  
from only one compound, which is a solid (powder) mixed with  
water to produce a coating, or two compounds, one of them is  
solid and the other is a liquid, which produces the waterproofing  
[
3]. While waterproof materials are generally known as materials  
that are often in the form of one or more layers or membranes that  
are implemented on surfaces or ceilings to prevent water from  
seeping into the structural elements with or without hydrostatic  
pressure, as for moisture insulation materials they are materials in  
the form of layers or strips placed within walls to reduce water  
leakage without hydrostatic pressure, and to be executed directly  
Corresponding author: Feras Al Adday, Faculty of Engineering, Middle East University, Amman, Jordan, falkhalil@meu.edu.jo  
268  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 268-274  
coatings if mixed, it can be polymeric, when mixed with the solid  
compound, it forms a high elasticity, weatherproof, and adhesion  
film. The solid compound in cement coatings usually consists of  
a mixture of cement with fillers powder or natural sand [10, 11].  
The waterproofing materials constitute the basic element in  
designing insulating concrete mixes [12]. Many factors play a big  
role in the process of designing insulating cement mixes, such as  
strength, permeability, and durability in addition to economic  
feasibility, especially in places that are constantly exposed to  
moisture and water submersion that require continuous treatment  
specifications according to the Indian code. Also, Gupta, 2013  
[25, 26] used artificial neural networks trained in the technique of  
backward error propagation to predict the compressive strength  
values of 55 concrete mixtures with different ratios of cement,  
coarse gravel, sand, water and the fineness modulus at 7,14, and  
28 days of curing. Nano-Silica was also added to other concrete  
samples according to the same previous method for predicting  
compressive strength. Another study on pre-cast concrete mixes  
was carried out by Bilgil, A, 2012 [27] using artificial neural  
networks to determine the behavioral properties of concrete,  
which included Slump value, yield stress, and viscosity data for a  
number of concrete mixtures used.  
Modified and developed forms of the mathematical models  
presented by Papadakis, 2000 [28]. Mathematical models have  
been modified to determine the values of the ratios of addition of  
some substances such as: Silica-fume and Fly ash with low and  
high calcium so that the modified model describes the spread of  
carbonation and penetration of chlorides to concrete. The  
development of mathematical modeling methods for the  
formation of mixtures concrete have been achieved to include  
Multiple target mathematical relationship, where the Toklu, 2005  
[13, 14, 15]. The basis of the process of designing concrete  
mixtures is the accurate determination of the proportions of the  
materials involved in it, it is possible to change the specifications  
of the physical and chemical mixture by changing the quality and  
proportions of the formed materials, especially if the concrete  
mixture contains the FRA, due to the difference in the  
specifications of those materials from the natural aggregate, such  
as the water absorption [16]. The war in Syria has produced, in  
recent years, tremendous damage to buildings and infrastructure,  
which has resulted in very large quantities of solid waste, which  
can be used in many engineering applications [17, 18]. Which  
made the disposal and recycling of these solid waste an urgent  
economic and environmental necessity. By using them in various  
applications to ensure the utilization of the occupied spaces and  
the non-depletion of natural resources in the reconstruction phase.  
Various studies have proven that the coarse recycled aggregate  
can be used in various civil engineering projects, such as asphalt  
and concrete mixtures and others [19-22], while the use of FRA  
was limited to some applications.  
[29] developed  
a multi-objective mathematical model to  
determine the mixing ratios of aggregate in concrete mixtures at  
the lowest cost. The proposed model was solved using heuristic  
algorithms after the analytical mathematical methods failed to  
reach an optimal solution. As for the insulating cement-based  
mixes, whether it is paint or mortar, there is a lack of research that  
tried to find mathematical models to reach the best ratios of  
materials included in the composition of the concrete mixture,  
including: What Zhang and Zheng, 2012 have done [30], where  
they prepared and insulating capillary crystal mixes with a  
cement-basis, the basic structure of which is made of Portland  
cement and fine aggregates, while Portland cement was used with  
a substance composed of quartz powder in addition to five other  
materials as a coating for the mixture, and then they applied  
software to analyze the test data to obtain an optimal relationship  
that gives the proportions of the input materials In the  
composition of the concrete mixture. Each of the research groups,  
Zhang, et.al [31] contributed to developing insulating capillary  
crystal mixes with a cement basis and determining the quantities  
of active substances by means of orthogonal tests. The  
proportions of cement to sand were also determined with the  
active materials to obtain the composition of the insulating  
material according to the optimal proportions. The results showed  
that all the properties of the developed insulation material meet  
the standard specifications of bonding stress and leakage  
resistance. A new addition in Bohus, et.al's search [32] is the use  
of cement with the Fly ash according to experimentally  
determined percentage. Similarly, work has been done by  
Pushkarova, K., et.al, 2015 [33] to find a crystal mixture to protect  
concrete structures and increase their resistance to water and  
freezing. Optimum of the proportions of materials included in the  
mixture were also experimentally done.  
Figure 1: Destruction and rubble in the war-affected areas of the city of  
Aleppo [17]  
With regard to previous studies, mathematical and statistical  
modeling has been used in the design concrete mixtures by many  
researchers. Vengadeshwari and Reddy, 2013 [23] applied  
heuristic algorithms to design concrete mixtures to obtain the  
optimal solution away from the experimental principle adopted in  
traditional engineering studies, where the best design has been  
developed that determines the proportions of materials used in  
concrete mixtures to obtain the mixture with the lowest cost and  
weight in addition to reliability. The other uses of artificial  
intelligence was made by Kale, Kute, 2014 [24] to design concrete  
mixtures based on modeling using artificial neural networks to  
avoid the implementation of a large number of experimental  
mixtures to choose the best combination of materials involved in  
the design of the concrete mixture and to achieve the required  
As for the insulating cement mix with an elastic polymeric-  
basis studied by Lecha and Joanna Juliab, 2011 [34], Where  
Optimum of this mixture were carried out using relationships that  
connection the composition to the engineering specifications of  
the mixture (flexibility, insulation and water vapor permeability).  
Optimum of a mathematical model were done to obtain the  
269  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 268-274  
optimal proportions of the mixture through statistical experiments  
by evaluating the different combinations of mixtures. The  
resulting mixtures were tested depending on the desired output of  
the generated statistical function. The results obtained showed the  
efficiency of the statistical model in designing the insulating  
covering mixtures of cement basis.  
Based on the previous studies that have been presented, it is  
evident that the cement-based waterproof concrete mixes were  
not designed according to a specific mathematical model solution  
that fulfills the required engineering conditions at the lowest  
possible economic cost. In this paper, an innovative mathematical  
model has been proposed to determine the optimal proportions of  
the materials included in composition of waterproof concrete  
mixes. In addition to making use of the FRA resulting from the  
waste of destroyed buildings and infrastructure in the city of  
Aleppo, A mathematical model is derived and solved by  
simulated annealing method.  
2.2.1 Limitations of the Mathematical Model  
a. Permeability condition: Water isolation can be achieved in  
more than one method, but all methods can be summarized by  
reducing the permeability of the material by reducing the  
percentage of material voids to a minimum or closing the voids  
so that a specific substance enters the pores and closes them  
mechanically or chemically as in the case of crystal cement  
materials [30]. In this research, work has been done to achieve a  
minimum permeability by reducing the percentage of voids in the  
samples in order to achieve a maximum water-proof ratio. The  
sum of the absolute unit volumes of the materials forming the  
cement-base waterproof mixture is equal to one that are designed  
with taking into account the homogeneity of the units as shown in  
equation (1).  
V = V  
c
+ V  
p
+ V  
w
+ V  
f
+ V  
v
= 1 Eq. (1)  
are the volume of cement, polymeric  
where: V  
v
, V  
c
, V  
p
, V  
w
, V  
f
2
Materials, tools and research methods  
bond, water, and sand and filler, and voids respectively. Thus, the  
volume of voids in this mixture can be obtained as follows:  
2
.1 Research materials  
The following materials were used in the research according  
to the appropriate standard specifications:  
Cement: Cement type -32.5 was used and it was ensured that it  
meets the Syrian standard specifications 1673/1996 and 75/1998.  
Water: Drinking water has been used that meets the Syrian  
standard 2007/45.  
Sand and fillers: In this research, FRA were used, resulting  
V
v
= 1 - V Eq. (2)  
c
+ V  
p
+ V  
w
+ V  
f
By substituting the weights instead of volumes, with making  
some reforms to the equation (2) and adopting the proportion of  
voids instead of their volume, equation (2) becomes as follows:  
from destroyed buildings in the neighborhoods of the Salah al-  
Din area, passing through the sieve opening 0.425 mm, which  
includes fine sand whose dimensions range between 0.425 mm  
and 0.075 µ, in addition to the powder whose diameter is less than  
푐  
푝  
푝  
푓  
푓  
1
(
+
+
+
)
푉푣  
푐  
퐴% =  
=
Eq. (3)  
7
5 µ according to the ASTM E11-16. The specific gravity and  
water absorption percentage of the three samples of FRA were  
measured at average of 2.6 and 6.98%, respectively. It was  
observed that the absorption of FRA of water is higher than  
similar samples from NA, which is consistent with the reference  
studies.  
where: Wc , Wp , Ww , Wf are the weights of cement,  
polymeric bond, water, and sand and filler, respectively; γ  
is unite weight of water; Gc , Gp , Gw , Gf are the specific  
gravity of cement, polymeric bond, water, and sand and  
filler, respectively. By making this ratio minimum, and  
considering that the unit volumes equal to 1, n is the number of  
components in the mixture design, the general form of equation  
w
It was also confirmed that the samples are free of impurities  
(
clay and exotic materials soluble). As for the sand equivalent, the  
average value for the three samples was 69.3% (the acceptable  
value for the concrete is 75%, which increases with the increase  
in the strength, as it is 80% for the highly strength concrete), since  
the required strength of waterproofing mixes are less than  
concrete in general, and it decreases whenever the surfaces are not  
loaded, the sand equivalent value of the FRA used in the mixture  
is considered acceptable.  
(
3) becomes as follows:  
ꢁ  
푖  
푖  
ꢅꢆꢇ  
퐴% = 1 −  
→ 푀ꢈ  
Eq. (4)  
In general, the voids percentage of concrete mixtures according  
to the American method (ASTM) of design ranges between 0.5 -  
3%, depending on the maximum size of the aggregates and the  
workability [35]. These numbers are very large in the case a  
waterproofing material. Therefore, the value of the voids  
percentage was adopted at the minimum value A = 10 -22 in the  
final model, which is the lowest value that gives a solution to the  
mathematical model within the solution space.  
b. Ratio of sand and filler (FRA) to cement: Several initial  
experiments were conducted, starting with the proportions of sand  
to cement (Wf / Wc ) approved for regular mortar according to  
the ASTM C778-74 and the ISO system, which are 2.75 / 1 and  
3/1, and then these ratio reduced according to the results of the  
Bond: Acrylic dissolved in water of 1.05 specific weight was  
used.  
2
.2 Mathematical model for designing dielectric mixtures  
The mathematical design model is based on the mathematical  
relationships governing the material that give the basic properties  
to be achieved. These relationships are classified into two groups.  
The first is the relationship that represents the properties or values  
necessary for the design to achieve its objective, and the second  
is the relationships that can be considered constraints imposed by  
the practical and implementation conditions.  
270  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 268-274  
preliminary study of the cement insulation materials to suit the  
available materials, in order to achieve a good consistency that  
ensures ease of implementation. It has been adopted field of  
change Wf / Wc ϵ [0.5-2.5].  
푀ꢈꢉ ꢊ(ꢋ) = 0.055푊 + 1.5 푊 + 0.001 + 0.01 푊  
1
푐  
푝  
푓  
+
ꢍ ≤ 1 × 10ꢏ  
2.6  
1
0
+
+
0
.981 3.15 1.05  
1
ꢑ  
.5 ≤ ꢐ  ≤ 2.5  
c. The ratio of water to cement: The ratio of water to cement  
ꢁ  
(
Ww / Wc) in different concrete mixes greatly and effectively  
0.3 ≤ ꢐ ꢓ ≤ 1.2  
Eq (6)  
affects the compressive strength of concrete mixtures, as the  
compressive strength increases with increasing this ratio until  
reaches a maximum value that matches the best ratio and then  
returns to decrease [34][35][36]. An analytical study was  
conducted for research and studies interested in cement insulation  
materials, taking into account the specifications of the different  
materials included in the designs, in addition to monitoring the  
increase in the water percentage at a rate of more than 7.5%, since  
FRA used have a high absorption rate, and thus the field Ww / Wc  
ϵ [0.3-1.2] was adopted as a limitation for the studied model.  
d. Ratio of acrylic material to cement: a preliminary analytical  
study completed for different polymeric cement insulating  
materials. After performing a number of preliminary experiments  
with different mixing ratios, the change field was determined  
within the range Wp / Wc ϵ [0.25-0.7].  
푝  
0.25 ≤ ꢌ ꢍ ≤ 0.7  
푐  
0
.4푊 + 0.03 푊 ≤ 0.5푊 + 012 푊  
푐 푓 푐 푓  
푊 , 푊 , 푊 , 푊 ≥ 0  
Thus, it can represent the final form of the mathematical  
model for the required design as it is in the general equation  
(6). Heuristic algorithms, such as the Optimization Particle  
Swarm have been applied to solve this model.  
2.3 Optimization Particle Swarm  
Optimization Particle Swarm was devised by Eberhart and  
Kennedy in 1995 [38, 39].  
e. The relationship of the correlation of the percentages of  
cement and filler with water was studied so that the permeability  
condition is achieved physically, and the restriction was derived  
mathematically to achieve the condition within the required field  
2.3.1 How the binary optimization particle swarm works:  
This algorithm randomly generates a swarm of particles, where  
each particle represents an acceptable solution of the possible  
solutions to the problem. Therefore, determining which the best  
particle is requires the algorithm to search in an iterative manner  
using two equations. The first is called the particle velocity  
equation (speed equation) [40].  
[
37].  
f. All variables in the mathematical model fulfill the non-  
negativity condition.  
2
.2.2 The target function  
The target function in the mathematical model was adopted as  
푡ꢔꢇ  
= W 푉 + ꢕ 푟 ꢖꢗ푏푒푠ꢘ − 푋 ꢙ + ꢕ ꢖ푔푏푒푠 −  
ꢅ푗  
ꢅ푗  
ꢇ ꢇ푗  
ꢅ푗  
an economic cost function (a minimal cost function), which is a  
linear programming that represents the price of the mixture in  
Syrian pounds according to the price of each component offered  
in the local market until the date of preparing the study, price and  
specific gravity can be shown in the table1. Thus the target  
function in the general formula is given as:  
ꢅ푗  
Eq. (7)  
where: i: Denotes the particle number; j: the number of  
elements inside the particle;  : The velocity of the particle i in  
ꢅ푗  
푡ꢔꢇ  
the previous instant t;  : The velocity of the particle i in the  
next instant t +1; ꢗ푏푒푠 :The most appropriate value reached  
by the i-particle until the iteration t; 푔푏푒푠 : The most  
푇표푡푎 = ∑  푊 → 푀ꢈꢉ  
Eq. (5)  
푗ꢆꢇ  
appropriate value within the swarm has been reached up to  
whereas, Pj is the price of the component and its weight is Wj, n  
is the number of elements of the mixture. Therefore, the target  
function must strive to its minimum value in order to achieve the  
economic benefit required in the case of using of FRA.  
repetition  
t,  
푔푏푒푠ꢘ = 푚ꢚ푥 (ꢗ푏푒푠ꢘ , ꢗ푏푒푠ꢘ ,  
ꢗ푏푒푠ꢘ ). r1j and r2j: Random values to ensure diversity of  
ꢛꢛ  
investigation and fall within the range [0,1];  : The position  
ꢅ푗  
of the particle i in the previous instant t; W: A variable  
representing a percentage of the particle velocity at the previous  
Table1: The specific gravity and price in Syrian pounds for each  
component of the mixture  
Fine  
moment; c  
speed of reaching the best solution. In applications that use this  
algorithm, the variables (c and c and W) are calibrated  
experimentally [41, 42]. Value of W is confined within the  
range [0.3- 0.9], as for the two variables c and c , they have a  
field [0.4-2]. Consequently, a set of experiments were  
conducted to reach the appropriate values. Equation (7)  
determines the probability of a change in the values of the  
particle's forming elements. The second equation is the equation  
for the new state of the particle, as expressed by equation 8 [43].  
1 2  
and c : Acceleration variables that control the  
Component  
Cement  
Recycled  
Acrylic Water  
1
2
Aggregate  
Specific  
gravity  
1
2
3
.15  
2.6  
1.05  
1.5  
1
Price: SP/gr  
0.055  
0.01  
0.001  
271  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 268-274  
1
0
if  
if  
푢 < sig [푣 (ꢘ + 1)]  
As for the variable W, after performing the experimental  
calibration, the best value is 0.4.  
ꢅ푗  
ꢅ푗  
푋 (t + 1) = {  
Eq. (8)  
ꢅ푗  
  sig [푣 (ꢘ + 1)]  
ꢅ푗  
 : A random value within the interval [0, 1] generated  
ꢅ푗  
according to an equal probability function at the beginning of  
each iteration.  
푠ꢈ푔 ꢐ푣 (t)ꢓ =  
Eq. (9)  
ꢅ푗  
ꢝꢞ (ꢠ)  
푖ꢟ  
ꢇꢔꢜ  
Sigma function 푠ꢈ푔 (v) aims to narrow the numeric values  
into confined space [0, 1] in order to improve the performance  
of the algorithm [44]. Figure 2 shows a systematic diagram for  
working the binary optimization particle swarm.  
1 2  
Figure 3: Calibration of C , C value  
After that, it is entered into an iterative loop to improve the  
solutions generated, where in each iteration the following is done:  
1
- Generating a vector (uij) from random values confined to the  
interval [0, 1] according to an equal probability function, where  
uij) will be used later in the process of changing the state of the  
solution.  
- Calculate the velocity (v) for each element of the problem  
elements of the particle, then calculate the value of Sig (v).  
- Conducting a comparison process between the values of (uij)  
(
2
3
and Sig (v), where the comparison process results in a change in  
the position of the problem elements of the particle.  
4- Calculation of the best fitting value (pbest) for the particle and  
the best fitting value (gbest) at the swarm level (this is equivalent  
to knowing the best solution in this iteration) [46].  
Then the second iteration is taken, where the same previous  
steps are repeated until the best solution is accomplished. As a  
result, the weight of each substance in unite volume of the best  
mixture shown in the Table 2.  
Table 2: shows the weight of each substance in unite volume  
Component  
Weigh (in  
designed cm ): gr  
Cement  
Filler  
Acrylic  
Water  
0.4239  
1.0580 0.1056  
0.3388  
3
By substituting the values shown in the previous table, which  
represent the components of the cement-based waterproof  
concrete mixes, it is noticed that it achieves the mathematical  
model, which represents the lowest value of the target function of  
Figure 2: Illustrates flow chart of methodology [45]  
3
(
0.1918) SP for each cm .  
3
Results and discussion  
Initially, a random generation of particles (acceptable  
4 Conclusion  
Most of the investigation results of engineering studies  
depend on the principle of trial and error in decision-making,  
which requires a lot of time and effort and does not guarantee  
reaching the optimum solution. Whereas, mathematical models  
provide mathematically proven optimum solutions to problems  
that can be formulated according to a mathematical model. The  
solutions) is generated, and then the velocity equation is provided  
with the necessary random variables (rt1j ,r 2j ), the variables (C  
, W), and the initial velocity calculated Figure 3 shows the  
calibration curve for the C and C variables, which were obtained  
experimentally, as it appears that the best value obtained is 1.9.  
t
1
,
C
2
1
2
272  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 268-274  
proposed model was solved by using the binary optimization  
particle swarm, the laboratory experimental results of the  
permeability showed the efficiency of the model in determining  
the exact proportions of the materials included in composition of  
cementbase waterproofing concrete mixes according to the  
imposed engineering conditions at the low-cost.  
11 Richard T. Bynum Jr.,“Insulation Handbook”, 1st edition, McGraw-  
Hill Professional (2000).  
1
2
W. Yao, Q. Q. Hu, Y. Mu, J. B. Chen, F. Q. Zhao, "Polymer Modified  
Cementitious Waterproofing Coatings: Application and Problems",  
Advanced Materials Research, Vol. 936, pp. 1378-1381, (2014).  
[Tsai-Lung Weng., et.al. “Evaluation of Cementitious Repair Mortars  
Modified with Polymers” Volume: 9 issue: 1, (2017).  
1
1
3
4
CatarinaNeno; Jorge de Brito; RosárioVeiga., “Using Fine Recycled  
Concrete  
Aggregate  
for  
Mortar  
Production”  
Mat.  
Aknowledgment  
Res. vol.17 no.1 São Carlos Jan./Feb. 2014 Epub Oct 08, (2013).  
Feras Al adday, Aymen Awad, Altayeb qasem, and Mou'ath Adnan  
Al-Shaweesh. Improvement of the Physical and Mechanical  
Properties of Natural Asphalt Mixes Using Petroleum Bitumen and  
Polyethylene. International Journal of Advanced Trends in Computer  
Science and Engineering, volume 9, issue 5, September-October  
2020, 8894 8900. doi.org/10.30534/ijatcse/2020/286952020.  
Alsaleh,F., et.al.” National Project of Buildings and Infrastructures  
Rubbles and Demolition Recycling and Reusing”, 2nd Report to  
Ministry of Higher Education, Syrian Arab Republic, March )2017(.  
Fatima Alsaleh, Feras Al Adday, 2020. Properties of Hot Mix Asphalt  
Containing Reclaimed Asphalt Pavement of the Aleppo highways.  
International Journal of Emerging Trends in Engineering Research,  
This research is carried out within the framework of the  
1
5
National Project of Buildings and Infrastructures Demolition  
Recycling and Reusing “winner of financing the Fund for  
Scientific Research and Technological Development in Higher  
Education in Syria, by Ministerial Decision / Contract / No. /  
7
/20/2016.  
The authors are grateful to the Middle East University,  
1
1
1
6
7
8
Amman, Jordan for the financial support granted to cover the  
publication fee of this research article.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission, and  
2
020, 8(8), pp. 4037-4043. doi.org/10.30534/ijeter/2020/02882020.  
manipulation of figures, competing interests and compliance with  
policies on research ethics. Authors adhere to publication  
requirements that submitted work is original and has not been  
published elsewhere in any language.  
1
9
Sonawane, T. R., Pimplikar, S.S.,” Use of Recycled Aggregate  
Concrete”. IOSR Journal of Mechanical and Civil Engineering  
(IOSR-JMCE))2011(.  
20 Aymen awad, Feras al adday, Altayeb qasem, Alial-dulaimy. An  
Experimental Study on the Possibility of Demolition of Destroyed  
Concrete Buildings with Different Types of Acid. International  
Journal of Engineering Research and Technology, Volume 13,  
Number 9 (2020), pp.2297-2304.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
2
1
Feras. Al Adday, 2020. Selecting the Best Method for Adding  
Recycled Aggregate. International Journal of Emerging Trends in  
Engineering Research vol. 8, no. 6, pp. 22532258, 2020.  
doi.org/10.30534/ijeter/2020/08862020.  
Fatima Alsaleh and Feras Al adday, 2020. Manufacture of  
Lightweight Thermal Insulation Concrete Using Recycled  
Aggregates and Syrian Pozzolan Int. J. Adv. Trends Comput. Sci.  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing.  
2
2
References  
Eng.,  
vol.  
8,  
no.  
3,  
pp.  
959962,  
2019.  
doi.org/10.30534/ijatcse/2020/178932020.  
1
2
3
Othman, N, L., et.al. “A Case Study on Moisture Problems and  
2
3
R.ShanthiVengadeshwari, Dr.H.N.Jagannatha Reddy “ Optimum  
Concrete mix Design usingHeuristic Techniques “ International  
Journal of Scientific & Engineering Research, Volume 4, Issue 8,  
August (2013).  
Building Defects” Procedia - Social and Behavioral Sciences 170,  
2
015.  
Johan Ahlström., “Corrosion Of Steel In Concrete At  
VariousMoisture And Chloride Levels” ENERGIFORSK, ISBN 978-  
2
2
2
2
4
5
6
7
R. S. Kale, S. Y. Kute“Five Layers Artificial Neural Network System  
9
1-7673-[133-8], (2015).  
[Ann] to Design a Concrete Mix Based on I.S.I. Method”. CACE  
Waterproofing and Moisture Proofing of Buildings Code, “Arab  
Unified Codes for Design And Implementation of Buildings”,  
Council of Arab Ministers of Housing and Construction, (2010).  
Jomaa H., M.,“Waterproofing and Protecting Reinforced Concrete  
Structures”. (In Arabic) (2007).  
Volume 2, Issue 4 Oct. (2014).  
Sakshi Gupta, “Concrete Mix DesignUsing Artificial Neural  
Network” Journal on Today’s Ideas -Tomorrow’s TechnologiesVol.  
4
5
6
1
, No. 1June (2013).  
Sakshi Gupta “Using Artificial Neural Network to Predict the  
Compressive Strength of Concrete containing Nano-silica”Civil  
Engineering and Architecture 1(3): 96-102, (2013).  
Bilgil, A.,” Estimation of slump value and Bingham parameters of  
fresh concrete mixture composition with artificial neural network  
modeling” Scientific Research and Essays Vol. 5(8), pp. 1753-1765,  
Almuselhi M. H., “Construction Engineering: Finishing of Building”,  
(2005).  
Rebuild.,”Advances In Waterproofing Materials & Technology” A  
Quarterly Newsletter, Dr. Fixit Institute of Structural Protection and  
Rehabilitation. Vol.5 No.1 Jan-Mar (2011).  
7
8
9
Raven , Geo-membrane Installation Guidelines & Specifications for  
Rufco 20,30 40 mil Unreinforced and Dura-SKRIM J30 and J45 mil  
Reinforced (2008).  
Kim,Sangyong.,et.al.” Sustainability Life Cycle Cost Analysis of  
Roof WaterproofingMethods Considering LCCO2”. Sustainability 6,  
1
8 April, (2012).  
2
8
Vagelis G. Papadakis., “Effect of supplementary cementing materials  
on concrete resistanceagainst carbonation and chloride ingress  
Cement and Concrete Research 30 (2000)  
2
3
9
0
Y. CengizToklu “Aggregate Blending Using Genetic Algorithms”  
Volume 20, Issue 6 (2005).  
Xiaojie Zhang, DianmoZheng “Uniform Design for Preparation of  
CementitiousCapillaryCrystalline  
Advanced Materials Research Vols 374-377 (2012).  
1
58-174 (2014).  
W Tahri., et.al. “Cost Efficiency and Resistance to Chemical Attack  
of a Fly ash Geo-polymeric Mortar Versus Epoxy Resin and Acrylic  
Paint Coatings”. European Journal of Environmental Civil  
Engineering Vol. 21. Issue 5 (2017).  
Waterproofing  
Coating”  
3
1
Zhang Y, Du XL, Li Y, Yang FM, Li ZG. Research on Cementitious  
Capillary Crystalline Waterproofing Coating for Underground  
1
0
Kubal, Michael T. “Construction Waterproofing Handbook”, Second  
Edition, McGraw-Hill Professional (2008).  
273  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 268-274  
Concrete  
Works.  
AMR  
2012;450451:28690.  
https://doi.org/10.4028/www.scientific.net/amr.450-451.286.  
StepanBohus, et.al. “Fly-ash usage in new cement-based material for  
concretewaterproofing” Advanced Materials Research Vols 535-537  
(
2012).  
Pushkarova, Kateryna; Sukhanevych, Maryna; Bondar, Kateryna.  
The Principles of Composite Construction Penetrability  
Waterproofing Mortars with Increased Service Life” ПІДВОДНІ  
ТЕХНОЛОГІЇ.( 2015).  
3
2
http://repositary.knuba.edu.ua:8080/xmlui/handle/987654321/796.  
CzarneckiLecha, Sokołowska Joanna Juliab“Optimization of  
Polymer-Cement Coating Composition using Material Model” Key  
Engineering Materials Vol 466 (2011).  
Feras Al Adday, 2020. Investigational Assessment of Modified  
Performance of Used Tire Concrete Mixtures. International Journal  
of Emerging Trends in Engineering Research, volume 8. issue 5, May  
3
3
3
4
2
020, 18041808. doi.org/10.30534/ijeter/2020/52852020.  
3
3
5
6
Alhusari S., “Construction Materials and their Tests”, Aleppo  
University Publications, (2008).  
Feras Al adday, 2020. Re-Evaluating Elements of an Existing Multi-  
Level Intersection Intersection: Na`ur Interchange as a Case Study.  
International Journal of Engineering Research and Technology. ISSN  
0
974-3154, Volume 13, Number 8 (2020), pp. 1847-1853.  
3
7
Feras Al adday, Aymen Awad, 2020. A Review of the Status of  
Scientific Research and Practical Techniques Related to Using  
Cement Kiln Dust to Stabilize Weak Soils. International Journal of  
Advanced Trends in Computer Science and Engineering. Volume 9,  
No.4,  
July  
August  
2020.  
https://doi.org/10.30534/ijatcse/2020/65942020.  
3
3
8
9
Kennedy jf. eberhart rc., “Particle Swarm Optimization”, IEEE  
international conference on neural networks, vol. 4 (1948)  
Eberhart rc. kennedy jf.,“A new optimizer using particle swarm  
theory”. international symposium on micromachine and human  
science, Nagoya, (1995) .  
4
4
4
0
1
2
Ying t. yuhui s. guoyin w., “Advances in Swarm Intelligence Part  
II”., Springer, (2011) .  
Ajith a.; crosan c.; ramos v.,“Swarm Intelligence in Data Mining”  
,
Springer, (2006).  
Singla s.; dharminder k.,“a hybrid pso approach to Automate Test  
Data Generation for Data Flow Coverage with Dominance  
Concepts”. International Journal of Advanced Science and  
Technology, (2011) .  
4
3
Parsopoulos ke.; vrahatis mn.,“particle Swarm Optimization and  
Intelligence” , Springer, (2010).  
4
4
4
5
Manoj tk.; felix t.,“swarm intelligence”. in-tech, (2007)  
Satyobroto t.,“mathematical Modelling and Application of Particle  
Swarm Optimization”, Blekinge Institute of Technology, (2011).  
Parpinelli r.; lopes hs.,“theory and New Applications of Swarm  
Intelligence”, Springer, (2012).  
4
6
274