Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 203-210  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(2)210  
Eco-Friendly Approach to Control Mosquitos (A.  
stephensi, C. quinquefasciatus, and A. aegypti) Using  
Silver Nanoparticle  
1
1*  
Jimmandiyur Madhappan Murugan , Mathiyazhagan Narayanan , Muthugoundar  
2
*
3
Subramanian Shivakumar , Govindaraju Ramkumar  
1
PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India  
2
Molecular Entomology Lab, Department of Biotechnology, Periyar University, Salem, Tamilnadu, India  
3
Department of Entomology, Indian council of Agriculture Research Institute, Bangalore, Karnataka, India  
4
Institute for Energy Research, Jiangsu University, Zhenjiang, China  
Received: 15/10/2020  
Accepted: 03/11/2020  
Published: 20/03/2021  
Abstract  
The available controlling agents for mosquito vectors are chemical insecticides and the frequent usage of these insecticides creating  
resistance among mosquito vectors and environmental pollutions. Thus, the study was designed to synthesize and characterize the Ag  
th  
nanoparticles (AgNPs) through a methanol leaf extract of Ocimum canum and find the larvicidal prospective of the AgNPs on the 4  
instar larvae of Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. The obtained outcomes show that the methanol leaf  
extract of O. canum was effectively reduced the silver ions and produce constant silver nanoparticles. It was characterized and confirmed  
by various scientific techniques such as UV-vis spectrum, XRD, SEM, FT-IR and EDaX. Various concentrations (10, 50, 150, 200, and  
2
50 ppm) of characterized nanoparticles were tested for larvicidal activity. The premier larval death was observed at 24 h of treatment  
on A. aegypti with LC50= 17.03 ppm, followed by C. quinquefasciatus with LC50= 14.89 ppm of methanol extract of O. canum and no  
death was noticed on A. stephensi. The LD90 value for A. aegypti and C. quinquefasciatus were 24.18 & 20.65 ppm respectively. Hence,  
the Ag nanoparticles produced from methanol leaf extract of O. canum retains efficiency to control A. aegypti and C. quinquefasciatus.  
Thus, it might support partially to replace the chemical insecticide which used against these vectors and might contribute to reduce  
environmental pollution.  
Keywords: O. canum, methanol extract, Biodegradable AgNPs, larvicidal activity, mosquito vectors  
1
and lymphatic filariasis on more than 50 lakhs people in India  
1
Introduction  
[16-18]. This caused an annual financial defeat of 15 million  
The frequent usage of chemical insecticides and pesticides  
US dollars [19-21]. The most active vector control is usually  
counted on the synthetic pesticide practices pointing larvae of  
mosquito vector [22-24]. The recurrent usage of these synthetic  
pesticides promotes numerous ecological threats and develops  
resistance among insects, pests, and toxic effects on non-target  
organisms [25-27].  
Recently researchers are focused on nanoparticles based  
resolution for this foresaid disputes. The potentiality and  
possible utilization of this modern material science completely  
rely on their morphological nature, such as size and shape [28-  
(
pyrethroid) is creating severe environmental pollutions such as  
soil and water pollutions [1-5]. In growing countries like India,  
the management of mosquitos and other insect vectors are still  
depends on chemical insecticides [6-9]. Thus, it might create  
environmental pollution and creates insecticide resistance  
among mosquitos. Since the mosquitos are the most significant  
insect which acts as a notable vector to cause several kinds of  
virus-borne infections in many countries, transmit disease  
approximately seven hundred lakhs people in each year in the  
entire globe and it crossing more than 40 lakhs people in each  
year in India [10-12]. Among several mosquito species,  
Anopheles stephensi, Culex quinquefasciatus, and Aedes  
aegypti are the responsible vector for causing filariasis, dengue  
fever, malaria, chikungunya, zika virus infection, etc. in  
numerous Asian countries [13-15]. In India, mosquito routed  
diseases happen more frequently with some common vectors  
such as, A. aegypti acts as a vector, which can cause yellow  
fever, dengue, chikungunya, etc. A. subpictus and C.  
quinquefasciatus are respectively acted as a vector for malaria  
30]. It has been related to the chemical structure and physical  
nature of mother chemicals considered for nanoparticle  
fabrication [31, 32]. These nanoparticles (NPs) are having  
multiple-face, thus can be used in numerous areas of biological  
(
antimicrobials, biosensors, drug delivery, bioplastics, etc.) and  
material sciences (catalysts, chemical sensors, etc.) field [33,  
3]. The metal-based nanoparticles are extensively utilized in  
3
the medical field to deliver the drug exactly the targeted place  
and without the interaction of adjacent healthy cells and  
surprisingly, in recent years researchers are focused to diminish  
*
Corresponding author: Dr. Mathiyazhagan Narayanan, PG and Research Centre in Biotechnology, MGR College, Adhiyamaan  
Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India. E-mail: mathimicro@gmail.com and Dr. Shivakumar  
Muthugoundar Subramanian, Molecular Entomology Lab, Department of Biotechnology, Periyar University, Salem, Tamilnadu, India.  
E-mail: skentomol@gmail.com  
203  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 203-210  
the spreading of disease through mosquitos vector by  
nanoparticles synthesized by plant extracts and microbes  
2.3.3 Fourier Transform Infrared Spectroscopy (FT-IR)  
analysis  
[
7, 18]. The plant-based nanoparticle production is more  
The FT-IR analysis was achieved to find promising useful  
groups accountable for the reduction of AgNO3 into AgNPs.  
The powdered AgNPs were studied using FT-IR (FT-IR-Model  
- 400, Japan) with potassium bromide pellets as a contextual  
comfortable than other biological procedures for huge scale  
production in a short duration [8, 19]. Even though, the  
production of AgNPs with larvicidal efficiency and adult  
mosquito slaughter efficiency is still a challenge [9]. The  
phytochemical contents of plants have the prospective to break  
the complexed material to a simple form, it could be useful to  
various biological-based usages in multiple fields.  
The oxidation and reduction approaches are routinely  
engaged in Ag and other metals-based nanoparticles production  
through reducing chemical agents [2, 20, 21, 33]. However,  
these chemical-based approaches have some hinders and toxic  
nature on the regular consumption of nanoparticles in  
biological applications. Thus this research work was designed  
to reveal the green fabrication of biodegradable AgNPs through  
methanol leaf extract of O. canum and assess their larvicidal  
and adult slaughter potential on A. Aegypti, A. stephensi, and C.  
quinquefasciatus.  
-1  
over the choice of 4004000 cm .  
2.3.4 SEM-EDaX analysis  
The size and external morphology of the AgNPs was  
detected by SEM (JEOL- JSM 6390). The size and morphology  
of the AgNPs sample were observed through 25 µL of AgNPs  
was coated on a copper stub device, worked at hastening energy  
at 15 kV. The EDaX examination was performed by added the  
dried AgNPs particles on a copper grid coated with carbon and  
executed on an SEM device with Thermo-EDaX (FEI-Quanta  
250) supplement.  
2.4 Mosquito culture  
The most problematic mosquito vectors, such as A. Aegypti,  
C. quinquefasciatus, and A. stephensi were chosen for this  
study. The mosquito larvae were acquired from the Institute for  
Vector Control and Zoonosis, Hosur, Tamil Nadu, India. The  
procured cultures were successfully retained and raised under  
laboratory conditions [13]. The larvae were raised in clean  
platters comprising clean water and presented at 28 ± 1°C, with  
2
2
Materials and Methods  
.1 Preparation of methanol leaf extract from O. canum  
As per the previous study [34], the O. canum was chosen  
for this work. The leaf of O. canum was used for the extraction  
process with methanol solvent as per the protocol of Minjas and  
Sarda [35] with minor alterations. About 10 g of fresh leaves of  
O. canum sample was thoroughly washed with Tween -20 for  
7080% of humidity and light and dark photoperiod of 14:10  
ratio. Further 3:1 rate of dog biscuit and yeast powder was used  
as feed for larvae growth.  
3
4 times. The rinsed leaves were sliced into adequate  
quantities and heated with 100 mL of methanol solvent in 250  
mL conical flask at 60°C for 5 min. The final extract was sieved  
through Whatman filter paper (No. 1) and preserved at -20°C  
for supplementary analyses.  
2
.5 Larvicidal Bioassay  
The WHO [40] protocol was followed to achieve larvicidal  
th  
bioassay. Briefly, 25 number of 4 instar larvae were used to  
individual repeats in 249 mL of water and 1.0 mL of methanol  
extract of O. canum with various concentrations (10, 50, 100,  
2
.2 Synthesis of Ag nanoparticles  
The AgNPs were produced from O. canum as per the  
150, and 200 ppm) and kept for 24 h in multi vial tray. The  
same concentrations and setup were performed with  
Synthesized AgNP. Cypermethrin and water are used for  
positive and negative control. Control (AgNO and distilled  
3
water separately) was maintained with triplicates of each  
dosage. After the treatment, the numbers of dead larvae of A.  
Aegypti, A. stephensi, and C. quinquefasciatus mosquitoes  
methodology of Huang et al. [36], concisely 10 mL of methanol  
extract of O. canum was treated with 90 mL of 1 mM AgNO3  
in 250 mL flask and retained at chamber temperature for 12  
mins and perceived the blackish-brown to yellowish-orange  
color development, it primarily confirms the production of  
AgNPs.  
(
acute toxicity) were computed the percentage of mortality was  
calculated.  
2
.3 Analyses of AgNPs  
The reduction and structural elucidation of filtered AgNPs  
was performed by following the methodology of Parthiban et  
al. [37] and Minjas and Sarda [35] with some modifications.  
2
.6 CDC Bottle Bioassay  
The CDC Bioassay was achieved by following the protocol  
of Rahuman et al. [38] with some modifications. About 250 mL  
glass tubes were coated with the produced AgNPs with various  
concentrations (10, 50, 100, 150, and 200 ppm). About 20  
numbers of each mosquito were introduced by aspiration into  
the CDC bottle. Knock-down was recorded at 10-minute  
intervals for three hours. After the treatment, knock-down and  
alive mosquitoes were removed and separated from the bottles  
and kept in discrete paper cups filled with 10% sucrose solution  
and kept at insectary for 24 hours. After, 10% sucrose  
treatment, adult mosquitos were confirmed and scored as alive  
or dead. The identified functional dosage level could be useful  
to study the potential on the field population.  
2
.3.1 UV-Visible Spectrophotometer analysis  
The absorption maxima of reduced AgNPs produced from  
O. canum was examined through a UV-Vis spectrophotometer  
Shimadzu-UV2600I, Japan) at 300-700 nm and functioned at  
(
a resolution of 1 nm at diverse time breaks (2, 4, 6, & 8 hr).  
Briefly, 0.2 mL of a diluted small aliquot of the sample was  
spun at 8,000 rpm for 15 min and the pellet was filtered  
(
0.40µm) and dissolved in distilled water for further  
characterization study.  
2
.3.2 XRD analysis  
The dried nanoparticles were taken for XRD analysis by  
2
.7 Probity Analysis  
The obtained typical larvae and mosquitos' death results  
coated on the grid of XRD [39]. The spectra were documented  
using Phillips PW 1830 operated at 30 mA and 40 kV current  
with CuKα1 radiation (XRD-LYNXEYE-T detector, Rigaku,  
Japan).  
were exposed to probity study for computing LC50, LC90 at 95  
%
confidence bounds of upper confidence limit (UCL) and  
lower confidence limit (LCL) values, and chi-square tests were  
analyzed with SPSS 13.0.  
204  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 203-210  
The conceivable band existing in the biomolecule was  
accountable for the peaks and suitable for capping and  
competence in stabilizing AgNPs produced by methanol leaf  
extract of O. canum. The spectra showed a strong peak at  
3
Results  
3
.2 Synthesis of silver nanoparticle- UV- Spec. analysis  
The eco-friendly synthesis of AgNPs from AgNO3 with  
methanol leaf extract of O. canum was evaluated and confirmed  
by UVVis spectra studies with 300 to 700 nm wavelength  
range. The color was changed from blackish brown to  
yellowish-orange (Fig. 1A) which initially confirm the  
production of AgNPs i.e. reduction of Ag salt through methanol  
leaf extract of O. canum. The maximum absorption spectrum  
-1  
646.24 cm allotted to N-H stretching of 2555.46 with OH  
-1  
1
clusters, and the spectra showed an intense peak at 3449 cm  
consigned to C-H stretching binding of RCOOH. The fragile  
-1  
band was found at 576.16 cm resembles to C=C and C-N  
stretching with the alkenes group (Fig. 3).  
th  
was observed at 453 nm at 8 hour analysis (Fig. 1B). This  
3
.5 SEM analysis  
The image of SEM analysis of these AgNPs revealed that  
confirms that the methanol leaf extract of O. canum has silver  
reducing phytochemical ingredients that enhancing the  
reduction of silver salt.  
the particles accumulate over the exterior due to the  
collaboration of hydrogen with electrostatic bonding among the  
carbon-based capping particles destined to the AgNPs. The  
produced AgNPs were in size stretching from 32.75 nm - 78.  
3
.3 XRD analysis  
The crystalline size and nanostructure of green synthesized  
88 nm, with most of them were spherical, and remains were  
AgNPs were observed by employing an X-ray powder  
diffraction device. The analysis was demonstrated and  
confirmed through characteristic peaks observed at 2θ values  
of 38.08° (111) in XRD image (Fig. 2). The developed broaden  
of Bragg's peaks indicates the formation and confirmation of  
nanoparticles.  
elongated in shape (Fig. 4).  
3
.6 EDaX analysis  
According to the bio-reduction process, energy-dispersive  
micro and element investigation was performed to gain further  
perception of the AgNPs employing EDaX techniques. The  
binding energies of AgNPs were observed at peaks around  
3
.4 FT-IR analysis  
72.64. The findings specify that the response product exists in  
the pure form of silver nanoparticles (Fig. 5).  
3
2
1
0
.000  
A
B
.000  
.000  
.000  
8h  
6h  
4h  
2h  
300.00  
400.00  
500.00  
nm.  
600.00  
700.00  
Figure 1: UVVis spectra of AgNPs synthesized by methanol extract of O. canum: A) Visible color change it’s indicated that synthesized silver  
nanoparticle and B) AgNPs producing a peak at 453nm at different time interval  
Figure 2: XRD pattern of AgNPs synthesized by methanol extract of O. canum  
205  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 203-210  
3500  
3000  
2500  
2000  
1500  
1000  
500  
Wavenumber cm-1  
Figure 3: FTIR spectrum of AgNPs synthesized by methanol extract of O. canum  
followed by C. quinquefasciatus (LC50 = 14.89 with LCL =  
1.721 & UCL = 18. 0621 ppm) than methanol extract alone  
A. aegypti: LC50 = 52.04 with LCL = 49.77 & UCL = 54.32  
ppm and C. quinquefasciatus: LC50 = 47.19 with LCL = 41.22  
UCL = 53.17 ppm) and aqueous AgNO3 alone (A. aegypti:  
LC50=43.33 with LCL=41.11 45.55 ppm and C.  
quinquefasciatus: LC50=56.10 with LCL=52.80 & 59.47 ppm)  
Table 1 and 2). There was no noticeable larvicidal activity on  
1
(
&
&
(
A. stephensi by synthesized AgNPs. The LC90 results were also  
significant to the results of LC50 larvicidal efficacy of AgNPs  
synthesized from methanol extract of O. canum.  
Figure 4: SEM micrographic image of AgNPs synthesized by  
methanol extract of O. canum (Image magnification ×20,000)  
3
.7 Assessment of Larvicidal activity by bioassay  
The death proportion was perceived in the initial 4 instars  
th  
of A. aegypti and C. quinquefasciatus with five diverse dosages  
10, 50, 100, 150, and 200 ppm) AgNPs synthesized from  
(
methanol leaf extract of O. canum to assess the extent larvicidal  
potential. The findings declared that the maximum larval death  
was recorded in AgNPs than positive control against A. aegypti  
Figure 5: EDaX images of AgNPs derived from O. canum methanolic  
extract  
(
LC50 = 17.03with LCL = 14.448 & UCL = 19.6286 ppm),  
Table I: Larvicidal activity of methanol extract synthesized AgNPs against fourth instar larvae of A. aegypti  
LC90  
(ppm)  
Name of  
mosquito  
a
LC50  
(ppm)  
95% confidence limit (ppm)  
95% confidence limit (ppm)  
Sample  
n
df  
LCL  
UCL  
LCL  
UCL  
AgNPs  
Methanol  
extract  
375  
17.03±0.42  
52.04±2.54  
14.44±0.82  
19.62±0.86  
24.18±0.15  
65.17±0.12  
15.15±0.51  
33. 21±1.5  
3
3
3
3
75  
75  
49.77±2.21  
54.32±2.11  
45.55±2.11  
61.35±4.7  
69.0±3.01  
64.32±5.1  
A. aegypti  
Aqueous  
43.33±1.71  
20.85±2.28  
41.119±2.15  
62.07±3.9  
59.82±3.62  
3
3
AgNO  
3
Positive  
375  
27.98±2.31  
a
Legend: n - means Number of larvae (triplicates: 25×3×5conc.), LC50 - Lethal concentration 50% mortality, LC90- Lethal concentration 90% mortality,  
LCL- lower confidence limits, UCL- upper confidence limits, df - degrees of freedom  
206  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 203-210  
Table 2: Larvicidal activity of methanol extract synthesized AgNPs against fourth instar larvae of C. quinquefasitasis  
Name of  
mosquit  
o
LC90  
(ppm)  
LC50  
95% confidence limit (ppm)  
95% confidence limit (ppm)  
d
f
a
Sample  
n
(ppm)  
LCL  
UCL  
LCL  
UCL  
AgNPs  
375  
14.89±0.34  
47.19±0.86  
11.72±0.11  
18. 06±0.21  
20.65±1.66  
82.37±5.9  
14.39±0.11  
26.91±1.32  
3
3
C.  
Methanol  
extract  
Aqueous  
AgNO3  
Positive  
3
3
75  
75  
41.22±4.39  
52.80±3.11  
53.17±4.72  
59.41±2.63  
78.23±2.14  
78.00±5.65  
86.51±5.1  
quinquef  
asitasis  
56.10±0.31  
18.18±3.78  
87.67±7.24  
25.21±3.11  
97.35±8.12  
3
3
375  
a
Legend: n - means Number of larvae (triplicates: 25×3×5conc.), LC50 - Lethal concentration 50% mortality, LC90- Lethal concentration 90% mortality,  
LCL- lower confidence limits, UCL- upper confidence limits, df - degrees of freedom  
Table 3: CDC Bottle Bioassay: Efficiency of methanol leaf extract synthesized AgNPs against A. aegypti  
LC90  
(ppm)  
Name of  
mosquito  
a
LC50  
(ppm)  
95% confidence limit (ppm)  
95% confidence limit (ppm)  
Sample  
n
df  
LCL  
UCL  
LCL  
UCL  
AgNPs  
Methanol  
extract  
300  
18.79±1.01  
54.91±1.21  
15.84±0.60  
21.74±1.21  
26.16±0.89  
64.57±1.24  
16.21±0.42  
36.11±2.5  
3
3
3
3
00  
00  
51.62±3.01  
42.21±1.56  
58.21±4.23  
49.61±3.23  
60.95±5.13  
62.14±4.35  
68.2±4.31  
A. aegypti  
Aqueous  
45.91±1.32  
22.68±2.47  
63.76±2.70  
28.54±2.68  
65.38±4.21  
3
3
AgNO  
3
Positive  
300  
a
Legend: n - means Number of larvae (triplicates: 20×3×5conc.), LC50 - Lethal concentration 50% mortality, LC90- Lethal concentration 90% mortality,  
LCL- lower confidence limits, UCL- upper confidence limits, df - degrees of freedom  
Table 4: CDC Bottle Bioassay: Efficiency of methanol leaf extract synthesized AgNPs against C. quinquefasitasis  
LC90  
(ppm)  
95% confidence limit  
(ppm)  
Name of  
mosquito  
a
LC50  
(ppm)  
95% confidence limit (ppm)  
Sample  
n
df  
LCL  
UCL  
LCL  
UCL  
AgNPs  
Methanol  
extract  
300  
16.02±0.34  
48.39±0.86  
12.89±0.45  
19.16±0.56  
20.85±1.66  
81.56±5.9  
16.41±0.58  
25.29±2.10  
3
3
3
3
00  
00  
42.14±3.79  
49.45±2.31  
54.65±3.21  
58.22±1.45  
77.51±3.31  
76.21±4.29  
85.62±4.1  
C.  
quinquefasitasis  
Aqueous  
53.83±0.86  
85.71±7.24  
22.58±2.41  
95.22±4.23  
3
AgNO  
3
Positive  
300  
19.24±1.41  
a
Legend: n - means Number of larvae (triplicates: 20×3×5conc.), LC50 - Lethal concentration 50% mortality, LC90- Lethal concentration 90% mortality,  
LCL- lower confidence limits, UCL- upper confidence limits, df - degrees of freedom  
3
.8 CDC Bottle Bioassay  
The lethal dosage of synthesized AgNPs against adult  
yellowish-orange due to the reduction of AgNO3 by methanol  
leaf extract of O. canum. The present findings declared that the  
AgNPs produced from methanol leaf extract of O.canum was  
analyzed using a spectrophotometer (300 to 700 nm) and  
noticed one strong peak curve at 453 nm, suggesting the  
mosquitos (A. stephensi, A. aegypti, and C. quinquefasciatus)  
were studied in the CDC bottle with different dosage range  
from 10-200 ppm (10, 50,100, 150, & 200 ppm) at 10 minutes  
to 3 hours interval. The results obtained are perfectly correlated  
th  
synthesis of AgNPs at the time interval of 8 hours. The  
th  
with the lethal activity of AgNPs on 4 instar larvae. The LC50  
obtained peaks of silver nanoparticles might be related to the  
surface plasmon vibration of AgNO3 reduction [19, 27, 28].  
The outcome of the XRD specifies the occurrence of clear  
bands of Bragg peaks at 38.08° (111) indicates Bragg's  
reflection, it could be related to the Face Centred Cubic (FCC)  
structure of AgNPs [2]. This might support the steadiness of the  
nanoparticles produced from methanol extract of O. canaum,  
and hence endorsing the crystallization of the organic phase  
present on the external of AgNPs [44, 45]. The conceivable  
relations between silver and bioactive molecules were analyzed  
by FT-IR and them accountable for the reduction and  
maintenance of AgNPs, indicates the occurrence of the group  
of hydroxyl, carboxylic, alkyl halide, and benzene ring  
correspondingly. The FT-IR noticeable peaks confirmed the  
and LC90 values of AgNPs against A. aegypti and C.  
quinquefasitasis were 18.79 & 26.16 ppm and 16.02 & 20.85  
ppm respectively than the positive control, methanol extract,  
and aqueous AgNO3. The absence of lethal activity was  
recorded on A. stephensi (Tables 3 and 4).  
4
Discussion  
Even though the chemical insecticide application is greatly  
active on mosquitoes, it faces some risk due to the raising of  
insecticide resistance and negative impacts on non-target  
organisms [41]. The development of insecticide resistance  
among mosquitos could lead to health threats worldwide,  
including developing and developed nations. Frequent changes  
in the insecticide for mosquito vector control practices lead to  
severe resistance mechanisms among mosquitoes [42]. Though  
the development of resistance among mosquitoes, frequent use  
of chemical insecticides has raised diverse environmental and  
ecological issues, such as distraction of regular biological  
regulator systems and adverse impacts on non-target beings and  
raising health issues human being [42].  
-1  
occurrence of amide group [46]. The 1646.24 cm allotted to  
N-H stretching (2555.45) with OH groups. The fragile band at  
-1  
n
576.16 cm parallels to C=C section in the C H2n group. The  
obtained peaks correlate with the average peak value of certain  
phytochemical components [47, 48]. Therefore, the terpenoids  
of plant extracts are previously reported as they have possible  
action to renovate the ―CHO into RCOOH in nanoparticle  
[31, 32].  
The synthesis of AgNPs was preliminarily identified by the  
development of color changes from darkish brown to  
207  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 203-210  
The SEM analysis report clearly states that the shape of  
synthesized AgNPs as spherical and elongated in appearance  
and size ranges from 32.75 to 78 nm with the uniform surface  
distribution. Similar kinds of results were reported by Suganya  
et al. [47]. They produced AgNPs using Nelumbo nucifera leaf  
extract with shape like triangle, spherical and truncated  
triangles with 25 to 80 nm in size. The EDaX peak about 72.64  
to the binding energies, and it confirms the untainted form of  
AgNPs. The EDaX verified AgNPs produced from methanol  
extracts exhibited a solid signal of silver from 3 keV. The X-  
ray discharge might be derived from biomolecules like  
carbohydrates, enzymes, etc. which exists in the leaves of O.  
canaum. Tian et al. [45] have considered the flavonoids  
component of lotus leaves for silver nanoparticle synthesis.  
Biological components play a significant part in reducing  
corresponding metal nanoparticles as like silver [47, 48].  
Hence, the present study result confirms that the phytochemical  
contents of O. canum could play the most significant role  
reduction of AgNO3 to AgNPs. Therefore, in addition to the  
existing vector control measures, AgNPs synthesized from  
plant extracts could play an important role in controlling  
mosquito vector-borne diseases such as malaria and filariasis.  
The larvae mortality potential of synthesized AgNPs on larvae  
of A. aegypti, A. stephensi, and C. quinquefasciatus were  
studied. There was no lethal activity against larvae of A.  
stephensi. The very low LC50 and LC90 values were noted for  
A. aegypti and C. quinquefasciatus as 17.03 & 24.18 ppm and  
Authors' contributions  
The author JMM planned the outline of the research work,  
carried out the research, NM prepared the manuscript. GR and  
SK support result analysis and manuscript editing, MSS  
supervise the research work. The authors have read and  
approved the final manuscript.  
Acknowledgment  
The first and third authors are thankful to the PG and  
Research Centre in Biotechnology, MGR College, Hosur,  
Tamilnadu, India, and the third author is thank full to Molecular  
Entomology Lab, Department of Biotechnology, Periyar  
University, Salem, Tamilnadu, India for offering  
sophisticated lab facility for successful completion of this  
study.  
a
Declarations  
The authors declare the following consent  
Funding  
Not applicable  
Conflict of Interest  
The authors declare that there is no conflict of interest  
regarding the publication of this manuscript.  
1
4.89 & 20.65 ppm respectively than the positive control  
Ethics approval  
(
Table 3 & 4). Similarly, it shows better activity on adult  
Not applicable  
mosquitos' namely A. aegypti and C. quinquefasciatus with  
minimum LC50 values (Table 3 & 4). Our results are partially  
correlated with the report of Suganya et al. [47] they produced  
NPs from Leucas aspera revealed prospective larvicidal action  
on A. aegypti larvae with LC50 and LC90 22.21 & 27.32 ppm.  
Further, Parthiban et al. [37] reported green synthesized  
silver nanoparticles from aqueous leaf extract of Annona  
reticulata and which possess excellent larvicidal activity on  
larvae of Aedes aegypti. The mortality of larvae and adult  
mosquito by AgNPs might be the due to the disintegration of  
sulfur or phosphorous components of biomolecules. This  
resulting failing enzymes activities leads to decrease in ATP  
synthesis and condenses the cellular membrane permeability  
which origins the loss of the cell metabolisms and leads to cell  
lysis [25, 8, 36]. For the environmental protection and mosquito  
control management, the green synthesis based AgNPs, which  
have potential mortality against mosquito vectors, could be  
suitable for pest management and to minimize the mosquito  
vector-borne diseases.  
Consent to/for publication  
Not applicable  
Availability of data and materials  
The detailed methodology and analytical data of the present  
findings are available from the corresponding author on  
reasonable request.  
Code availability  
Not applicable  
References  
1. Narayanan M, Devarajan N, He Z, Kandasamy S, Ashokkumar V,  
Raja R, Carvalho IS. Assessment of microbial diversity and  
enumeration of metal tolerant autochthonous bacteria from tailings  
of magnesite and bauxite mines. Materials Today: Proceedings.  
2
020 Sep 11.  
2
.
Mathiyazhagan N, Natarajan D. Impact of mine waste dumps on  
growth and biomass of economically important crops. Journal of  
environmental biology. 2012 Nov 1;33(6):1069.  
5
Conclusion  
The overall results conclude that the AgNPs were fruitfully  
3. Zhang B, He Z, Chen H, Kandasamy S, Xu Z, Hu X, et al. Effect  
of acidic, neutral and alkaline conditions on product distribution  
and biocrude oil chemistry from hydrothermal liquefaction of  
microalgae. Bioresource technology. 2018;270:129-37.  
synthesized using methanol leaf extract of O. canaum. The  
synthesized AgNPs are characterized and confirmed through  
the UV-Vis spectrum, XRD, SEM, EDaX, and FTIR. The low  
dosage of AgNPs showed outstanding mosquito larvicidal  
activity on A. aegypti as LC50 = 17.03 with LCL = 14.448 &  
UCL = 19.6286 ppm, it followed by C. quinquefasciatus as  
LC50 = 14.89 with LCL = 11.721 & UCL=18. 0621 ppm.  
These results declared that the AgNPs produced from methanol  
leaf extract of O. canum have outstanding mosquito control  
potential at both larvae and adult stage. The prominence of the  
present findings exists in the probability that the production of  
NPs attached with plant bioactive compounds, which might  
enhance the NPs activity to control mosquito vectors. Thus  
could be act as replacement for chemical insecticides and  
possibilities of reducing environmental pollution.  
4
.
Mathiyazhagan N, Danashekar K, Natarajan D. Amplification of  
biosurfactant producing gene (rhlB) from Pseudomonas  
aeruginosa isolated from oil contaminated soil. International  
Journal of Pharma and Bio Sciences. 2011;2(1).  
5. Feng H, He Z, Zhang B, Chen H, Wang Q, Kandasamy S.  
Synergistic bio-oil production from hydrothermal co-liquefaction  
of Spirulina platensis and α-Cellulose. Energy. 2019;174:1283-91.  
6
.
Narayanan M, Devarajan N. Bioremediation on effluents from  
magnesite and bauxite mines using Thiobacillus spp. and  
Pseudomonas spp. Journal of Bioremediation and Biodegradation.  
2
011;2(1).  
7
.
Narayanan M, Devarajan N. Metal and antibiotic tolerance  
potentiality of Acidithiobacillus spp and Pseudomonas spp from  
208  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 203-210  
waste dumps of bauxite and magnesite mines. Archives of Applied  
Science Research. 2012;4(1):616-22.  
Chen H, He Z, Zhang B, Feng H, Kandasamy S, Wang B. Effects  
of the aqueous phase recycling on bio-oil yield in hydrothermal  
liquefaction of Spirulina Platensis, α-cellulose, and lignin. Energy.  
characterization of polyhydroxyalkanoates synthesized by E. coli  
Isolated from sludge soil. Materials Today: Proceedings. 2020 Jun  
30.  
8
9
.
.
27. Soman S, Suresh K, Mathiyazhagan N, Muthusamy R. Chemically  
defined medium for the production of Phytase by Hanseniaspora  
guilliermondii S1, Pichia fermentans S2 and its secondary structure  
prediction of 16S rRNA. Bioin. Res. App. Chem.. 2020;10:6262-  
72.  
28. Mathiyazhagan N, Natarajan D. Optimization of RAPD-PCR  
Protocol to Screen Jatropha Curcas and Gossypium Hirsutum  
Grown in Metal Contaminated Soil.2011;.  
2
019;179:1103-13.  
Mathiyazhagan N, Natarajan D. Phytoremediation efficiency of  
edible and economical crops on waste dumps of bauxite mines,  
Salem district, Tamil Nadu, India. InOn a Sustainable Future of the  
Earth's Natural Resources 2013 (pp. 493-508). Springer, Berlin,  
Heidelberg.  
1
1
0. Zhang B, Chen J, He Z, Chen H, Kandasamy S. Hydrothermal  
liquefaction of fresh lemon-peel: parameter optimisation and  
product chemistry. Renewable Energy. 2019;143:512-9.  
1. Mathiyazhagan N, Natarajan D. Physicochemical assessment of  
waste dumps of Magnesite and Bauxite Mine in summer and rainy  
season. International Journal of Environmental Sciences.  
29. Mathiyazhagan N, Suresh K, Deepa CA. Case study on novel  
natural remedy (Trichosanthes dioica Roxb.) against bacillary  
white diarrhea in broiler chickens. International Journal of  
Petrochemical Science & Engineering. 2018;3(2):71-3.  
30. Kumarasamy S, Subramanian V, Narayanan M, Ranganathan M.  
Microbial stereo inversion of (R) 3 Chloro-1, 2-propandiol by  
Wickerhamomyces anomalous MGR6-KY209903. Biointerface  
Res. App. Chem.. 2020;10:6157-66  
31. Ramamurthy CH, Sampath KS, Arunkumar P, Kumar MS, Sujatha  
V, Premkumar K, Thirunavukkarasu C. Green synthesis and  
characterization of selenium nanoparticles and its augmented  
cytotoxicity with doxorubicin on cancer cells. Bioprocess and  
biosystems engineering. 2013 Aug 1;36(8):1131-9.  
32. Murugan JM, Ramkumar G, Shivakumar MS. Insecticidal  
potential of Ocimum canum plant extracts against Anopheles  
stephensi, Aedes aegypti and Culex quinquefasciatus larval and  
adult mosquitoes (Diptera: Culicidae). Natural Product Research.  
2016 May 18;30(10):1193-6.  
33. Narayanan M, Kandasamy S, Kumarasamy S, Gnanavel K,  
Ranganathan M, Kandasamy G. Screening of polyhydroxybutyrate  
producing indigenous bacteria from polluted lake soil. Heliyon.  
2020 Oct 1;6(10):e05381.  
34. Ghoran SH, Firuzi O, Jassbi AR. Phytoconstituents from the Aerial  
Parts of Salvia dracocephaloides Boiss. and their Biological  
Activities. Journal of Environmental Treatment Techniques.  
2020;8(4):1274-8.  
35. Minjas JN, Sarda RK. Laboratory observations on the toxicity of  
Swartzia madagascariensis (Leguminosae) extract to mosquito  
larvae. Transactions of the Royal Society of Tropical Medicine and  
Hygiene. 1986 Jan 1;80(3):460-1.  
36. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y,  
Shao W, He N, Hong J. Biosynthesis of silver and gold  
nanoparticles by novel sundried Cinnamomum camphora leaf.  
Nanotechnology. 2007 Feb 6;18(10):105104.  
37. Parthiban E, Manivannan N, Ramanibai R, Mathivanan N. Green  
synthesis of silver-nanoparticles from Annona reticulata leaves  
aqueous extract and its mosquito larvicidal and anti-microbial  
activity on human pathogens. Biotechnology Reports. 2019 Mar  
1;21:e00297.  
2
012;2(4):2243-52.  
1
2. Kandasamy S, Zhang B, He Z, Chen H, Feng H, Wang Q, et al.  
Hydrothermal liquefaction of microalgae using Fe3O4  
nanostructures as efficient catalyst for the production of bio-oil:  
Optimization of reaction parameters by response surface  
methodology. Biomass and Bioenergy. 2019;131:105417.  
3. Krishnamoorthi M, Malayalamurthi R, He Z, Kandasamy S. A  
review on low temperature combustion engines: Performance,  
combustion and emission characteristics. Renewable and  
Sustainable Energy Reviews. 2019;116:109404.  
4. Narayanan M, Ranganathan M, Subramanian SM, Kumarasamy S,  
Kandasamy S. Toxicity of cypermethrin and enzyme inhibitor  
synergists in red hairy caterpillar Amsacta albistriga (Lepidoptera:  
Arctiidae). The Journal of Basic and Applied Zoology. 2020  
Dec;81(1):1-8.  
5. Kandasamy S, Sundararaj S. Engine performance and emission  
profile of Simarouba glauca biodiesel and blends. International  
Journal of Oil, Gas and Coal Technology. 2020;25(2):202-17.  
6. Narayanan M, Kumarasamy S, Ranganathan M, Kandasamy S,  
Kandasamy G, Gnanavel K. Enzyme and metabolites attained in  
degradation of chemical pesticides ß Cypermethrin by Bacillus  
cereus. Materials Today: Proceedings. 2020 Jul 1.  
7. He Z, Wang B, Zhang B, Feng H, Kandasamy S, Chen H.  
Synergistic effect of hydrothermal Co-liquefaction of Spirulina  
platensis and Lignin: Optimization of operating parameters by  
response surface methodology. Energy. 2020:117550.  
1
1
1
1
1
1
1
8. Mathiyazhagan N, Natarajan D, Suresh K. Impact of waste dumps  
of mines on plants in genomic & bio molecules level. Mesopotamia  
Environmental Journal. 2015;2(1):33-45.  
9. Narayanan M, Devarajan N, Kandasamy G, Kandasamy S,  
Shanmuganathan R, Pugazhendhi A. Phytoremediation  
competence of short-term crops on magnesite mine tailing.  
Chemosphere. 2020 Oct 21:128641.  
2
2
0. Zhang B, Chen J, Kandasamy S, He Z. Hydrothermal liquefaction  
of fresh lemon-peel and Spirulina platensis blending-operation  
parameter and biocrude chemistry investigation. Energy.  
38. Rahuman AA, Bagavan A, Kamaraj C, Vadivelu M, Zahir AA,  
Elango G, Pandiyan G. Evaluation of indigenous plant extracts  
against larvae of Culex quinquefasciatus Say (Diptera: Culicidae).  
Parasitology Research. 2009 Feb 1;104(3):637.  
39. Ramkumar G, Shivakumar MS. Laboratory development of  
permethrin resistance and cross-resistance pattern of Culex  
quinquefasciatus to other insecticides. Parasitology research. 2015  
Jul 1;114(7):2553-60.  
40. WHO. Report of the WHO informal consultation on the evaluation  
on the testing of insecticides CTD/WHO PES/IC/96. 1996.  
41. Liu N, Liu H, Zhu F, Zhang L. Differential expression of genes in  
pyrethroid resistant and susceptible mosquitoes, Culex  
quinquefasciatus (S.). Gene. 2007 Jun 1;394(1-2):61-8.  
42. Yang YC, Lee SG, Lee HK, Kim MK, Lee SH, Lee HS. A  
piperidine amide extracted from Piper longum L. fruit shows  
activity against Aedes aegypti mosquito larvae. Journal of  
agricultural and food chemistry. 2002 Jun 19;50(13):3765-7.  
43. Lincy A, Jegathambal P, Mkandawire M, MacQuarrie S. Nano  
Bioremediation of Textile Dye Effluent using Magnetite  
Nanoparticles Encapsulated Alginate Beads. Journal of  
Environmental Treatment Techniques. 2020;8(3):936-46.  
44. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG.  
Antifungal activity and mode of action of silver nano-particles on  
Candida albicans. Biometals. 2009 Apr 1;22(2):235-42.  
2
020;193:116645.  
1. Narayanan M, Kandasamy G, He Z, Kandasamy S, Alfarhan AH,  
Pugazhendhi A. Phytoextraction competence of J. curcas L. on ore  
waste dump of the bauxite mine under the influence of multi  
potential Bacillus cereus. Environmental Technology  
Innovation. 2020 Oct 28:101221.  
&
2
2
2
2. Soman S, Kumarasamy S, Narayanan M, Ranganathan M.  
Biocatalyst: phytase production in solid state fermentation by  
OVAT Strategy. Bioin. Res. App. Chem.. 2020;10:6119-27.  
3. Kandasamy S, Zhang B, He Z, Chen H, Feng H, Wang Q, et al.  
Effect of low-temperature catalytic hydrothermal liquefaction of  
Spirulina platensis. Energy. 2020;190:116236.  
4. Natarajan D. Assessment of physicochemical and heavy metals  
from waste dumps of magnesite and bauxite mines. Electronic  
Journal of Environmental, Agricultural and Food Chemistry  
(EJEAFChe). 2011 Nov 25;10(11):3076-82.  
2
2
5. Mathiyazhagan N. Metal extraction competence of plants on waste  
dumps of magnesite mine, Salem District, South India. Journal of  
Mining and Environment. 2013 Oct 1;4(2):113-24.  
6. Narayanan M, Kumarasamy S, Ranganathan M, Kandasamy S,  
Kandasamy G, Gnanavel K, Mamtha K. Production and  
209  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 203-210  
4
4
5. Tian N, Liu Z, Huang JA, Luo G, Liu S, Liu X. Isolation and  
preparation of flavonoids from the leaves of Nelumbo nucifera  
Gaertn by preparative reversed-phase high performance liquid  
chromatography. Se pu= Chinese journal of chromatography. 2007  
Jan 1;25(1):88-92.  
6. Vadivelu B, Meyyazhagan A, Palanisamy S, Anand V, Chelliapan  
KK. Synthesis of Silver Nanoparticles from Fish Scale Extract of  
Cyprinus carpio and its Decolorization Activity of Textile Dyes.  
Journal of Environmental Treatment Techniques. 2020;8(3):870-  
4
.
4
4
7. Suganya G, Karthi S, Shivakumar MS. Larvicidal potential of  
silver nanoparticles synthesized from Leucas aspera leaf extracts  
against dengue vector Aedes aegypti. Parasitology research. 2014  
Mar 1;113(3):875-80.  
8. Benelli G, Mehlhorn H. Declining malaria, rising of dengue and  
Zika virus: insights for mosquito vector control. Parasitology  
research. 2016 May 1;115(5):1747-54.  
210