Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 164-171  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)171  
Effect of Temperature and Pyrolysis Time in Liquid  
Smoke Production from Dried Water Hyacinth  
1
,4  
2,4  
3,4  
Rita Dwi Ratnani *, Hadiyanto and Widiyanto  
1
Chemical Engineering Department, Wahid Hasyim University, Semarang Indonesia  
2
Chemical Engineering Department, Diponegoro University, Semarang Indonesia  
3
Animal Husbandry Department, Diponegoro University, Semarang  Indonesia  
4
School of Postgraduate Studies, Diponegoro University, Semarang Indonesia  
Received: 16/07/2020  
Accepted: 22/10/2020  
Published: 20/03/2020  
Abstract  
This study aimed to investigate the use of water hyacinth to produce liquid smoke. The study observes the temperature and time variables  
of yield, pH, density, and refractive index in the production of liquid smoke from water hyacinth. The sequence of the work is as follows:  
first, water hyacinth was cut into 5 cm sections and then sun-dried for 23 d, depending on the weather. Next, 550 g of dried water hyacinth  
was added to the pyrolysis reactor. The temperature variations were 200°C, 400°C, and 600°C, and the time variations were 1, 4, and 7 h. As  
a result, liquid smoke was produced with varying yield, pH, densities, and refractive indices. The best results in this research are liquid smoke  
pyrolysis at a temperature of 400°C and 4 h with the acquisition of a yield of 93 mL, pH 24, a density of 1.080,8 gr/mL, and a refractive  
index of 1.339,6, with chemical component 41.45% total acid, 2.44% phenol and 56.10% carbonyl.  
Keywords: Influence of temperature and time, liquid smoke, pyrolysis, water hyacinth  
1
capacity and water quality. Some handling efforts that have been  
made have not shown significant results [1].  
1
Introduction  
A strategy that can be used to manage the lake ecosystem is  
the use of water hyacinth. The utilization of water hyacinth to  
create a product that is beneficial to Lake RawaPening is  
expected. RawaPening is currently dominated by water hyacinth  
(
Eichornia crassipes), although it has a fairly high biodiversity.  
Water hyacinth grows at an increasing speed. Its distribution is  
expanding from year to year, thus resulting in the occurrence of  
sedimentation in RawaPening. This very high sedimentation rate  
has caused siltation in RawaPening. In 2020 Lake RawaPening is  
estimated to contain more than 4,752,961.04 tons of sediment.  
Sedimentation that occurred in Lake RawaPening as shown in  
Figure 1. The amount of sediment caused by the breeding of  
water hyacinth reached 187,839.45 tons. The sedimentation rate  
in Lake RawaPening increased after 3 years. In 2008, the  
maximum depth of the swamp had reached 18.4 m around the  
Bukitcinta ecotourism. Based on the sedimentation rates, Lake  
RawaPening in 2017 only had a depth of around 58 m. With the  
effective efforts to control the breeding of water hyacinth which  
can be simulated in 2020, the depth will remain. However, if the  
breeding is not controlled, the sedimentation rate will continue to  
increase. It is estimated that Lake RawaPening Lake in 2020 will  
only have a depth of 25 m. With effective treatment, the spread  
of water hyacinth in Lake RawaPening will decrease, but will not  
be significant in 2020. The problem faced by Lake RawaPening  
is the rapid increase in sedimentation rate and growth of water  
hyacinth, which has an impact on the reduction of storage  
Figure 1. Simulation of the distribution of water hyacinth with control  
(a) and (b) without control in 2020 [2]  
The process of water hyacinth pyrolysis takes place very  
quickly so that it can offset its growth. One alternative is to  
produce liquid smoke through pyrolysis. Pyrolysis is  
a
destructive distillation” or dry distillation process. It is an  
irregular decomposition process of organic materials caused by  
heating without contact with the outside air. During pyrolysis,  
heat energy induces oxidation, resulting in the breakdown of  
complex carbon molecules, mostly into carbon or charcoal.  
Pyrolysis is one of the thermochemical technologies. Converting  
Corresponding author: Rita Dwi Ratnani, (a) Chemical Engineering Department, Wahid Hasyim University, Semarang  Indonesia and  
b) School of Postgraduate Studies, Diponegoro University, Semarang  Indonesia. E-mail: ritadwiratnani@unwahas.ac.id  
(
164  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 164-171  
biomass into energy and chemical products consisting of liquid,  
biochar and gas [2, 3, 4, 5].  
During pyrolysis, three types of products are produced: (1)  
The gases released in the carbonization process, which are mostly  
in the form of CO gas and partly in the form of flammable gases,  
Table 1: Comparison of water hyacinth components with other  
Material  
Chemical  
components  
No Biomass type  
% (d.b)  
Hemicellulose  
36.26  
such as CO, CH  
4
, H, and other low-level hydrocarbons. (2)  
1
2
3
4
5
Water hyacinth  
Softwood  
Cellulose  
Lignin  
20.64  
Distillate in the form of liquid smoke and tar. The main  
compositions of the product stored are methanol and acetic acid.  
The minor components include total phenol, methyl acetate,  
formic acid, butyric acid, and others. (3) Residue in the form of  
carbon. Wood has almost the same components and the pyrolysis  
process results in the decomposition of woods constituent  
compounds. The constituent compounds of liquid smoke are  
formed via pyrolysis of three wood components, namely,  
cellulose, hemicellulose, and lignin. These chemical components  
include (1) acids which can affect the taste, pH, and shelf life of  
smoked products; (2) carbonyl which reacts with proteins and  
forms chocolate staining; and (3) phenols which mainly produce  
aroma and exhibit antioxidant activity [6, 7, 8, 9]. Pyrolysis is  
the process of heating a substance without oxygen at  
temperatures above 150°C. It is generally performed on  
wood. During the pyrolysis process, wood components  
decompose into hemicellulose, cellulose, and lignin. Based  
on the test results of the components of the wood  
constituents that have been carried out on water hyacinth  
and compared with other wood materials can be seen in  
Table 1. Pyrolysis produces substances, namely, charcoal,  
liquid smoke, and liquid gas. Liquid smoke formed by the  
hemicellulose pyrolysis process produces furfural, which is  
a furan derivative, as well as a long series of carboxylic  
acids, acetic acids, and homologues at temperatures of  
7.32  
Hemicellulose  
Cellulose  
Lignin  
2125  
5458  
2629  
Hemicellulose  
Cellulose  
Lignin  
2831  
Hardwood  
4353  
1824  
Hemicellulose  
Cellulose  
Lignin  
5.2620.54  
28.2632.52  
27.2736.51  
29.3330.46  
44.0148.01  
15.3915.98  
Coconut shell  
Cassava stems  
Hemicellulose  
Cellulose  
Lignin  
2.2 Pyrolysis Equipment  
Figure 2 presents the tools used for the pyrolysis process.  
Pyrolysis is performed in a reactor made of SS-304 plates that are  
3
mm thick. The chancellor was designed so that it can carry 10  
kg of dried water hyacinth stems cut into 5-cm sections as much  
as 550 g. because water hyacinth is very light so that the mass is  
sufficient for the process. The tool was connected to the  
condenser by a ¼ SS pipe. The condenser was equipped with a  
spiral pipe so that it can condense the smoke generated by the  
pyrolysis reactor. The length of the spiral pipe influences the yield  
of condensation. The longer the pipe, the longer the residence  
time in the condenser, so that the condensation process becomes  
more maximal. The length of the spiral pipe on this condenser is  
2
2
00°C250°C. Pyrolysis of cellulose at a temperature of  
80°C-320°C will produce acetic acid and a small amount  
of furan and phenol. Lignin pyrolysis produces phenols and  
phenol ethers at 400°C. Liquid smoke is a liquid produced  
from condensation of wood smoke through the pyrolysis  
process. The components of liquid smoke containing acids  
can affect the taste, pH, and shelf life of smoked products.  
The carbonyl component reacts with protein and turns into  
a chocolate color. The phenol component is the main  
constituent of aromas and exhibits antioxidant activity. In  
addition to acid, carbonyl, and phenol, liquid smoke also  
contains water, tar, and polycyclic aromatic hydrocarbons  
3
m. The heating process is performed using heater to reach the  
temperature of 600°C. To maintain the desired temperature, a  
temperature control device was installed using a control valve so  
that a maximum temperature of 1000°C can be reached  
(PAH), such as benzo(a)pyrene, which are known as  
carcinogens, thus harmful to health [10, 11, 12]. This  
research aimed to produce liquid smoke from water hyacinth and  
examine the effect of temperature and time of pyrolysis on the  
quality of the resulting liquid smoke in terms of yield, pH, density,  
and refractive index.  
2
Materials Methods  
2
.1 Material Preparation  
Figure 2: Equipment: (a) pyrolysis, (b) condenser, (c) valve control, (d)  
tar valve, (e) liquid smoke valve, and (f) heater  
The material used was water hyacinth obtained from Lake  
RawaPening, specifically at Rowoboni hamlet, Banyubiru  
District, Semarang. The stems of the water hyacinth were  
separated from their leaves and roots. Then, the stems were sun  
dried for 23 d until they turned brown. The water hyacinth stems  
were cut into 5 cm sections for ease of use during pyrolysis.  
2.3 Pyrolysis Water Hyacinth  
Water hyacinth was obtained from Lake RawaPening, and  
only the stem was taken. The stems were then cut into 5 cm  
sections and then sun dried until water content was around 15%.  
165  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 164-171  
The dried water hyacinth stem where then into the reactor  
pyrolysis as much as 550 g. After adding all the ingredients, the  
pyrolysis reactor was covered so that no oxygen can enter.  
Subsequently, determine the temperature and time of the  
pyrolysis until the alarm sounds "check" on the control valve to  
the next heater ignited and the pyrolysis time was started. The  
temperature variations were 200°C, 400°C, and 600°C, and the  
time variations were 1, 4, and 7 h, which were set using the control  
valve. By determining the temperature and time according to the  
research variable, the smoke generated during the pyrolysis  
process passed through a condenser which then change smoke  
into liquid. The resulting liquid was then collected in an  
Erlenmeyer, and the yield of the liquid smoke produced and the  
pH, density, and refractive index were measured. More analysis  
of the chemical components produced via Gas Chromatography  
Mass Spectrometry (GCMS) was conducted  
recorded. (e) The specific mass of liquid smoke is calculated  
using the show equation [19].  
2.4.4 Determination of Bias Index of Liquid Smoke  
The refractive index is determined using a refractometer  
(Optic Ivymen System Abbe). A refractometer is used as follows.  
First, it is cleaned with a tissue. Next, use a pipette to fill the space  
between the two prisms, such as distilled water or 5% NaCl  
solution. Third, the refractometer is gently closed by returning the  
plate to its original position. Fourth, the number that appears on  
the screen is observed and then recorded. The usual index is the  
ratio of the speed of light in a vacuum to the speed of light in a  
substance. The refractive index of a substance is the measure of  
the speed of light in a liquid compared with when the substance  
is in the air. Measuring the refractive index enables the  
determination physical parameters, such as concentration,  
temperature, and pressure. Moreover, refractive index is  
measured to determine the purity level of the substance and its  
expiration [20, 21].  
2
.4 Procedure of Analysis  
The liquid smoke produced by the pyrolysis process and its  
quality were then analyzed by looking at the parameters, such as  
the amount of the product, the degree of its acidity (pH), its  
density, and its refractive index. Analysis was also conducted in  
order to determine the overall chemical component of the product  
via GCMS.  
2.4.5 GCMS Analysis  
The compound content of liquid smoke produced via  
pyrolysis is analyzed using Shimadzu GCMS-QP 2010S.  
Analysis used column type DB 624, length column 30 m, ID 0.25  
mm, 0.25 µm film. Detector is Ionization Polarity Positive, 70  
electron scan range 40400 m/z (EI model). Helium as carrier gas  
is used. Its flow speed is set to 0.55 mL/min, injection is carried  
out for 1 minute at 250°C. The programmed column temperature  
of 50°C is held for 5 min, with an average increase of 5°C per  
minute to a temperature of 210°C, which is then held for 13 min.  
Liquid smoke is filtered through a filter paper and then injected  
into GCMS in the amount of 0.2 μL, so that it is chromatographed.  
Furthermore, the chromatogram peak’s spectrum of the sample  
will be matched to the spectrum in the GCMS Library, which  
stores various types of compounds [22].  
2
.4.1 Yield Liquid Smoke  
The heating rate has a significant effect on product yield and  
distribution. The water hyacinth biomass pyrolysis product  
promises to produce valuable chemicals, fuels, and energy from  
renewable resources. Fast pyrolysis technology was chosen to  
maximize the yield of liquid products. The yield to liquid products  
can be as high as 75% (mass fraction with respect to the raw  
material fed in). This is characterized by a short residence time  
for solids and steam, a very high heating rate. The operating  
temperatures are usually in the range of 160°C550°C. However,  
there have been successful cases of fast pyrolysis technology  
utilization at a full scale, thus producing chemicals or energy [13,  
3
Results  
1
2
0
4, 15].  
3
.1 Effect of Temperature and Time Changes on Liquid Smoke  
Yield  
Figures 3. present the difference in liquid smoke in the  
.4.2 pH Value  
pH value is measured using a pH meter (Nutron Tech PH-  
09-A Pen Type). Before its use, the pH meter is calibrated with  
temperature and time variations of the yield of liquid smoke  
produced, respectively. The Higher temperature and longer time  
of pyrolysis, the higher the increase of the resulting yield. This  
result is in line with those of previous studies. The best results  
were obtained at 600°C, and within 7 h, the yield was 119 mL of  
liquid smoke/550 g of water hyacinth. At 400°C and within 7 h,  
a buffer solution. Measurement is performed by first dipping the  
electrodes into the distilled water and then wiping with tissue.  
Furthermore, the electrodes are inserted into the liquid smoke  
sample, and the pH value that appears on the screen is recorded.  
The acidity level or pH is measured to determine the acidity of the  
liquid smoke. The liquid smoke produced via pyrolysis is  
generally acidic, with a pH value in the range of 24, mainly in  
the form of acetic acid and formic acid [16, 17, 18].  
115 mL of liquid smoke/550 g of water hyacinth was obtained.  
However, the high temperature and time can damage the tool and  
can thus make the obtained results insignificant, namely, 115 mL  
at 400°C and 119 mL at 600°C at 7 h, as presented in Figure 3(a).  
Thus, the temperature of 400°C and 4 h are used as references in  
subsequent studies in which the yield was 93 mL of liquid  
smoke/550 g of water hyacinth, as described in Figure 3 (b). The  
results are almost the same as research conducted by several  
similar researchers [23,24, 25]  
2
.4.3 Determination of Density Liquid Smoke  
Determination of liquid smoke density using Pycnometer 10  
mL brand Pyrex. The procedure for determining specific mass is  
as follows: (a) Pycnometer that is cleaned and dried is carefully  
weighed and its mass is recorded. (b) Insert the distilled water into  
the pycnometer until the calibration mark and its mass are  
recorded. (c) The distilled water was then discarded, and then the  
pycnometer was dried again. (d) Then liquid smoke is introduced  
into the pycnometer until the calibration mark and its mass are  
166  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 164-171  
quality of a solution. Liquid smoke is golden yellow to dark  
brown in color. Light brown or a clear color is much preferred for  
food preservatives. The effect of temperature and time variations  
on the change in the refractive index can be seen in Figures 6. The  
refractive index is measured using a refractometer. Refractive  
index testing is also performed to determine the level of purity.  
The refractive index of this research is in the range 1.342,2-  
1.347,0 of the temperature variable. The time variable is in the  
range 1.339,5-1.341,9. The highest refractive index were 1.347 at  
Figure 3: Effect of temperature (a) and time (b) on liquid smoke yield  
200°C and 1.3419 at 400°C for1 h.  
3
.2 Effect of Temperature and Time on pH  
Figures 4 the effect of temperature and time changes on pH  
of the liquid smoke produced pH. The Measurement the liquid  
smoke of pH this research in the range 24. The pH value  
indicates that the liquid smoke yield is acidic. The pH value will  
decrease with the increase in temperature and pyrolysis time. It is  
possible that more and more elements in the water hyacinth break  
down and form acidic chemical compounds. This acid content can  
also be observed via GCMS, in which it can be determined that  
the total acid contents produced at a temperature of 400°C for 1.4  
and 7 h are 30.21%, 41.45%, and 23.43%. The acid component of  
Figure 6: Changes in temperature (a) and time (b) against refractive  
index  
3
0.21% causes the pH of the liquid smoke results of this research  
to be at range 2-4.  
3.5 Observation of the Best Results via GCMS  
Chemical components were observed via GCMS. The best  
chemical component of dried water hyacinth smoke at 400°C for  
4
h can be seen in Figure 7. The best liquid smoke yield obtained  
was 93 mL/550 g of dried water hyacinth. Chemical components  
of water hyacinth liquid smoke through GCMS, obtained 41.45%  
total acid, 2.44% phenol, and 56.10% carbonyl as shown in Table  
2. From Figure 7, the GCMS data show that the water hyacinth  
liquid smoke does not contain benzo(a)pyrene PAH, so it is safe  
to use as a food additive. This water hyacinth pyrolysis study  
gives results that are close to the pyrolysis process in coconut  
shells, palm oil starch waste, and durian waste as described in  
Table 2. In Table 2, the acquisition of phenol is different from that  
of the liquid smoke produced from oil palm empty fruit bunches,  
while the acid content is almost the same. An inversely  
proportional result is obtained by pyrolysis of the candlenut shell  
Figure 4: Change in temperature (a) and time (b) versus pH  
3
.3 Effects of Changes in Temperature and Time against  
Density  
The results of the study on the effect of temperature and time  
of pyrolysis on density are presented in Figures 5. The results  
indicate that if the temperature and time are high, then the density  
will decrease or smaller in the range of numbers 0.8241.0875  
g/mL with 550 g of raw material. This shows that the density of  
liquid molecular bonds at higher temperatures results in smaller  
densities.  
[26, 27].  
Table 2: Comparison of acid, phenol, and carbonyl content of  
various raw materials  
Total acid  
Total phenol  
(%)  
Carbonyl  
(%)  
Ingredients  
(%)  
Coconut shell  
39.5758.76  
44.70  
0.590.67  
30.68  
3.71  
Empty fruit bunches  
Cashew nuts  
12.37  
7.1  
18.8  
36.6  
Candlenut shells  
Water hyacinth  
3.657.87  
41.45  
42.4757,63  
2.44  
34.553.88  
56.10  
In Figure 7 about observational data with GCMS, the peak  
components that exist are as shown in Table 3. The dominant  
chemical component is acetic acid as much as 41.45%. The  
desired dominant peak liquid smoke water hyacinth has been  
reached, which contains acids in the form of acetic acid, butanoic  
acid which is at the peak 49 and 40. Other compounds expected  
from this study include phenols observed at peaks 33, 38, 44, and  
Figure 5: Effect of temperature (a) and time (b) changes on density  
3
.4 Effects of Changes in Temperature and Time Against the  
Refractive Index  
Refractive index is the ratio between the speed of light which  
is an electromagnetic wave in a vacuum and the speed of light in  
a medium. The refractive index can also be used to determine the  
45. Carbonyl compounds are observed at peaks 10.11,12,21,34,  
167  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 164-171  
and 43 in the form of propanone, cyclopentane, furan, and  
pentanal. Figure 7 is marked with red, green and blue circles. The  
sign in red is acidic, blue is phenol and green is the sign for  
carbonyl.  
hydrocarbon chains from the polymer in the water hyacinth, so  
that the amount of liquid smoke produced will be different at each  
temperature increase. The increase in pyrolysis temperature  
causes the greater elements in the water hyacinth to decompose  
and condense into liquid smoke. Previous research also found a  
relationship between temperature and time of pyrolysis of liquid  
smoke products from sawdust producing yields that were almost  
similar to those obtained in this study which were 75 mL, while  
this study was 93 mL. The condensation process can work well.  
This is what causes all the smoke to form and convert to liquid  
smoke [28, 29, 30].  
Liquid smoke results of this research to be at range 2-4. The  
pH value indicates that the liquid smoke product is acidic. The pH  
value will decrease with the increase in temperature and pyrolysis  
time. This is due to the increasing number of elements in wood  
that break down and form acidic chemical compounds. The  
lowest pH value, which is 2.08 was observed in liquid smoke  
produced via pyrolysis at 350°C for 30 min, indicating that in this  
operating condition numerous chemical compounds are acidic.  
Another study investigated the production of liquid smoke from  
organic waste, which produced at pH of 3.8-4.8 [31, 32, 33, 34].  
Research conducted out in harmony with several other  
studies. Research by the best liquid smoke obtained from  
pyrolysis liquid smoke at 250°C for 90 min, obtained liquid  
smoke with a pH value of 2.6 with a yield of 20.69% from the raw  
material 500 g of oil palm fronds with size 32-50 mesh. The pH  
value of pyrolysis liquid also ranges from 2 to 3 due to the high  
amount of volatile acids, especially acetic acid and formic acid.  
This acid is produced via pyrolysis of hardwood, soft wood, and  
straw where it plays a role in tool corrosion [35, 36].  
Figure 7: Observations with GCMS  
Table 3: Chemical composition of liquid water hyacinth smoke  
at 400°C for 4 h  
The temperature and time are high, then the density will  
decrease or smaller in the range of numbers 0.8241.0875 g/mL  
with 550 g of raw material water hyacinth. It is suspected that at  
high temperatures, the bonds between the compound molecules  
in the fluid will be far apart. The study was conducted on a walnut  
bark at a temperature of 300°C700°C for 2.6 s, and the density  
was found to be 0.0021 g/mL with a raw material of 10 g [37].  
Density is the ratio between the weight of a sample and its  
yield. In the physical properties of liquid smoke, density is not  
directly related to the high or low quality of liquid smoke.  
However, density can indicate the number of components in  
liquid smoke. The results of observations of the density of liquid  
smoke fraction over time ranged from 0.95361.8072 g/mL. The  
results were almost the same in the study of the effect of time on  
the density of liquid cinnamon smoke with a density of 1,017  
g/mL  
The density measurement data in previous studies also show  
results that are almost identical. The density of liquid smoke  
results from an increase in temperature although the increase is  
small. The highest density of liquid smoke ever obtained in liquid  
smoke products from coconut shells. The temperature of the  
pyrolysis process carried out was 350°C-450°C, with a density  
gain between 1.086-1.101 g/mL. The results of this study support  
research on the acquisition of liquid smoke density from water  
hyacinth in the range 0.824-1.0875 g/mL [19, 38].  
Refraction or refraction is an event of deflection in the  
direction of propagation of light because it passes through a  
medium based on differences in density. The ratio of the speed of  
light in a vacuum to the speed of light in a substance is called the  
refractive index. The refractive index of a substance is a measure  
of the speed of light in a liquid compared to that of a substance in  
4
Discussion  
In this research, the highest yield of liquid smoke was  
obtained at 600°C for 7 h. This is because the higher the  
temperature and the longer the time of the water hyacinth  
pyrolysis, the more elements break down and condense into liquid  
smoke. It is also known that the liquid smoke making temperature  
is a determining factor in the yield of liquid smoke produced. The  
effect of pyrolysis temperature and time on the yield of liquid  
smoke indicates that the yield of liquid smoke products continues  
to increase along with the increase in pyrolysis time. When  
pyrolysis time increases, the condensation process runs longer, so  
that the smoke products will multiply. During pyrolysis, the  
decomposition process involves the breaking and forming of new  
bonds. Pyrolysis temperature affects the breakdown of the  
168  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 164-171  
air. Refractive index measurement in industry can be used to find  
physical parameters such as concentration, temperature and  
pressure. Refractive index can also be used to determine the  
quality of a solution. Refractive index testing is an important  
criterion that can be used to determine the purity of liquid smoke.  
The longer the carbon chain and the more double bonds, the  
greater the refractive index. Refractometer The most common is  
the Abbe (AR) Refractometer which is based on the principle of  
total reflection. The advantage of AR is high precision, and it can  
read refractive index values directly from the dial screen. The  
refractive index of liquid smoke from water hyacinth is in the  
range of 1.3395 - 1.3470. The best results at a temperature of 400  
and 1 hour were obtained 1.3419. The results are almost the same  
as the refractive index of liquid smoke from coconut shell and  
cinnamyl which was in the range 1.344 - 1.357. The lowest  
refractive index is 1.344, while the highest is liquid smoke residue  
of 1.673 [19, 39, 40].  
6
Acknowledgment  
The author wishes to thank the Directorate General of Higher  
Education Republic of Indonesia Government, the Ministry of  
Education and Culture for providing scholarship support in  
conducting this research. We declare that there are no competing  
interests in this study. All authors of this study have a complete  
contribution for data collection, data analyses and manuscript  
writing.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
The total phenol content of liquid smoke does not depend on  
the moisture content of the raw material and the percentage of  
yield produced; rather, it highly depends on the chemical content  
characteristics of the raw material used and the temperature  
reached during the pyrolysis process. The content or phenol  
content of liquid smoke is influenced by the lignin content of the  
material and the pyrolysis temperature. Lignin is very stable and  
difficult to separate; it has also various forms, so it only  
decomposes at high temperatures. Lignin is basically a phenol  
that results from the breakdown of lignin in the pyrolysis process  
at 300°C500°C. Liquid smoke from water hyacinth contains a  
low phenol, which is equal to 2.44%. In contrast to liquid smoke  
from cashew nut shells, the highest phenol in liquid smoke of  
cashew nuts is obtained at 400°C with total phenol of 36.6%.  
Phenol content is influenced by lignin content in wood. The  
degradation of lignin to phenol occurs in two stages, namely, at  
an initial temperature of 300°C, which causes breakdown of the  
phenol ring from lignin, and at temperatures of more than 300°C,  
which results in polymerization to guaiacol (2-methoxyphenols),  
as well as other compounds, such as methanol, acetone, and acetic  
acid. Lignin decomposition results in the production of phenolic  
compounds. Cashew nut skin containing 16.42% lignin, while  
lignin in water hyacinth only 7.32%. So, it is natural that the liquid  
phenol content of water hyacinth is lower than the liquid smoke  
phenol of cashew nuts [41, 42].  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing.  
References  
1
.
Wulandari DA, Kurniani D, Edhisono S, Ardianto F, Dahlan D. The  
effect of small dams in RawaPening catchment area on sedimentation  
rate of RawaPening Lake.In Matec Web of Conferences;27-29  
November 2018; Indonesia. Bandung p. 15.  
2
.
Indrayati A, Hikmah NI. Prediction of Lake RawaPening Sediment  
in 2020 as a Basis for Reservation of Tuntang River Based on  
Geographic Information Systems in Proceedings of the UMS IX  
Geography National Seminar; River Restoration: Challenges and  
Solutions for Sustainable Development; 30 June 2018; Indonesia,  
Solo; p. 543552.  
3. Abdullah NA, Putra N, Hakim I, Koestoer RA. A Review of  
improvements to the liquid collection system used in the pyrolysis  
process for producing liquid smoke. International Jornal of  
Technology. 2017; 7: 11971206.  
4
.
Czernik S, Bridgwater AV. Overview of Applications of biomass fast  
pyrolysis oil. Energy & Fuels.2004; 18(12): 590598.  
This observation is supported by the research conducted by  
5
.
Novita SA, Djinis ME, Melly S, Putri S.K. Processing Coconut fiber  
and shell to biodiesel. International Journal on Advanced Science  
Engineering Information Technology,.2014; 4(5): 8486.  
[15], which suggests that liquid smoke formed via hemicellulose  
pyrolysis process produces furfural, a furan derivative, as well as  
a long series of carboxylic acids, acetic acids, and homologues at  
6. Gunnarsson CC, Petersen CM. Water hyacinths as a resource in  
agriculture and energy production: A literature review. Waste  
Manage. 2007; 2(27): 117129.  
2
00°C250°C. Cellulose pyrolysis produces acetic acid and its  
homologues and a small amount of furan and phenol at 280°C–  
7
.
Kan T, Strezov V, Evans, TJ. Lignocellulosic biomass pyrolysis: A  
review of product properties and effects of pyrolysis parameters.  
Renewable and Sustainable Energy Reviews. 2016; 57: 11261140.  
Triastuti WE, Budhi PA, Agustiani E, Hidayat RA, Retnoningsih R,  
Nisa AA. Caracterization of liquid smoke bamboo waste with  
pyrolysis method. In. International Conference on Engineering,  
Advance Science and Industrial Application (ICETESIA); 6-7  
September 2018; Indonesia, Surabaya. p. 114117.  
3
4
50°C. Lignin pyrolysis produces phenols and phenol ethers at  
00°C  
8
.
5
Conclusion  
In this study, it can be concluded that temperature and time  
greatly affect the yield, pH, density, and refractive index of the  
produced liquid smoke. Liquid smoke produced from water  
hyacinth plays a role in overcoming the rapid growth of water  
hyacinth in Lake RawaPening. It can help solve the  
environmental problems there. The best liquid smoke is obtained  
under the pyrolysis reactor operating condition of 400°C for 4 h.  
The produced liquid smoke has 2.44% phenolic compound, which  
is very suitable for food preservation.  
9
1
.
Wagiman FX, Ardiansyah A, Witjaksono W. Activity of coconut-  
shell liquid-smoke as an insecticide on the rice brown planthopper  
(Nilaparvatalugens). ARPN Journal of Agricultural and Biological  
Science. 2014; 9(9):293296.  
0. Desniorita, Maryam. The effect of adding liquid smoke powder to  
shelf life of sauce. International Journal on Advanced Science,  
Engineering and Information Technology. 2015; 5(6): 457459.  
169  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 164-171  
1
1. Veksha A, Latiff, NM, Chen W, Ng JE, Lisak G. Heteroatom doped  
carbon nanosheets from waste tires as electrode materials for  
electrocatalytic oxygen reduction reaction: Effect of synthesis  
techniques on properties and activity. Carbon. 2020: 167: 104-113.  
2. Verma R, Suthar S. Utility of duckweeds as source of biomass  
energy: a review. Bioenerg. Res. 2015; 8: 15891597.  
3. Bimbela F, Abrego J, Gonzalo A, Sanchez JL, Arauzo, J. Biomass  
pyrolysis liquids Fundamentals, technologies and new strategies. Bol.  
Grupo Español Carbón.2014; 33: 1114.  
4. Ma H, Li T, Wu S. Zhang X. Effect of the interaction of phenolic  
hydroxyl with the benzene rings on lignin pyrolysis. Bioresource  
Technology. 2020; 309: 123351.  
5. Yao, Z., Ma, X., & Xiao, Z. The effect of two pretreatment levels on  
the pyrolysis characteristics of water hyacinth. Renewable Energy.  
32. Parthasarathy P, Choi HS, Park HC, Hwang JG, Yoo HS, Lee BK,  
Upadhyay M. Influence of process conditions on product yield of  
waste tyre pyrolysis - A Review. Korean J. Chem. Eng. 2016;  
33(8):22682286.  
33. Swastawati F, Darmanto YS, Sya’rani L, Kuswanto, R, Taylor KDA.  
Quality characteristics of smoked Skipjack (Katsuwonuspelamis)  
using different liquid smoke. International Journal of Bioscience,  
Biochistry and Bioinformatics. 2014; 4(2): 9499.  
1
1
34. Zhang B, Zhong Z, Li T, Xue Z, Ruang R. Bio-oil production from  
sequential two-step microwave-assisted catalytic fast pyrolysis of  
1
1
1
2 3 2  
water hyacinth using Ce-doped γ -Al O /ZrO composite mesoporous  
catalyst. Journal of Analytical and Applied Pyrolysis. 2018; 132: 143-  
150.  
35. Krisen SS, Setiaji B, Trisunaryanti, W, Pranowo HD. Intervention  
effect of liquid smoke of pyrolysis result of coconut shell on profile  
of pH fillet of lates calcarifer. In Proceeding of International  
Conference on Research, Implementation and Education of  
Mathematics and Sciences:18-20 May 2018; Indonesia  
Yogyakarta.p.1820.  
2
020; 151:514527.  
6. Agblevor FA, Besler S, Evans RJ. Inorganic compounds in biomass  
feedstocks: their role in char formation and effect on the quality of  
fast pyrolysis oil. Biomass Pyrolysis Oil Properties and Combustion  
Meeting; 26-28 September 1994; Colorado, Estes Park. P. 7789.  
7. Demirbas MF, Balat, M. Biomass pyrolysis for liquid fuels and  
chemicals: A review. Journal of Scientific & Industrial Research.  
1
1
36. Montazeri N, Oliveira A C M. Himelbloom B H. Leigh M B, Crapo,  
C
A. Chemical characterization of commercial liquid smoke  
2
007; 66:797804.  
8. Santos J, Ouadi M, Jahangiri H, Hornung A. Valorisation of  
lignocellulosic biomass investigating different pyrolysis  
temperatures. Journal of the Energy Institute. 2020; xxx (xxxx): 1–  
0.  
products. Food Science & Nutrition. 2012; 1(1):102115.  
37. Wang C, Luo Z, Li S, Zhu X. Coupling effect of condensing  
temperature and residence time on bio-oil component enrichment  
during the condensation of biomass pyrolysis vapors. Fuel. 2020;  
274:117861.  
1
1
2
9. Lombok J, Setiaji B, Trisunaryati W. Wijaya K. Effect of pyrolisis  
temperature and distillation on character of coconut shell liquid  
smoke. Asian Jurnal of Science and Technology,.2014; 5(6):320–  
38. Budaraga IK, Marlida Y, Bulanin U. Liquid Smoke production  
quality from raw materials variation and different pyrolysis  
temperature. International Journal on Advanced Science Engineering  
Information Technology. 2016; 6(3):306315.  
39. Worzakowska M, Scigalski P. Thermal behavior of cinnamyl diesters  
studied by the TG/FTIR/QMS in inert atmosphere. Journal of  
Analytical and Applied Pyrolysis. 2014; 106:4856.  
3
25.  
0. Oasmaa A, Leppämäki E, Koponen P, Levander J, Tapola E. Physical  
characterisation of biomass-based pyrolysis liquids application of  
standard fuel oil analyses; VTT Publications. 1997; p.22.  
2
2
1. Witelski T, Bowen M. Methods of Mathematical Modelling. Springer  
Undergraduete Mathematic Series. 2015; p. 79  
2. Jiu B, Li B, & Yu Q. Effects of Pb on pyrolysis behavior of water  
hyacinth. Journal of Analytical and Applied Pyrolysis. 2015;  
40. Yamasoe MA, Kaufman YJ, Dubovik O, Remer LA, Holben BN,  
Artakxo P. Retrieval of the real part of the refractive index of smoke  
particles from Sun/sky measurements during SCAR-B using spectral.  
Journal of Geophysical Research. 1998; 103:111.  
1
12:270275.  
41. Yusnaini, Y., Soeparrno, S., Suryanto, E., & Armunanto, R. Physical,  
Chemical And Sensory Properties Of Kenari (Canariun Indicum L.)  
Shell Liquid Smoke Immersed Beef On Different Level Of Dilution.  
J.Indonesian Trop.Anim.Agric, 2012; 37(1):2733.  
2
3. Ifa L, Yani S, Mandasini M. et al. Production of phenol from liquid  
smoke resulted by the pyrolysis of cashew nut shells. In IOP  
Conference Series: Earth and Environmental Science, 25-26 October  
2
017; Indonesia, Makasar. p. 16.  
42. Faisal M, Yelviasunarti AR, Desvita H. Characteristics of liquid  
smoke from the pyrolysis of durian peel waste at moderate  
temperatures. Rasayan J. Chem. 2018; 11(2):871876.  
43. Özbay G, Özçifçi, A, Kökten ES. The pyrolysis characteristics of  
wood waste containing different types of varnishes. Turk J Agric For.  
2016; 40:705714.  
2
2
4. Oasmaa A, Peacocke C. A guide to physical property characterisation  
of biomass-derived fast pyrolysis liquids. VTT Publications. 2001;  
p.28  
5. Ozbay G, Ayrilmis N. Effect of pyrolysis temperature on bio-oil  
production from vacuum pyrolysis of waste from wood industry. In  
Proceedings of 117th The IIER International Conference; 17-18  
August 2017; Helsinki, Finland. p.5658  
6. Sulhatun S, Hasibuani R, Harahap H. Influence temperature of  
pyrolisis process on production of liquid smoke from candlenut shell  
by examining its potential coumpound. International Journal of  
Recent Technology and Engineering, 2019; 8(3):285290.  
7. Maulina S, Silia F. Liquid smoke characteristics from the pyrolysis  
of oil palm fronds. In IOP Conference Series: Materials Science and  
Engineering; 7-8 September 2017; Indonesia, Medan. p. 16.  
8. Ramakrishnan S, Moeller P. Liquid smoke: Product of hardwood  
pyrolysis. Fuel Chem. Division Preprints. 2002; 47(1): 366367.  
9. Chowdhury ZZ, Yehye W, Pal K. Pyrolysis: A sustainable way to  
generate energy from waste. In TechOpen. 2017; p.23  
Author Profile  
2
2
Rita Dwi Ratnani, ST., M.Eng  
Doctoral  
student  
at  
the  
Environmental  
Science  
Postgraduate School. Currently,  
Rita is a teaching staff at the  
Departement  
Chemical  
2
2
3
Engineering at Wahid Hasyim  
University with her expertise in  
waste management.  
0. Saloko S, Darmadji P, Setiaji B. Pranoto, Y. Antioxidative and  
antimicrobial activities of liquid smoke nanocapsules using chitosan  
and maltodextrin and its application on tuna fish preservation. Food  
Bioscience. 2014; 7: 7179.  
Prof. Dr. Hadiyanto, ST.,  
M.Sc  
Teaches at the Department of  
Chemical Engineering and the  
Environmental Science at the  
3
1. Berhimpon S, Montolalu RI, Dien HA., Mentang F Meko AUI.  
Concentration and application methods of liquid smoke for exotic  
smoked Skipjack (Katsuwonuspelamis L.). International Food  
Research Journal.2018; 25(1):8641869  
Postgraduate  
School  
of  
Diponegoro University.  
170  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 164-171  
Prof. Dr. Ir. Widiyanto, SU  
Teaches at the Department of  
Animal Husbandry and the  
Environmental  
Doctoral Study Program at the  
Postgraduate School of  
Diponegoro University.  
Science  
171