Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 183-191  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)191  
Efficient Removal of Nitrogen based Industrial  
Pollutants by Graphene Oxide Coupled Nanotitania  
Composite under Visible Light Illumination  
1
2
Ryali Somasekhar , Paul Douglas Sanasi *  
1
Research Scholar, Department of Chemistry, Jawaharlal Nehru Technological University (JNTU), Kakinada- 533003, Andhra Pradesh, India  
2
Department of Engineering Chemistry, Andhra University College of Engineering (A), Andhra University, Visakhapatnam- 530003,  
Andhra Pradesh, India  
Received: 18/09/2020  
Accepted: 28/10/2020  
Published: 20/03/2021  
Abstract  
N-based industrial pollutants like Nitrobenzene (NB) and 4-nitrophenol (4-NP) were identified as hazardous among the group of industrial  
chemicals by United States environmental protection agency (USPEA). Their removal from the effluents has become inevitable for the  
industries as a part of wastewater treatment methodology. Thus, the selected organics have been successfully removed from their aqueous  
solutions with nanotitania (anatase) composites incorporated with an optimum wt% of graphene oxide (GO) through photocatalytic  
degradation. Kubelka-Munk function was applied for the composites in the UV-Vis diffuse reflectance spectral (UV-Vis DRS) studies and  
the band gap has appreciably decreased with increase in wt % of GO in the composites. Compared to band gap in Degussa P25 (3.2 eV), the  
same was observed as 2.60 eV in the nanotitania composite with 10 % GO. These studies were correlated with Photoluminescence (PL)  
spectral analysis. The photodegradation and mineralization of Nitrogen containing industrial pollutants like nitrobenzene (NB) (95.7 % COD  
loss) and 4- nitrophenol (4-NP) (97.2 % COD loss) were successfully achieved with the nanocomposite under visible light irradiation.  
Keywords: Photocatalysis, Graphene oxide, Nanotitania, Nitrobenzene, 4-nitrophenol  
1
benign techniques namely, advanced oxidation processes (AOP)  
1
Introduction  
proved as benchmark methods for the degradation as well as their  
mineralization [16]. To decrease the effect of the pollutants on the  
aquatic life, the researchers used metal oxide semiconducting  
Industrial water effluents released by textile, pharmaceutical,  
fertilizer, leather industries contains harmful organic dyestuffs.  
These organic pollutants are toxic in nature due to the presence of  
intense colour forming moieties in their chemical structures [1].  
Nitrobenzene (NB) and 4-nitrophenol (4-NP) are two such N-  
based organic pollutants, which were declared as hazardous  
chemicals by United States Environmental Protection Agency,  
USEPA [2-4]. NB is used in the production of dyes, explosives,  
pesticides and waste waters containing more than 2 ppm of the  
compound is considered as toxic by USEPA [5, 6]. High levels of  
exposure to NB may cause damage to liver and kidneys in human  
beings [7, 8]. Similarly, 4-NP is a common pollutant in aquatic  
systems and is widely used in the synthesis of dyes, pesticides,  
herbicides and pharmaceutical, which is both carcinogenic and  
mutagenic as declared by the USEPA [4, 9, 10]. Presence of high  
electron affinity - nitro group in NB and 4-NP makes the  
compounds restricted for the detoxification. There are methods  
like adsorption, photochemical reduction, ozonation, oxidation by  
ozone under ultraviolet irradiation, photo-assisted fenton  
oxidation, and supercritical oxidation for the remediation of these  
harmful compounds. However, they were not completely  
successful [11-15]. Unlike these methods, environmentally  
2 2 3 2  
materials such as TiO , Fe O , ZnO, Cu O, NiO, etc [17]. Due to  
its high photostability and photo efficiency, nanotitania (TiO  
2
)
and its analogue heterogeneous forms have emerged as  
convincing photocatalysts for the purpose [18-20].  
Among the three different crystallographic forms of titania,  
anatase form was proved to have superior photocatalytic activity  
- +  
21-23]. Its rapid electron - hole (e /h ) recombination and a wide  
[
band gap of around 3.2 eV (λ ~ 380 nm) limits its application only  
in the UV region [24]. Efforts like doping titania with a transition  
metal, atom or ion, treating with a suitable sensitizer of higher  
absorption coefficient and formation of nanocomposites with  
carbonaceous materials having high surface area have been made  
to enhance the photocatalytic applications in the visible region  
[25]. Titanium tetrachloride was reported as the one of the best  
starting material to synthesize anatase nanotitania which is  
applicable for the photodegradation studies in the visible region  
[
26].  
Nanocomposites synthesized by exfoliation of carbon  
material like graphene (GR) or graphene oxide (GO) on the  
Corresponding author: Paul Douglas Sanasi,Department of Engineering Chemistry, Andhra University College of Engineering (A), Andhra  
University, Visakhapatnam- 530003,Andhra Pradesh, India, ORCID:0000-0002-5839-0959; E-mail: pauldouglas12@gmail.com  
183  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 183-191  
incorporating on the titania particles has emerged as an alternative  
pathway in the area of photocatalysis [27]. Graphene is a single  
atomic layer of graphite and possess exceptional electrical,  
mechanical and thermal properties [28]. Graphene oxide is a two-  
dimensional carbon material synthesized from graphite (Figure 1)  
-
-
O
O
+
N
O
O
+
N
2
and contains sp hybridised carbon atoms that can store electrons.  
The presence of oxygen containing functional groups like –  
COOH, -OH will overcome the Vander Waal’s forces and  
increases the inter layer spacing [29, 30]. Previously, the  
synthesis of x % graphene oxide (GO)  nanotitania (NT)  
composites, characterization and their photocatalytic activity  
towards the degradation of some anionic and cationic organic  
dyes was reported [31-34].  
Unlike the degradation studies of these organic dyes, this  
paper mainly presents the photodegradation and mineralisation of  
NB and 4-NP (Figure 2) in the presence of these nanocomposites.  
The present work also unfolds the band gap variations in the  
nanocomposite on introducing GO onto the surface of NT. The  
Photoluminescence (PL) studies will additionally support the  
results obtained from Kubelka - Munk function curve. A Plausible  
degradation mechanism and the formation of mineralization  
products has been proposed.  
OH  
(a)  
(b)  
Figure 2: Chemical Structures of NB & 4-NP  
2
.2 Synthesis of x % Graphene oxide - Nanotitania composites  
Modified Hummers method was adopted to synthesise GO [32,  
5]. Nanotitania composites modified with variable wt. % of GO  
3
were synthesized using a mixture of TiCl  
:50 mL under ultrasonication conditions as shown in Figure 3.  
The finally obtained photocatalysts were designated as 1 % GO,  
% GO, 5 % GO and 10 % GO- nanotitania (NT) composites  
4 2  
and H O in the ratio of  
1
2
respectively [31, 32]. In order to compare thephotocatalytic  
performance of these composites towards the degradation studies,  
GO free nanotitania (anatase) was also prepared separately [31].  
As the aqueous solutions of these organic pollutants are  
colourless in the visible region, dichromate method was used to  
study the Chemical oxygen demand (COD) in these pollutants to  
admit themineralization under the optimized experimental  
conditions. Supporting studies like effect of pH, temperature were  
also performed. Superior photocatalytic degradation and  
mineralization was observed with the nanocomposite having 10  
wt. % GO.  
Figure 3: Facile insitu synthesis of GO  nanotitania composites  
2
.3 Photocatalytic measurements  
The photocatalytic degradation tendency of the selected  
organic pollutants was evaluated with both the synthesized  
nanotitania and x % GO-nanotitania composites. In 100 mL of the  
diluted aqueous solutions of the pollutants, a constant weight (10  
mg) of the composites was dispersed. These mixtures was kept  
under magnetic stirring for about 30 minutes, so that the  
adsorption/desorption equilibrium could be established in dark  
conditions. After optimizing the equilibration time, the samples  
were placed under 400 watt tungsten halogen lamp equipped in a  
wooden breakfront along with an electric supply. Then, a known  
volume of aliquots (5 mL) was extracted in regular intervals of  
time (15 min), centrifuged, and the translucent solutions were  
analyzed by using an UV-Vis spectrophotometer (UV-2550,  
Shimadzu, wavelength range: 180-1100 nm). The percentage  
degradation of the pollutant was determined from Equation 1.  
Figure 1: Conversion of graphite to graphene oxide  
2
Experimental  
.1 Materials  
All the chemicals were procured with AR grade quality (99 %  
pure) from Sigma Aldrich and Merck. Nitrobenzene with  
2
-1  
molecular formula, C  
6
H
5
NO  
2
(G. Mol. Wt = 123.11 g.mol ) and  
NO (G. Mol. Wt  
139.10 g.mol ) were chosen as the N-organic pollutants for the  
4
=
-nitrophenol with molecular formula, C  
H
6 5  
3
-1  
photocatalytic degradation study under visible light irradiation.  
Double distilled water (DW) was used for the experimental  
works.  
C0−Cꢀ  
Photocatalytic degradation % = (  
) × 1ꢁꢁ  
(1)  
C0  
0 t  
where C and C are the initial concentration and concentration of  
the pollutant (mg/L) at a time interval, t (min) respectively.  
184  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 183-191  
2
.3 Characterization  
The synthesized nanotitania and x % GO-nanotitania  
intensity all these PL signals have decreased steadily compared to  
the bare nanotitania particles and it would lead to reduced charge  
recombination [38]. The very low intense peak formation for 10  
% GO-NT composite shows a significant effect GO on  
nanotitania resulting in rapid transfer of photogenerated electrons  
onto the GOand separating the charges effectively in the  
nanotitania [39].  
composites (after calcination) were characterized. The  
wavelength obtained for the corresponding absorption and the  
band gap energy was estimated from the UV-Vis diffuse  
reflectance spectra, which was recorded using Single  
monochromator UV-2600 (optional ISR-2600 Plus, λ up to 1400  
nm). The change in the intensity for the respective wavelength of  
the composites was recorded in the photoluminescence (PL)  
spectra at room temperature on Fluorescence spectrophotometer  
(
F-4600, Hitachi, Japan).  
3
Results and Discussion  
The finally obtained nanotitania and its composites have been  
characterized using Powder X-Ray Diffraction (PXRD) including  
their average crystallite size, Fourier transform infrared  
spectroscopy (FTIR), Field emission scanning electron  
microscopy coupled with electron diffraction X-Ray (FESEM-  
EDAX), High resolution transmission electron microscopy and  
selected area electron diffraction method (HRTEM-SAED)  
instrumental techniques. These results were reported earlier [31-  
3
4]. In order to extend the characterization of these composites,  
UV-Visible diffused reflectance spectroscopy (UV-VIS DRS)  
and Photoluminiscence (PL) instrumental techniques were also  
included in the present studies. The former technique gave the  
band gap of the nanocomposites which was calculated using  
Kubelka-Munk function, and the later provided their  
Luminescence behavior.  
Figure 4: Band gap energy of nanotitania and x % GO  nanotitania  
composites  
3
.1 Band gap energy analysis  
The band gap energy of the bare nanotitania and x % GO-  
Table 1: Band gap energy values for the nanocomposites  
[b]  
Band gap (eV)  
3.20  
[a]  
Photocatalyst  
nanotitania composites was measured by the extrapolation of the  
linear portion of the graph (Figure 4) between the modified  
Kubelka-Munk function [F(R)hν] versus photon energy hν in  
electron volts, eV (h is plancks constant and ν is the frequency of  
the photon energy.) [26]. The band gap was reported as 3.2 eV for  
pure nanotitania [26] and around 1.9 2.6 eV in GO [25].  
In the present work,a narrow band gap was noticed in the  
synthesized nanotitania (2.91 eV) compared to the commercial  
Degussa P25. It may be due to its concise crystallite size (14.48  
nm) [34]. Further, the band gap in the nanocomposite with 10 wt.  
Degussa P25  
Nanotitania (NT)  
10 % GO-NT  
2.91  
2.60  
2
[a] Degussa P25 Commercial titania, NT is synthesized in the present  
work. [b] Measured from Kubelka-Munk function curves.  
3
3
.3 Photocatalytic Degradation Studies  
.3.1 Preparation of aqueous solution of the probe molecules  
-2  
Standard solutions of NB (1.5 x 10 N, Colourless at low  
concentration) and 4-NP (1.15 N, at pH <6.8-turbid to colourless)  
were prepared by dissolving 0.15 mL (0.19 g) of pure NB liquid  
and 1.6 g of pure 4-NP solid in 100 mL of DI separately. They  
were kept under magnetic stirring to obtain homogenous  
solutions. From these solutions, 5.2 mL of NB and 0.7 mL of 4-  
NP were further dispersed in 100 mL of DI separately to obtain  
%
GO was observed to be 2.60eV (Table 1).These observations  
shows that there is shortening of band gap in the nanotitania  
composite on introducing the GO on its surface [25, 36].  
The band gap in the remaining GO-NT composites was  
almost close to each other as observed from Figure 4. This  
condition might have occurred due to close agglomeration of the  
particles, but their band gap is less than that of the synthesized  
nanotitania.  
-5  
-5  
[
8.12 x 10 ] N of NB and [7.18 x 10 ] N of 4-NP (10 ppm)  
solutions respectively.  
3
.3.2 Photocatalytic activity of the composites  
The photocatalytic performance of the synthesized  
3
.2 Photoluminescence (PL) spectral analysis  
nanotitania and the nanocomposites were evaluated for the  
degradation of NB and 4-NP aqueous solutions under visible light  
irradiation. In the absence of either the visible light or the  
photocatalyst, the tendency of degradation was found to be  
negligible, indicating that the degradation in the presence of  
photocatalysis condition could be phenomenal. 10 mg of each  
photocatalyst was dispersed separately in different sets of the  
aqueous solutions (100 mL) of the probe molecules and kept in  
dark to establish adsorption - desorption equilibrium. The  
The PL studies were performed to identify the efficiency of  
the nanotitania particles and the x % GO-nanotitania composites  
towards the charge carrier trapping, immigration and transfer, and  
to analyze the recombination rate of photogenerated electron hole  
pairs [37]. As depicted in Figure 5, the intensity of the synthesized  
nanotitania particles was observed at 425 nm. With a gradual  
increase in the wt % of GO in the nanotitania composites, the  
intensity of the peaks have decreased. The emission peaks were  
observed at 427, 430, 475 and 525 nm for the corresponding wt  
%
of 1, 2, 5 and 10 % GO in the composites respectively. The  
185  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 183-191  
suspensions were then exposed to visible light irradiation and the  
results were presented in Figures 6 (a) & (b).  
composite. The aqueous solution of NB has exhibited a sharp  
absorption peak at λmax= 260 nm. The absorbance was found to  
decrease with respect to time and was almost negligible in 180  
minutes. Similarly, the aqueous solution of 4-NP has shown a  
minor absorption peak at λ max = 320 nm and an intense absorption  
peak at λ max = 405 nm. These peaks may be attributed to  
protonated and de-protonated forms of 4-NP respectively [4]. The  
absorbance corresponding to these absorption maxima was found  
to fall and reach a minimal in 180 minutes. These results clearly  
indicates an enhanced degradation efficiency of 10 % GO  NT  
composite in the degradation of organic pollutants within 180  
minutes (Figure 7).  
Figure 5: PL spectra of nanotitania and x % GO-nanotitania composites  
It was observed that the degradation efficiency was low with  
the synthesized nanotitania particles. With a gradual increase in  
the composition of GO in the nanocomposites, the degradation  
tendency has increased and reached a maximum efficiency with  
the 10 % GO  NT for NB and 4-NP respectively. Similar  
degradation efficiency was observed with 15 % GO  NT  
composite in the degradation of the pollutants. It may be due to  
agglomeration of the GO particles at high weight % thereby  
decreasing the number of active sites on the surface of the  
composites. Hence, among nanocomposites with 10 and 15 %  
GO, the former with less wt % of GO was considered as better  
photocatalyst for the degradation studies.  
Figure 6 (b): Degradation of 4-NP using x % GO- NT composites  
Figure 6 (c): Effect of 10 % GO NT composite on the absorbance of  
NB  
3
.3.3 Effect of pH  
The effect of pH on photocatalytic degradation of NB & 4-NP  
Figure 6 (a): Degradation of NB using x% GO- NT composites  
was evaluated over the range 4.0 12.0, into solutions with 10  
ppm pollutant concentration, at an optimum nanocomposite dose  
Figures 6 (c) & (d) represents the study of the photocatalytic  
degradation of NB & 4-NP at a wavelength range of 180 nm - 360  
nm and 180 nm  600 nm respectively with 10 % GO  NT  
(
10 wt. % GO NT = 10 mg/100 mL) and for the irradiation time  
of 180 minutes. Perchloric acid, HClO and sodium hydroxide,  
NaOH solutions were used for varying the pH of the solutions in  
4
186  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 183-191  
the acidic and alkaline range respectively. The degradation  
efficiency of organic molecules will be influenced by the surface  
properties of the photocatalyst and pH of the solution [40]. The  
surface properties of a photocatalyst can be understood from its  
zero point charge (zpc) and for nanotitania it is 6.8.  
nanotitania was 6.8 and the combined effect of GO and  
nanotitania might have decreased the zpc of the nanocomposite  
(<6.8). This condition may be due to the presence of acidic  
functional groups present on GO making the zpc of the  
nanocomposite more effective for degradation in the weakly  
acidic range. Below and above this pH range, the degradation was  
less. The presence of deactivating nitro group in NB made the  
degradation tendency minimum in highly acidic/alkaline range.  
In 4-NP, the hydroxyl group is a strongly activating group  
substituted in para  position to the nitro group and strongly  
activates the aromatic ring for attack of electrophilic hydroxyl  
radical [44]. These radicals were considered as the predominant  
oxidant species in the alkaline pH range [45]. As OH group is a  
2
para-directing group and NO is a meta-directing group in  
nature, both can influence the position of attack by hydroxyl  
radical [46]. In 4-NP, both groups direct the radical to ortho –  
position, and forms nitrocatechol or nitrohydroquinone  
intermediates and leads to the formation of degradation products  
[47]. Further, in the acidic medium, the perhydroxyl radical can  
form hydrogen peroxide giving rise to the more reactive oxidant  
species, hydroxyl radicals and degrades the pollutants.  
In acidic medium, 4-NP exists in protonated form (λmax=320  
nm) and in alkaline medium, it exists in deprotonated form  
(λmax=405 nm) as shown in Figure 9 [4 , 41]. The surface of the  
Figure 6 (d): Effect of 10 % GO NT composite on the absorbance of 4-  
GO  nanotitania composite may be positively charged in the  
acidic medium (pH<6.8) and negatively charged in the alkaline  
medium (pH >6.8).In this view, the negatively charged form of 4-  
NP in its highly intense deprotonated form may adsorb strongly  
on the surface of the nanocomposite in the acidic pH range.  
Correspondingly, its protonated form might have associated with  
the nanocomposite in the alkaline pH range. These conditions  
might degrade 4-NP efficiently in the pH range of 6.5 to 7.5 as  
shown in Figure 8 (b).  
NP  
Figure 7: % Degradation efficiency of NB & 4-NP using x % GO-NT  
composites  
Its surface is positively charged in acidic range (pH<Pzpc)  
and negatively charged in alkaline range (pH>Pzpc) [40]. Non –  
ionizable compounds, like NB, will be better adsorbed on  
uncharged catalyst surface and their degradation rate will achieve  
maximum value near the zpc of the photocatalyst [41]. NB does  
Figure 8 (a): Effect of pH on the degradation of NB  
2
not have neither hydroxyl group (-OH) nor amine group (-NH ),  
which can ionize at different pH conditions. The effect of pH on  
the photocatalytic degradation of NB was expected to be minimal  
was reported by few researchers [42]. However, in some studies,  
effective degradation tendency of NB was reported in a detectable  
pH range depending on the photocatalyst incorporated [43]. In the  
present work, the degradation efficiency of NB was observed to  
be effective in the pH range of 5.0 7.0 (Figure 8 (a)). The zpc of  
3
.3.4 Effect of Temperature  
The process of photocatalytic degradation is generally not  
highly temperature sensitive [48]. However, its impact on the  
degradation of organic pollutants needs to be estimated as a part  
of industrial applications. The effect was studied for the  
degradation of NB & 4-NP in the temperature range of 20°C to  
187  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 183-191  
9
0°C with 10 mg of 10 % GO  NT composite dispersed in 10  
of 10 % GO  NT composite was dispersed in 100 mL aqueous  
solutions (10 ppm) of the organic pollutants and irradiated under  
visible light for 180 minutes. The experimental procedure for the  
determination of COD was adopted from the earlier reports [32].  
Also, the COD studies were performed under the optimized pH  
and temperature conditions as established above.  
ppm of 100 mL of aqueous solutions.  
Figure 8 (b): Effect of pH on the degradation of 4-NP  
Under the established pHconditions and the optimized  
irradiation time, the studies were performed and the results were  
displayed in Figures 10 (a) & (b) respectively. It was observed  
that the % degradation efficiency of NB & 4-NP was maximum  
in the range of 40°C to 50°C and 50°C to 70°C respectively. This  
phenomenon of increased degradation tendency with increase in  
reaction temperature can be attributed to the increased collision  
frequency of the pollutants in the solution with increase in  
temperature [48]. However, at higher reaction temperatures, the  
solubility of dissolved oxygen will be decreased and lowers the  
electron withdrawal tendency from the surface of the  
nanocomposite [48]. This stage leads to decrease in the  
degradation efficiency and the same was observed in case of NB  
Figure 10 (a): Effect of temperature on the degradation of NB  
&
4-NP respectively.  
+
OH2  
OH  
pH<6.8  
+
N
+
-
N
-
O
O
O
O
-
O
Figure 10 (b): Effect of temperature on the degradation of 4-NP  
OH  
pH>6.8  
The COD content of the samples was calculated using  
Equation 2 and the % loss of COD was calculated using Equation  
+
H
+
3
. Table 2 represents the results and it can be observed that there  
+
+
N
N
-
was a significant decrease in the COD of both NB & 4-NP and  
the % loss of COD was noticed as 95.7 % and 97.2 % respectively.  
These results were in close agreement with the % degradation  
efficiency of NB & 4-NP (from figure 5 and % degradation was  
calculated using equation 1). These observations indicate that the  
organic compounds were efficiently degraded by the composite,  
along with mineralization.  
-
O
O
O
O
Figure 9: Protonated and Deprotonated forms of 4-nitrophenol  
3
.3.5. Evaluation of Mineralization  
In addition to the analysis of photodegradation of N- organic  
pollutants, the oxygen equivalent of organic matter in the  
pollutants was evaluated separately in terms of chemical oxygen  
demand (COD) to investigate the mineralization tendency by  
ꢂOD = [x ꢃ y] ∗ ꢁ.2 ∗ 2ꢁꢁ mg/L  
(2)  
2 2 7  
using dichromate (K Cr O ) method [49]. For the purpose, 10 mg  
188  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 183-191  
-
•—  
where x and y are the volumes(mL) of ferrous ammonium  
sulphate consumed for the blank (DI) and the sample under study  
respectively. For every, 1 mL difference between the titrations 0.2  
mg of oxygen will be required by 5 mL sample and 200 is the  
numerical deduced as calculation factors.  
TiO  
TiO  
TiO  
2
2
2
(e-CB) + GO → GO (e ) + O  
2
→ O  
2
(5)  
(6)  
(7)  
(h+VB) + H  
O →TiO  
+ H + OH  
+
2
2
(h+VB) + OH  TiO  
+ OH•  
2
[
Cꢄꢅ]−[Cꢄꢅ]ꢇ  
•—  
O
(
2
/ OH + NB/4-NP → intermediates → CO  
2
+ H  
2
O + HNO  
3
%
ꢂOD loss =  
(3)  
[
Cꢄꢅ]ꢆ  
mineralization products)  
(8)  
where [COD]  
t (min) respectively.  
o
and [COD]  
t
are the COD (mg/L) atinitial and time  
3
.3.7 Evaluation of products on mineralization  
The dissociation pathway for the degradation of nitrobenzene  
was pictured in Figure 12 (a). On reacting with the hydroxyl  
radical (obtained from the GO-NT composite under light  
illumination), a transition state could be formed in which the  
electrophilic hydroxyl radical substitutes on the aromatic ring.  
Immediately, it may stabilize itself through formation of isomeric  
nitrophenols as disproportionate products. These products break  
Table 2: COD studies for NB and 4-NP  
Mineralization of NB & 4-NP  
(
pH=5.0 to 7.0); pH= 5.5-6.0 & 8.5 -9.0)  
Time  
(
min)  
COD (mg/L) % COD loss % Degradation  
into the mineralization products of nitrobenzene like CO , H O,  
2 2  
HNO [53]. The mechanistic formation of degradation products  
3
NB  
4-NP  
NB  
-
4-NP  
NB  
-
4-NP  
-
of 4 nitrophenol was portrayed in Figure 12 (b). On visible light  
illumination, the hydroxyl radical substitutes the deactivating  
nitro group and forms an intermediate oxy radical. It undergoes  
rearrangement to forms para - hydroxy phenol and hydroquinone  
as intermediate products which finally dissociates into  
0
117.5 216.3  
-
3
6
9
0
0
0
85.3  
61.8  
39.2  
21.6  
17.3  
5.4  
145.8  
93.6  
48.1  
31.7  
16.3  
6.8  
27.3  
47.8  
66.6  
32.4  
56.9  
77.7  
85.6  
92.6  
30.4  
55.1  
79.8  
86.0  
89.8  
36.3  
67.4  
81.7  
88.9  
2 2 3  
mineralization products of the pollutant like CO , H O, HNO or  
HNO [54].  
2
82.1  
1
1
1
20  
50  
80  
94.7  
85.4  
95.7  
97.2  
98.7  
98.8  
3
.3.6 Plausible Mechanism for Photocatalytic Degradation  
In the phenomena of photodegradation of organic pollutants,  
either photocatalytic oxidation or photosensitized oxidation  
mechanisms were proposed [50]. Typically, nitrobenzene and 4-  
nitrophenol are having their absorption maxima in the UV and  
near visible region respectively. In addition, the degradation  
studies were conducted under visible light active GO –  
nanotitania composites and hence in the present work, a  
photocatalytic oxidation has been proposed as a possible  
mechanism for the degradation of the organic pollutants. On  
visible light incidence, the electrons present in the valence band  
-
of the nanotitania excites to the conduction band (e CB) leaving a  
+
Figure 11: Illustration of photocatalytic degradation of NB & 4-NP using  
positive hole in the valence band (h VB) [50]. In the absence of  
-
+
10 % GO  NT composites under visible light irradiation  
GO, these e /h pairs combine vigorously and results in a very low  
photocatalytic activity [50]. The d-orbital (CB) of the nanotitania  
and -orbital of the GO interact and forms a d- overlap which  
can cause synergic effect [51, 52]. In this interaction, the excited  
-
electron (e CB) in nanotitania can be shuttled easily along the  
-
conducting network of GO surface thereby decreasing the e  
/
+
h recombination in the nanocomposites. The negative electron  
subsequently reduces oxygen to superoxide ions and the positive  
hole in the valence band (VB) of nanotitania oxidizes water  
molecules to hydroxyl radicals. These superoxide ions and  
hydroxyl radicals would oxidize both NB & 4-NP. The schematic  
illustrations were shown in Figure 11 and the possible  
photocatalytic reactions were shown in equations 4 to 8.  
Figure 12 (a): Possible products on mineralization of NB  
TiO  
2
+ hν (visible) → TiO  
2
(e-CB) + TiO  
2
(h+VB  
)
(4)  
189  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 183-191  
8
9
Zheng C, Zhou J, Wang J, Wang J, Qu B. Isolation and characterization  
of nitrobenzene degrading yeast strain from activated sludge. J Haz  
Mat. 2008; 160 (1): 194-199. (doi: 10.1016/j.jhazmat.2008.02.101).  
Nevim S, Arzu H, Gulin K, Zekiye C. Photocatalytic degradation of 4-  
nitrophenol in aqueous TiO  
intermediates. J Photochem and Photobio A: Chem. 2002; 146 (3)  
189-197. (doi: 10.1016/S1010-6030(01)00620-7).  
2
suspensions: Theoretical prediction of the  
:
1
1
1
1
0 Lixia Y, Shenglian L, Yue L, Yan X, Qing K, Qingyun C. High  
Efficient Photocatalytic Degradation of p-Nitrophenol on a Unique  
Cu O/TiO p-n Heterojunction Network Catalyst. Environ Sci  
2 2  
Technol. 2010; 44 (19) :7641-7646. (doi: 10.1021/es101711k).  
1 Fernando JB, Jose ME, Miguel AA. Nitroaromatic Hydrocarbon  
Ozonation in Water. 2. Combined Ozonation with Hydrogen Peroxide  
or UV Radiation. Ind Eng Chem Res. 1998; 37: 32-40. (doi:  
10.1021/ie970426v)  
Figure 12 (b): Possible products on mineralization of 4-NP  
4
Conclusions  
The photocatalytic degradation of nitrobenzene (NB) and 4-  
nitrophenol (4-NP) was investigated under visible light irradiation  
with GO-NT composites. With an optimum increase in % of GO  
in the composites, the degradation of the N-organic pollutants was  
improved and maximum degradation was achieved with  
nanotitania composite having 10 % wt of GO. Further, the COD  
studies performed under the established pH and temperature  
conditions has confirmed the photoefficiency of the composite by  
degrading 95.7 % and 97.2 % of NB and 4-NP respectively. The  
results of loss of COD and degradation efficiency were compared  
and a close nearness was observed in both the studies.  
2 Miguel R, Andreas K, Sandra C, Esther C, Santiago E. Influence of  
H
2
O
2
and Fe(II) in the photodegradation of nitrobenzene. J photochem  
and photobio A: Chem. 2000; 133(1-2):123-127. (doi: 10.1016/S1010-  
030(00)00223-9).  
3 Idil AA, John LF. H  
6
4
SiW12O40-catalyzed oxidation of nitrobenzene in  
supercritical water: kinetic and mechanistic aspects. Appl Cat B:  
Environ. 2002; 38(4) :283-293. (doi: 10.1016/S0926-3373(02)00059-  
0).  
1
1
4 Aysegul L, Mirat DG. The effect of humic acids on nitrobenzene  
3
oxidation by ozonation and O /UV process. Water Res. 2003; 37 (8)  
1879-1889. (doi: 10.1016/S0043-1354(02)00583-3).  
Acknowledgment  
:
The author (RSS) thank the Management of Andhra  
University, Visakhaptanam for providing facilites in the Organic  
Chemistry Laboratory. And also Centre for Advanced  
Instrumentation, NIT-Warangal for UV-Vis DRS analysisand PL  
spectral analysis.  
5 Yang Mu HQY, Jia-Chuan Z, Shu-Juan Z, Guo-Ping S. Reductive  
degradation of nitrobenzene in aqueous solution by zero-valent iron.  
Chemosphere.  
2004;  
54  
(7):  
789-794.  
(doi:  
10.1016/j.chemosphere.2003.10.023).  
6 Movahedi, M, Mahjoub AR, Janitabar-Darzi S. Photodegradation of  
Congo red in aqueous solution on ZnO as an alternative catalyst to  
1
TiO Iranian Chem Soc. 2009; 6(6) :570-577. (doi:  
0.1007/BF03246536).  
17 Azita N, Ali F, Arezu N. Photocatalytic degradation of methyl orange  
and Congo red using C, N, S - tridoped SnO nanoparticles. J Phy and  
2
Theo Chem. 2014; 10(4): 225-230.  
2
.
J
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
1
1
1
8 Howe RF. Recent developments in photocatalysis. Dev Chem Eng  
Mineral Process. 1998; 6(1): 5584.  
9 Bing G, Hangyan S, Kangying S, Yaowu Z, Wensheng N. The study  
of the relationship between pore structure and photocatalysis of  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing.  
2
mesoporous TiO . J Chem Sci. 2009; 121: 317. (doi: 10.1007/S12039-  
09-0036-5).  
0 Ayad FA, Mohammed BA. Adsorption and Photocatalytic degradation  
of crystal violet dye in the presence of different metals doping on TiO .  
2
J Appl Chem. 2013; 2(2): 291-303.  
0
References  
2
2
2
1
2
3
4
5
Tapas KR, Nabas KM. Photocatalytic Degradation of Congo red dye  
on thermally activated Zinc oxide. Int J Sci research in Environ. Sci.  
2
014 ; 2 (12): 457-469.  
Umabala AM. Effective Visible light photo degradation of nitrobenzene  
using BiVO prepared by room temperature solid-state metathesis. Int  
1
Detlef WB. Ultra small Metal Oxide Particles: Preparation,  
Photophysical Characterization, and Photocatalytic Properties. Israel J  
Chem. 1993; 33(1): 115-136. (doi: 10.1002/ijch.199300017).  
4
J Sci and Res. 2015; 4 (12): 1521-1524.  
Murthy NT, Suresh P, Umabala AM, Prasada Rao AV. Visible light  
activated photocatalytic degradation of nitrobenzene using Cu O. Int J  
2
Rec Sci Res. 2016; 7(5) : 10895-10898.  
Murthy NT, Suresh P, Umabala AM, Prasada Rao, AV. Visible light  
activated photocatalytic degradation of mono-, di- and tri-nitrophenols  
2 Mohsen P, Mahboubeh T, Mohammad RG. Effective photocatalytic  
degradation of an azo dye over nanosized Ag/AgBr-modified TiO  
loaded on zeolite. Chemical papers. 2011; 65: 280-288. (doi:  
0.2478/s11696-011-0013-6).  
3 Sammy WV, Tom T, Steven VP, Johan AM, Silvia L. Cost  
effectiveness analysis to assess commercial TiO photocatalysts for  
acetaldehyde degradation in air. Chemical papers. 2014 (doi:  
0.2478/s11696-014-2557-3).  
4 Babji P, Nageswara Rao I, Das SK. Synthesis, Characterization and  
Antitumor activity of Fe -Ag O-TiO Nanocomposite on MCF-7  
2
1
2
2
2
using Cu O. Der Pharma Chemica. 2016; 8 (6): 228-236.  
Dhananjay SB, Vishwas GP, Anthony ACMB. Photocatalytic  
degradation of nitrobenzene using titanium dioxide and concentrated  
solar radiation: chemical effects and scaleup. Water research. 2003; 37  
1
2
2
2
O
3
2
2
(
6):1223-1230. (doi: 10.1016/S0043-1354(02)00490-6).  
human breast cancer cells. J Appl Chem. 2015; 4(2): 550-556.  
5 Thuy-Duong NP, Viet HP, Eun WS, Hai-Dinh P, Sunwook K, Jin SC,  
Eui JK, Seung HH. The role of graphene oxide content on the  
adsorption-enhanced photocatalysis of titanium dioxide/graphene  
oxide composites. Chem Engg J. 2011; 170 :226-232. (doi:  
6
7
Xiaoli W, Yu L, Yizhe WTW, Qian G, Xianyuan D. New evidence for  
the importance of Mn oxides contributed to nitrobenzene adsorption  
onto the surficial sediments in Songhua River, China. J Haz Mat. 2009;  
1
72 (2): 755-762. (doi: 10.1016/j.jhazmat.2009.07.060).  
Stephen AB, Guangyao S, Brian JT, Cliff TJ. Mechanisms for the  
Adsorption - of Substituted Nitrobenzenes by Smectite Clays. Environ  
Sci Technol. 2001; 35 (21):4227-4234. (doi: 10.1021/es010663w).  
1
0.1016/j.cej.2011.03.060).  
6 Maurizio A, Vincenzo A, Agatino DP, Elisa GL, Vittoric L, Giuseppe  
M, Leonardo P. Preparation and photoactivity of nanostructured TiO  
2
2
190  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 183-191  
particles obtained by hydrolysis of TiCl  
4
. Coll Surf A Physciochem  
44 Priya MH, Giridhar M. Photocatalytic degradation of nitrobenzenes  
Eng Aspects. 2005; 265: 23-31. (doi: 10.1016/j.colsurfa.2004.11.048).  
7 Wan KJ, Hyun JK. Titanium dioxide-graphene oxide composites with  
different ratios supported by Pyrex tube for photocatalysis of toxic  
aromatic vapors. Powder technology. 2013; 250: 115-121. (doi:  
2
with combustion synthesized nano-TiO . J Photochem. and Photobio.  
2
2
A: Chem. 2006; 178: 1-7. (doi:10.1016/j.jphotochem.2005.06.012).  
45 Tunesi S, Anderson M. Influence of chemisorption on the  
photodecomposition of salicylic acid and related compounds using  
suspended titania ceramic membranes. J Phys Chem. 1991; 95: 3399-  
3405. (doi: 10.1021/j100161a078).  
46 Wang KH, Hsieh YH, Chou MY, Chang CY. Photocatalytic  
degradation of 2-chloro and 2-nitrophenol by titanium dioxide  
suspensions in aqueous solution. Appl Catal. B: Environ. 1999; 21: 1-  
8. (doi: 10.1016/S0926-3373(98)00116-7).  
1
0.1016/j.powtec.2013.10.017).  
8 Raji A, Thomas Nesakumar JIE, Suguna P, Dhanapalan K, Yong RL.  
Effective photocatalytic degradation of anthropogenic dyes using  
graphene oxide grafting titanium dioxide nanoparticles under UV-light  
irradiation. J Photochem and Photobio A: Chem. 2017; 333: 92-104.  
(doi: 10.1016/j.jphotochem.2016.10.021).  
2
3
3
9 Sasha S, Dmitriy AD, Richard DP, Kevin AK, Alfred K, Yuanyuan J,  
Yue W, SonBinh TN, Rodney SR. Synthesis of graphene-based  
nanosheets via chemical reduction of exfoliated graphite oxide’  
Carbon. 2007; 45(7): 1558-1565. (doi: 10.1016/j.carbon.2007.02.034).  
0 Thanh XN, Mo TN, Hung VN, Hung VH. Synthesis of Graphene  
Titanium dioxide composites as photocatalytic materials for  
degradation of Moderacid Black. Asian J Chem. 2016; 28 (6) :1297-  
47 Dieckmann MS, Gray KA. A comparision of the degradation of 4-  
nitrophenol via direct and sensitized photocatalysis in TiO slurries.  
2
Water Res. 1996; 30: 1169-1183. (doi: 10.1016/0043-1354(95)00240-  
5).  
48 Dingwang C, Ajay KR. Photodegradation kinetics of 4-nitrophenol in  
suspension’ Water Res. 1998; 32(11) :3223-3234. (doi:  
1
303. . (doi: 10.14233/ajchem.2016.19660).  
49 Mendham J, Denney R C, Barnes J D, Thomas M, Sivasankar B (2009)  
Vogel’s Quantitative Chemical analysis,Pearson (ed.), New Delhi,  
1 Douglas SP, Sekhar RS. Facile synthesis of graphene oxide –  
nanotitania composites and evaluation for visible light assisted  
photocatalytic degradation of Rhodamine B. Asian J Chem. 2018; 30  
th  
India 6 Edition 10 : 370-371.  
50 Prasada Rao AV, Umabala AM, Suresh P. Non-TiO  
2
based  
(
6): 1284-1290. (doi: 10.14233/ajchem2018.21219).  
photocatalysts for remediation of hazardous organic pollutants under  
green technology present status: A review. J Appl Chem. 2015; 4:  
1145-1172.  
3
3
3
2 Douglas SP, Sekhar RS. Graphene oxide-nanotitania composite for  
efficient photocatalytic degradation of Indigo carmine. J Chin Chem  
Soc. 2018; 65(12): 1423-1431. (DOI: 10.1002/jccs.201800154).  
3 Douglas SP, Sekhar RS. Effect of graphene oxide on nanotitania  
particles in visible light induced photocatalytic degradation of Congo  
red .J Appl Chem. 2017; 6: 1200.  
51 Jingfei L, Mengjing C, Wenhua H. Synthesis, Characterization and  
4
photocatalytic activity of new photocatalyst ZnBiSbO under visible  
light irradiation. Int Mol Sci. 2014; 15: 9459-9480. (doi:  
10.3390/ijms15069459).  
52 Hung JH, Shi YZ, Ping YL, Shien DT, Hai PC. Confined migration of  
induced hot electrons in Ag/graphene/TiO composite nanorods for  
J
4 Sekhar RS, Raju MN. Nanotitania composite assembled with graphene  
oxide for photocatalytic degradation of Eosin yellow under visible  
2
light. Nanochem Res. 2018;  
0.22036/ncr.2018.02.005).  
3
(2): 160-169. (DOI:  
plasmonic photocatalytic reaction. Opt. Exp. 2016; 24:15603-15608.  
(doi: 10.1364/OE.24.015603).  
1
3
3
3
5 Devi R, Prabhavathi G, Yamuna R, Ramakrishnan S, Nikhil Kothurkar  
K. Synthesis, characterization and photoluminescence properties of  
graphene oxide functionalized with azo molecules. J Chem Sci. 2014;  
53 Xiantao S, Lihua Z, Nan W, Ting ZHT. Selective photocatalytic  
degradation of nitrobenzene facilitated by molecular imprinting with a  
transition state analog. Catal today. 2014; 225 :164-170. (doi:  
54 Di PA, Augugliaro V, Palmisano L, Pantaleo G, Savinov E.  
Heterogeneous photocatalytic degradation of nitrophenols’ J.  
Photochem and Photobio. A: Chem. 2003; 155(1-3) :207-214.  
1
26: 75-83. (doi: 10.1007/s12039-013-0536-1).  
6
Donglin Z, Guodong S, Changlun C, Xiangke W. Enhanced  
photocatalytic degradation of methylene blue under visible irradiation  
on graphene@TiO dyade structure. Appl Cat B: Environ. 2012; 111:  
03-308. (doi: 10.1016/j.apcatb.2011.10.012).  
2
3
7 Yamashita H, Ichihashi Y, Harada M, Stewart G, Gox MA, Anpo M.  
Photocatalytic degradation of 1-octanol on anchored titanium dioxide  
2
and on TiO powder catalysts. J Catal. 1995; 158: 97-101. (doi:  
0.1006/jcat.1996.0010).  
8 Quanjun X, Jiaguo Y, Mietek J. Enhanced photocatalytic H  
production activity of graphene-modified titania nanosheets.  
Nanoscale. 2011; 3: 3670-3678. (doi: 10.1039/C1NR10610D).  
9 Ping C, Zhi Y, Hong W, Wei C, Mingxia C, Wenfeng S, Guifu D.  
1
3
3
2
-
TiO  
2
-graphene nanocomposites for photocatalytic hydrogen  
production from splitting water. Int J hyd ene. 2012; 37: 2224. (doi:  
1
0.1016/j.ijhydene.2011.11.004).  
4
4
0
2
Konstantinou IK, Albanis TA. TiO  assisted photocatalytic  
degradation of azo dyes in aquesous solution: kinetic and mechanistic  
investigations A review. Appl Catal B:Eviron. 2004; 49: 1-14. (doi:  
1
0.1016/j.apcatb.2003.11.010).  
1 Dhananjay SB, Sanjay PK, Sudhir BS, Vishwas GP. Photocatalytic and  
photochemical degradation of nitrobenzene using artificial ultraviolet  
light.  
Chem.  
Eng.  
J.  
2004;  
102:  
283-290.  
(doi:  
1
0.1016/j.cej.2004.05.009)  
4
4
2
Dhananjay SB, Vishwas GP, Anthony ACMB. Photocatalytic  
degradation for environmental applications  a review. J Chem  
Technol Biotechnol. 2001; 77: 102-116. (doi: 10.1002/jctb.532)  
3 Rajesh JT, Ramachandra GK, Raksh VJ. Photocatalytic Degradation  
of Aqueous Nitrobenzene by Nanocrystalline TiO . Ind Eng Chem  
Res. 2006; 45: 922-927. (doi: 10.1021/ie051060m)  
2
191