Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 310-317  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)317  
Equilibrium and Kinetics Studies of Hexavalent  
Chromium Biosorption by Luffa Cylindrica using  
Optimised 1,5-Diphenylcarbazide Method  
*
1
1
2
1
Imane Nouacer , Mokhtar Benalia , Ghania Henini , Mebrouk Djedid , Ykhlef Laidani, Chifaa  
1
Ad  
1University Amar Telidji-Laghouat, Faculty of Technology, Department Process Engineering, B.P 37G, Laghouat 03000, Algeria  
University chlef Faculty of Technology /, Department Process Engineering, Postal address, P.O Box.151.Hay Esslem 02000 Chlef, Algeria  
2
Received: 06/08/2020  
Accepted: 23/11/2020  
Published: 20/03/2021  
Abstract  
The Luffa Cylindrica fibers plant have been used as a new biological adsorbent for removal of hexavalent chromium from artificially  
contaminated aqueous solutions. The experiments took place in the bath mode. The influence of certain parameters on the adsorption of  
chromuim on the biosorbent, namely the adsorbent-adsorbate contact time, the pH of the solution and adsorbent dose of hexavalent  
chromium was determined. The kinetic study has shown that the process of adsorption chromuim on luffa cylindrica is a physical process  
characterized by its reversibility, by the speed of the establishment of equilibrium. The exploitation of adsorption isotherms using different  
classical models of Langmuir, Freundlich and Temkin has shown that adsorption can be governed by the Langmuir model. The maximum  
monolayer biosorption capacity of luffa cylindrica was found to be 5.91 mg of chromium /g of LC. The thermodynamic parameters for the  
adsorption system were determined at 283, 298 and 313°K. The obtained values showed that the chromium adsorption is a spontaneous and  
exothermic process. Finally, the Luffa cylindrica has been evaluated by FTIR, SEM and x-ray diffraction in order to determine if the  
biosorption process modifies its chemical structure.  
Keywords: Chromium; Biosorption; Isotherms; Thermodynamic; Luffa cylindrica  
1
idea about this danger of pollution. It has turned out that the  
1
Introduction  
natural water reserves of certain regions near industrial zones, of  
which chromium forms part of their constituents, are  
contaminated [4]. Several methods have been used to remove  
chromuim such as membrane filtration (ultrafiltration, reverse  
osmosis, nanofiltration, electrodialysis), chemical precipitation,  
ion exchange and the electrochemical method [5] and  
adsorption. The use of coal in the adsorption process is also very  
much in demand. Activated carbon has a high adsorption  
capacity mainly due to its large specific surface area but this  
process remains very expensive. The attention was then focused  
on the use of new adsorbents based on abundant natural  
materials. Luffa cylindrica, LC, mainly consists of cellulose,  
hemicelluloses and lignin; of composition (60%, 30% and 10%  
by weight, respectively) [6]. LC has been used as an efficient  
adsorbent or as a carrier for immobilization of some microalgal  
cells for the removal of water pollutants [7].  
The production of industrial and urban wastewater, often  
discharged into the receiving environment (sea, rivers and soils)  
without prior treatment, causes a degradation of the physic-  
chemical and biological quality of this environment by several  
pollutants and generates many diseases [1]. As heavy metals  
3
whose density exceeds 5g / cm . These are most commonly  
found in the environment as traces: mercury, lead, cadmium,  
chromium, copper, arsenic, nickel, zinc, cobalt, manganese [2].  
They are characteristic of special chemical properties that make  
them toxic to humans as well as to living organisms in the  
animal and plant kingdoms. Chromium is one of the most widely  
used heavy metals in the industry since it has enough advantages  
for tanneries, textile, wood processing and agribusiness. Cr (VI)  
is the most problematic form of chromium since in this form  
chromium is very toxic and very soluble in water. This solubility  
gives it high mobility in ecosystems [3]. Wastewater from some  
industries in Algeria contain chromium at levels well above the  
standards, such discharges can cause adverse effects on both  
aquatic fauna and flora. Some studies in Algeria have given an  
The objective of this study is to verify the possibility of  
using natural LC as a support for the immobilization of Cr (VI)  
ions from the aqueous solution. For this purpose, the various  
parameters that control the immobilization of Cr (VI) by the LC  
(
solid mass, pH solution, contact time and temperature) were  
*
Corresponding author: Imane Nouacer, University Amar  
optimized, followed by a kinetic and thermodynamic study. The  
general thrust of this research is to valorize a lignocellulosic  
waste as a biosorbent of heavy metals. More specifically, the  
Telidji-Laghouat, Faculty of Technology, Department Process  
Engineering, B.P 37G, Laghouat 03000, Algeria. E-mail:  
i.nouacer@lagh-univ.dz  
310  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 310-317  
present work aims to study, in an optimization perspective, the  
influence of some key parameters on the biosorption capacity of  
Cr (VI) by the fibers of Luffa cylindrica, that is very available  
and cheap and this from aqueous solutions artificially polluted.  
A modeling of the adsorption isotherms and a thermodynamic  
study were also carried out in order to understand the nature of  
the reaction mechanisms involved during the present biosorption  
phenomenon.  
an acid medium with  
a
complexing agent, 1,5-  
diphenylcarbazide. Thus, a purple-violet complex is formed after  
10 minutes and its intensity is measured spectrophotometrically  
at 540 nm. The Fourier Transform Infrared Spectroscopy, FTIR  
(IRPrestige-21, Shimadzu, Japan) was used to identify the  
different chemical functional groups present in the LC. The  
analysis was carried out using KBr and the spectral range  
varying from 400to 40cm. X-ray diffraction studies were  
performed on X-ray diffractometer (Brucker D8 Advance). XRD  
studies were carried out using Cu K α radiation, a Ni-filter and a  
scintillation counter as a detector at 40 kV and 40 mA on  
rotation from 5°to 60° at 2Ө scale. Each sample was finely  
powdered into small particle size and homogeneously mixed  
before subjecting to X-ray radiation. The morphology of natural  
LC was characterized using a scanning electron microscope  
2
Material and methods  
2
.1 Preparation of the biosorbent biomass  
The Luffa Cylindrica fibers were manually washed with  
distilled water and scrubbed with a brush to remove salts, lime  
scale and sediment from the surface. Subsequently, they were  
dried in the open air for 24 hours, then in an oven at 40 ° C for  
(
1
SEM) of HIT S2600 N. The powder was deposited on a support  
2 mm in diameter after metallization with platinum.  
4
8 hours. The dried leaves were then finely ground (the particle  
size between 0.5 and 2 mm), washed again with distilled water,  
and then placed in the oven at 80 ° C. for 48 hours until their  
weight become constant and then stored in desiccators.  
3 Results and discussion  
3.1 Luffa Cylindrica powder characterization  
2
.2 Preparation of the chromium (VI) solution  
3.1.1 FTIR studies  
A Cr (VI) stock solution was prepared by solubilizing a  
determined amount of K Cr O in demonized water to obtain a  
2 2 7  
concentration of 100 mg / L. The other concentrations are  
obtained by successive dilutions. The initial pH of the solution  
was adjusted by adding diluted solutions to 0.1M HCl or NaOH.  
An infrared analysis (FTIR) was performed at the raw LC  
and LC-Chromium. By comparing the FTIR spectra of LC  
before and after adsorption, there were remarkable shifts in  
some bands (Table 1). These bands are the function groups of  
LC participate in chromium biosorption, the comparison of the  
-1  
specters shown in Figure 2 shows. A broad band at 3340 cm  
corresponding to the elongation of the OH groups (of shell  
2
.3 Sample Preparation  
The Cr (VI) elimination tests were carried out batch wise on  
-1  
structure and water), a broad band at 2921 cm relating to the  
-1  
a magnetic stirrer by contacting a synthetic solution of Cr (VI)  
with a constant mass of the adsorbent. The solid / liquid  
separation of the sample taken is carried out by filtration under  
vacuum using a membrane having a porosity of 0.45 μm. For  
each filtered sample, the pH and the content of the residual Cr  
elongation of the group C-H, a band at 1650 cm which can  
very probably relate to the C = C elongations of olefins (alkenes)  
-
and aromatics, very weak bands between 1 392 - 1 506 cm  
1
which are to be put in relation with the CH deformations in the  
aliphatic chains and  
a wide band between 1000 cm-1  
(
VI) were measured. Various tests have been carried out making  
characteristic of the deformation in the plane of the aliphatic  
CO. The resulting bands may result from the presence of  
cellulose, hemicelluloses and lignin, the major constituents of  
the shell, as reported by [9], for the Luffa Cylindrica. Note that  
the previously described bands are more intense after the  
adsorption of Chromium on the Luffa Cylindrica.  
it possible to examine the influence of certain parameters on the  
elimination of Cr (VI) on the adsorbent, such as the stirring time  
(
as the treatment pH (2 to 6). The effect of pH was studied by  
buffering the synthetic Cr (VI) solution using the HCl (0.1 N)  
and NaOH (0.1N) solutions during the adsorption test. The  
removal efficiency of Cr (VI) is calculated by equation (1):  
0 to 3 hours) a, the dose of the adsorbent (1 to 20 g / l) as well  
(
Co  Ce) ∗ 100  
Co  
푅(%) =  
0 e  
Where C and C are the initial and final concentrations of  
chromium in the solution in mg/L. The chromium uptake  
loading capacity (mg/g) of LC for each concentration of  
chromium at equilibrium was determined as [8]:  
(
CoCe). V  
=  
m
Figure 1: FTIR spectrum of the LC fiber, (a) without adsorbed  
chromium (VI), (b) with adsorbed chromium  
where Ce is the equilibrium concentrations of the chromium  
mg/L) in solution, m is the dose of adsorbent (g/L).  
(
3
.1.2 X-ray diffraction (XRD)  
The XRD pattern of LC and LC-Cr (VI) were shown  
2
.4 Analysis  
The measurement of the non-adsorbed Cr (VI) concentration  
was carried out according to the standard colorimetric method  
9]. A sample of 1 ml of the solution is taken which is mixed in  
in Figure 2 (a) and (b). The LC at 2θ scale showed peaks at  
23.34° and 16.64° with relative intensities of 1145 and 519  
respectively. Similarly, LC- Cr(VI) showed peaks at 23.07° and  
[
311  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 310-317  
1
6.81° with relative intensities of 883.3 and 465 respectively.  
Table 1: FTIR spectral characteristics of LuffaCylindrical  
before and after biosorption of chromium  
3.1.3 Particle's morphology  
Microscopic observation makes it possible to visualize the  
morphology of the ground material. Optical microscope analysis  
Figure 3(a,b) and scanning electron microscope observations  
Figure 4 (a,b) showed that the beams are a continuation of the  
vascular system of the stem. The strands or cords that constitute  
the net are distributed in a very precise manner forming an  
identical skeleton of one type to another.  
-1  
Transmission band (cm )  
Pics  
Assignment  
FTIR Before adsorption After adsorption  
1
2
3
4
3340  
2921  
1650  
1000  
3326  
2923  
2348  
1100  
Stretching vibration of OH  
Aliphatic C-H group  
C=C  
C-O  
The percentage crystallinity (Xc %) and crystallinity index  
(
C.I.) was calculated as follow [10] and [11]:  
Ic  
Xc% = {  
} ∗ 100  
Ic + Ia  
Ic ꢀ Ia  
CI =  
Ic  
where IC is peak intensity of crystalline phase, IA is peak  
intensity of amorphous phase.The percentage crystallinity  
of LC and LC-Cr (VI) fiber was observed as 68.81 and 65.51,  
while the crystallinity index as 0.54 and 0.47 It was observed  
that the intensity of the peak in LC- Cr (VI) decreased on  
adsorption. The decrease in intensity of peak during adsorption  
indicated decreased crystallinity of LC- Cr (VI). However;  
the LC- Cr (VI) showed broadening of the peak after adsorption  
due to convergence of the fibers toward more disordered system  
Figure 3: Optical microscope analysis of L.Cylindrica (a) before and (b)  
after metal Biosorption  
[12]. It has been observed that (Table 2) a slight decreased in  
percentage crystallinity of the fiber on adsorption  
copolymerization resulted in increase in randomness or disorder  
in the crystal lattice of cellulose fiber. This was due to  
incorporation of chromium on the active sites of backbone  
during adsorption and fibers became more amorphous and  
resulted in impaired crystalline structure [13] and [14].  
Figure 4: Optical microscope analysis of L.Cylindrica (a) before and (b)  
after metal Biosorption  
3
.2 Influence of contact time  
The effect of contact time on the Cr (VI) removal rate was  
studied over a range of 10 to 180 min with an initial  
-
1
-1  
concentration 50 mg .L , a dose of biosorbent 20 g L at pH2  
and at room temperature. The results showed that the  
elimination rate increases rapidly during the first 40 minutes,  
then increases slowly to 130 minutes, and then remains almost  
constant. The results showed that the removal rate of Cr (VI)  
was reached at 90 min with 80%, equivalent. The increase of the  
elimination rate in the first part could be due to the external  
mass transfer which is fast. Then the slow increase in chromium  
removal rate to 130 minutes equilibrium time. This means that  
there is an internal mass transfer of the adsorbent; this generally  
corresponds to a diffusion phenomenon in the internal porosity  
of the adsorbent.  
Figure 2: X-ray diffraction spectra of LC and LC loaded with Cr (VI)  
Table 2: Percentage crystallinity and crystallization index of Lc  
and Lc-chromium  
Sample  
(°)  
Intensity  
%Xc C.I.  
Crystalline  
peak  
Amorphous  
peak  
Ic  
Ia  
3.3 Influence of pH  
The initial pH of the solution is an important parameter that  
Lc  
Lc- (Cr(VI)  
23.34  
23.07  
16.64  
16.81  
1145 519 68.81 0.54  
883.3 465 65.51 0.47  
must be considered in any adsorption study. The effect of this  
factor on the evolution of the adsorption capacity was analyzed  
over a pH range from 2 to 6. The results showed that the  
312  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 310-317  
maximum amount of Cr (VI) adsorbed occurs at pH 2 with 80%  
for an initial concentration of 50 mg / L. The adsorption capacity  
decreases sharply when the pH of the solution goes from 2 to 3,  
with a rate of adsorption 66 %. Beyond this value of pH, the  
adsorption capacity still decreases, but less significantly, to  
record its lowest value at pH = 7 with 18%. This behavior is  
explained by the fact that at pH = 2, the functional groups  
present on the surface of the LC particles (the hydroxyl,  
carboxyl, phosphonate and sulphonate groups) undergo a strong  
hydronation, which confers on the parietal bio polymers a  
positive overall charge. On the other hand, the ionic forms of  
hexavalent chromium which may be present in solution are  
1
1
=
+
푡  
푘 푞  
푒  
2
Or K is the constant relative to this model (g / mg min). The  
graphical representation of the variation of the ratio t / Q as a  
function of t gives rise to lines Figure 6 from which the  
2
theoretical values K and Qecal are determined, respectively with  
the aid of the slopes and disordered at the origin. These values  
are presented in Table 4. The correlation coefficients obtained  
for the pseudo-second order kinetics model turned out to be the  
most significant when a minimum value of 99.3% was recorded  
for chromuim concentrations of 10 and 60 mg / L. Moreover,  
the Qe values calculated according to the pseudo-second-order  
model approach in a very coherent way the values determined  
experimentally. Moreover, in most of the adsorption systems  
studied, the first-order model and in particular the Lagergren  
equation badly correlates the experimental values along the  
entire adsorption period and is rather generally applicable during  
the first 20 -30 minutes of the adsorption process [15].  
The calculated correlation coefficients are closer to unity for the  
pseudo-second-order kinetic model than for the pseudo-first-  
order kinetic model and the same for theoretical adsorption  
capacities that are closer to those obtained experimentally. This  
indicates that the experimental results of Cr (VI) adsorption on  
LC are well described by the second-order kinetic model.  
-
2-  
2-  
2-  
anionic in nature such as HCrO  
4
, Cr  
O
2 7  
, Cr  
3
O10 and Cr  
O
4 13  
,
and this for pH values ranging from 1.5 to 4 [14]. Thus, the  
biosorption involved in the present study seems to be mainly due  
to an electrostatic attraction phenomenon. In addition, the  
adsorption capacity recorded decreases with increasing pH.  
Indeed, the higher the pH, the more the solution is concentrated  
in free hydroxyl (OH-) radicals which are likely to compete with  
the anionic species of Cr (VI) on the active adsorption sites  
available on the surface of LC fibers. The same trend towards  
the influence of pH on Cr (VI) adsorption has also been reported  
for other biological matrices such as A. sydoni [29] and  
Rhizopus [30].  
3
.4 Influence of the amount of biomass  
Masses of 0.1 to 5 grams of LC were separately contacted  
0
0
.4  
.2  
0
with one liter of 50 mg per 100m L solution of Cr (VI) at pH 2.  
The results shows that the amount of chromium adsorbed at  
equilibrium increased. Significantly in the weight range  
examined. In addition, it is observed that the maximum retention  
is obtained for a mass of 20 grams of LC fibers per liter of  
solution (rate of adsorption 80% ) and the minimum retention is  
observed for a mass of 1 grams of LC (rate of adsorption 11% ).  
The increase in the retention rate of hexavalent chromium as a  
function of the increase in the biosorbant mass is mainly due to a  
consequent increase in the number of active sites of adsorption  
on the surface of the Mediterranean biomass.  
0
10  
20  
30  
40  
50  
-
0.2  
0.4  
-
-0.6  
0.8  
10ppm  
20ppm  
30ppm  
-
-
1
-1.2  
1.4  
4
0ppm  
-
T (min)  
60ppm  
3
.5 Biosorption Kinetics  
In order to study the biosorption kinetics of Cr (VI) on  
Figure 5:Pseudo-first order kinetic model for Cr (VI) biosorption onto  
LC  
crushed LC fibers, Lagergren's first-order and pseudo-second-  
order models were used for correlation with the experimental  
data. Lagergren's first-order equation [15] reads as follows:  
4
3
3
0
5
0
lꢁg(푞 ꢀ 푞 ) = lꢁg 푞 ꢀ 퐾 . ꢂ/2.303  
1
0ppm  
Or Qe and Qt (in mg / g) are the amounts of Cr (VI) adsorbed at  
equilibrium and at time t respectively, and K (min ) is the  
constant of the Lagergren model. From the log (Qe-Qt) versus t  
Figure 5 lines obtained for Cr (VI) biosorption on LC fibers, the  
-1  
25  
20  
15  
20ppm  
30ppm  
1
4
0ppm  
K
1
constant and the calculated amount of adsorbed Cr (VI)  
1
0
5
0
(
Qecal) were determined by slope and intersection at the y-axis,  
60ppm  
respectively (Table 3). It is clear that the Lagergren equation is  
not applicable in the case of LC retention on the studied medium  
in the range of the studied concentration. In addition, the low  
value of the correlation coefficient R² obtained for this model  
indicates the poor description of chromium fixation kinetics by  
LC. The expression of the second-order model is as follows  
0
20  
40  
T (min)  
60  
80  
Figure 6:Pseudo-second order kinetic model for Cr (VI) biosorption onto  
LC  
[16]:  
313  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 310-317  
3
.6 Biosorption isothermes  
be 0.6-0.146 for concentration of 10-90 mg/L of chromium.  
They are in the range of 0-1 which indicates the favorable  
biosorption. These estimated values of R , which are less than  
L
unity, clearly show favorable adsorption of Cr (VI) on LC.  
The Freundlich model, which gives an indication of the  
heterogeneity at the surface of the adsorbent [20], was applied to  
measure the adsorption capacity according to the following  
relation:  
The LC binding data are processed using the linear  
Langmuir, Freundlich, Temkin and Dubinin-Redushkevich  
equations. The purpose of this linearization is to be able to  
verify the model according to which the adsorption takes place  
and to deduce the maximum adsorbed quantities as well as the  
affinity of the adsorbate for the adsorbent. The concentration of  
chromuim in solution is monitored as a function of time, for the  
temperatures 283, 298 and 313 K.  
푞 = 퐾 퐶  
Table 3: Biosorption kinetic model parameters for Cr (VI) by  
LC  
F
where K and n are Freundlich constants related to adsorption  
capacity and adsorption intensity. The linear Figure 8form of the  
Freundlich equation can be written in a logarithmic form  
according to the following relation:  
Pseudo-first order  
Pseudo-second  
(g/(mg  
Chromium  
conc. (mg/L)  
qe  
mg/g)  
qe  
k
2
(min ) R2  
_1  
k
1
R2  
(
(mg/g)  
min))  
1
lꢁg qe = lꢁgK + lꢁg Ce  
F
1
2
3
4
6
0
0
0
0
0
0.23  
0.32  
0.71  
0.92  
1.41  
0.034  
0.029  
0.029  
0.036  
0.036  
0.929 0. 354  
0.306  
0.103  
0.072  
0.052  
0.997  
0.994  
0.994  
0.993  
n
0.864  
0.90  
0.95  
0.94  
0.94  
1.19  
1.92  
2.5  
F
The Freundlich constants K and n has been determined  
from the isotherms and their values are defined as per in Table 5  
for the three temperatures. These constants show their influence  
on temperature, by the fact that when the temperature increases,  
the values of 1 / n decrease which implies a decrease in  
adsorption intensity. We also note that the values of 1 / n are less  
than unity which indicates favorable adsorption. Since n lie  
between 1 and 10, this indicates the physical biosorption of Cr  
(VI) on LC.  
The Temkin isotherm assumes that the decrease in heat of  
adsorption is linear and that adsorption is characterized by a  
uniform distribution of binding energies. BL 'The linear form of  
the Temkin isotherm is as follows The linear form of the Temkin  
isotherm [21] and [22] is as follows:  
0.037 0 .993  
The Langmuir model makes it possible to determine whether  
a monolayer is adsorbed and whether there has been no  
interaction between the adsorbed molecules. The Langmuir  
equation is valid for only one adsorbed monolayer with a well  
defined number of adsorption sites uniform and energetically  
identical according to the following relation [19]:  
푒  
x  퐶ꢆ  
=
푒  
1 + 퐾 퐶ꢆ  
The above can be rewritten to the following linear form:  
푅푇  
qe = 푅푇ꢉꢊ 퐾 +  
ꢌꢊ 퐶푒  
퐶ꢇ  
1
퐶ꢇ  
+
푥  
ꢋ  
=
푒  
퐾 푞  
푚푎푥  
ꢍꢋ  
T
B = ꢏ  
where, qe is quantity of substance adsorbed on 1 g of luffa  
-1  
cylindrica (mg.g ). Qm is quantity necessary to cover the entire  
-1  
where b  
J/mol) and K  
constants n were obtained from plotting qe versus ln Ce. Values  
of b and K are listed in Table 5. The constant Temkin  
isotherm in Table 5 shows that the heat of adsorption (B  
T
is the Temkin constant related to heat of biosorption  
surface with a monolayer of adsorbed substance (mg.g ). Ce is  
(
T
is the Temkin isotherm constant (L/g). These  
-1  
concentration of chromuim in solution at equilibrium (mg L ).  
is Adsorption energy constant. In order to predict the  
efficiency of this adsorption process, dimensionless  
can be determined by the  
K
L
T
T
a
T
)
equilibrium parameter denoted R  
following equation:  
L
decreases with increasing temperature, indicating that the  
adsorption is exothermic. The Dubinin-Redushkevich isotherm  
(
D-R) is applied to determine the nature of the adsorption  
1
퐿  
=
mechanism based on the theory of potential, assuming that the  
surface of the adsorbent is heterogeneous. The linear form of the  
isotherm of (D-R) [23]:  
(
1 + KL C )  
where K  
concentration of chromuim ions. The value of separation  
parameter R provides important information about the nature of  
L
is the Langmuir constant and Co is the initial  
ꢉꢊ 푞 = ꢌꢊ 푞  훽ꢃ  
L
biosorption. The value of R  
isotherm to be irreversible (R  
(R = 1) or unfavorable (R >1). The correlation coefficients are  
L L  
high showing in data in figure 7 good linearity the maximum  
adsorption capacities (qmax =5.917 mg/g ) which are very close  
to those experimentally calculated and thus the values of R  
show the validity of the Langmuir model. The R was found to  
L
indicated the type of Langmuir  
=0), favorable (0< R < 1), linear  
-1  
with q  
d
(mol g ) is the theoretical monolayer saturation capacity  
L
L
of the adsorbent and ε is the Potential of Polanyi is given as  
follows:  
휀 = 푅푇ꢉꢊ ꢐ1 +  
L
ꢒ  
L
314  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 310-317  
-
1
-1  
∆푆ꢕ  
∆퐻ꢕ  
Being R is the gas constant (8.314 J.mol .K )) and T is the  
absolute temperature (K). The isothermal constants of qs and B  
(
ꢌꢊ 퐾 =  
ꢋ  
 = ∆ꢖ ꢀ푇∆ꢗ  
Table4) are obtained from the ordinate and the slope of the Ln  
2
2
qe curve as a function of ε , respectively. The constant B (mol  
푎푠  
푎푒  
푌푠  
푌푒  
ꢑ푠  
=
-2  
kJ ) gives the average free energy, E (kJ mol-1) of the  
adsorption per molecule of the adsorbate when it is transferred  
to the surface of the solid of the infinite in the solution and can  
be calculated using the following relationship. From the linear  
=  
=
ꢑ푒  
Kc is the adsorption equilibrium constant deduced from the  
slope of the graph Ln (Qe) as a function of Ce [25], R is the  
constant of perfect gases and T is the temperature in Kelvin. The  
calculations were carried out for a temperature range of 283-  
313K. The results are shown in Table 5. The negative value of  
(ΔH °) obtained indicates that the adsorption process of Cr (VI)  
is exodothermic in nature [26].  
d
plot of DubininRadushkevich (DR) model, q was determined  
to 2.5 mg/g, the mean free energy, E= 1.18KJ/mol indicating a  
physisorption process. From the data in Table 4, the curves  
illustrating the isotherms at 283, 298 and 313 K.show that the  
adsorption follows the Langmuir model, the experimental results  
can be correlated by the Langmuir equation and the correlation  
are close to unity.  
Table 4: Langmuir, Freundlicm, Temkin and D-R constants for  
Cr (VI) biosorption by LC  
Langmuir  
Freundlich  
Temkin  
D-R  
T°(K)  
q
max (mg/g)  
5.917  
5.494  
4.926  
k
l
(L/mg)  
0.0648  
R2  
1
1
2
0
8
6
4
2
0
2
83  
0.998  
0.998  
0.995  
298  
313  
0.05891  
0.05367  
1/n  
3
2
2
13  
2
K
F
(mg/l)  
R
98K  
83K  
283  
298  
313  
0.427  
0.2377  
0.25  
0.713  
0.703  
0.688  
0.992  
0.989  
0.981  
2
b
T
(J/ml)  
2770  
K
T
(L/g)  
R
Linear  
283  
0.9999  
0.9998  
0.9997  
B
4E-05  
3E-05  
3E-05  
0.961  
0.964  
0.939  
(313)  
2
3
98  
13  
2434.98  
2191.73  
2
q
d
(mg/g)  
2.15  
R
0
10  
20  
30  
40  
2
2
83  
98  
0.725  
0.787  
0.728  
Ce (mg/L)  
2.27  
2.37  
Figure7: Langmuir isotherm for Cr (VI)biosorption onto LC at pH2  
313  
This confirms the previously discussed results which  
showed a decreased retention by the elevation of the temperature  
of the solution. Also, the relative value of ΔH ° confirms the  
idea that the binding of the chromuim molecules to the luffa  
cylindrica. Is likely of a physical type. On the other hand, the  
value of (ΔS °) indicates the good affinity of the biosorbent with  
respect to the Cr (VI)ions and reflects the increase of the  
"disorder" factor at the level of the solid interface / solution with  
some possible structural changes of the adsorbate and the  
biosorbent during the adsorption process. Moreover, the  
negative values of (ΔG °) show that the adsorption process  
studied is spontaneous [27].  
0
0
0
0
.8  
.6  
.4  
.2  
0
3
13K  
298K  
2
83K  
2
0
0.5  
1
1.5  
-
-
-
0.2  
0.4  
0.6  
LOG (Ce)  
Table 5: Thermodynamic parameters of Cr (VI) biosorption onto  
LC at different T  
Figure 8: Freundlich isotherm for Cr (VI)biosorption onto LC at pH 2  
T (K)  
∆퐆° (kJ/mol)  
-5.347  
-5.035  
-4.72  
∆퐇°(kJ/mol) ∆퐒°(J/mol.K)  
3
.7 Thermodynamic study  
The thermodynamic parameters that shall be taken into  
2
2
3
83  
98  
13  
-11.293 -0.021  
consideration in order to qualify the adsorption processes are  
free energy of Gibbs or free adsorption enthalpy ΔG ° (kJ / mol)  
due to the transfer of one mole of solute from the solution to the  
solid / liquid interface, the adsorption enthalpy; ΔH ° (kJ / mol)  
as well as the adsorption entropy; ΔS ° (J / mol / K). These  
quantities were calculated according to the following equations  
The negative values of the standard enthalpy (ΔH °) (table 5)  
confirm that the adsorption of the chromium molecules at the  
sites of each adsorbent is of exothermic nature and which is also  
indicated by the increase of the adsorbed quantity with the  
decrease of the temperature, and that the molecule / particle  
interactions are of a physical nature.  
[24] and [25]:  
 = ꢀ푅푇ꢉꢊ퐾푐  
315  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 310-317  
4
5
.
.
Barkat M, Chegrouche S, Mellah A, Bensmain B, Nibou D,  
Boufatit M. Application of Algerian Bentonite in the Removal of  
Cadmium (II) and Chromium (VI) from Aqueous Solutions.Journal  
of Surface Engi-neered Materials and Advanced Technology.  
3
.8 Comparison of chromium biosorption with different  
Biosorbents  
The maximum adsorption capacity (qmax) is determined by  
the Langmuir model at 303k is compared with other low cost  
adsorbents (Table 6). These data show that Luffa cylindrica  
achieves good Cr (VI) adsorption results. Significant differences  
in the adsorption capacity of Cr (VI) ions can be attributed to  
adsorbent properties such as structure, functional groups and  
specific surface area. Cr (VI) adsorption on Luffa cylindrica can  
be considered as an effective and ecologically advantageous  
alternative.  
adsorption of chromium(VI) in industrial wastewater using low-cost  
Research .2002 ; 6(4),533-540.  
wastewater .Energy Procedia, 2012; 18,395403.  
7
.
Tanobe VOA, Sydenstricker THD, Munaro M, Amico SC. A  
comprehensive characterization of chemically treated Brazilian  
sponge-gourds (Luffa cylindrica). Polym Test .2005; 24(4), 474–  
Table 6: Adsorption capacity of Cr (IV) on various biosorbents  
Biosorbent  
A. sydoni  
Rhizopus  
Water lily  
Water hyacinth  
Green taro  
Mangrove leaves  
Luffa cylindrica  
4
82.  
q
max  
references  
8
.
Dang VBH, Doan HD, Dang-Vu T, Lohi A. Equilibrium and  
kinetics of biosorption of cadmium (II) and copper (II) ions by  
wheat straw. Bioresource Technology. 2009;100 (1), 211219.  
1.76  
4.33  
6.11  
6.61  
6.07  
6.54  
5.9  
[28]  
[29]  
[30]  
[30]  
[30]  
[30]  
This study  
9. Annija L, David R, Mark B, John C. Chromium Monitoring in  
Water by Colorimetry Using Optimised 1,5-Diphenylcarbazide  
Method. International Journal of Environmental Research and  
Public Health. 2019; 16(10), 1803-1818.  
10. Kalia S, Kumar A, Kaith B S. Sunn hemp cellulose graft  
copolymers polyhydroxybutyrate composites: morphological and  
mechanical studies . Advanced Material Letters. 2011; 2(1),17-25.  
4
Conclusion  
In the present research work, we have studied the  
1
1. Sanghavi B J, Srivastava AK, Adsorptive stripping voltammetric  
determination of imipramine, trimipramine and desipramine employing  
titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy  
carbon paste electrode .Analyst. 2013; 138 (5), 13951404.  
biosorption capacity of hexavalent chromium by Luffa  
Cylindrica fibers that are very available on the Mediterranean  
coast, L.cylindrica has been demonstrated that the adsorption  
capacity has equilibrium can be optimized by increasing the  
amount of biomass, decreasing the temperature, increasing and  
fixing the pH of the solution to a value of 2. Isothermal  
modeling has shown that the Langmuir model describes  
satisfactorily the present adsorption process. For thermodynamic  
parameters, analysis of the results showed that the adsorption of  
Cr (VI) on L.cylindrica is a spontaneous, exothermic and  
favorable phenomenon. On the other hand, the results of the  
kinetic study of the retention show that the chromium is really in  
conformity with a kinetics of the second order. This is clearly  
confirmed by the values of the correlation factors. Taking into  
account all the results provided by this study, the cheap and  
fairly available L.cylindrica fibers could be considered as a  
promising biological material to be used as an effective  
adsorbent for the removal of chromium. (VI) present in the  
liquid effluents.  
carbon electrode. Talanta. 2014; 120, 19.  
1
1
3. Sharma S, Pathania D, Singh P. Preparation, characterization and  
Cr(VI) adsorption behavior study of poly(acrylic acid) grafted Ficus  
carica bast fiber . Advanced Materials Letters. 2013; 4(4), 271-276.  
4. Donmez G, Aksu Z. Removal of chromium(VI) from saline  
wastewaters by. Dunaliella species. Process Biochemistry 2002, 38,  
751-762.  
15. Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe,  
Kungliga Svenska Vetenskapsakademiens. S. Handl, 1898; 24(4), 1-  
3
9.  
1
1
1
1
6. Ho YS, Was DAJ, Forster CF. Kinetic Studies of Competitive  
Heavy Metalby Sphagnum Moss Peat. Environmental Technology.  
1
996;17(1), 71-77.  
7. Mckay G, Ho YS. Pseudo-Second Order Model for Sorption  
Processes. Process Biochemistry.1999; 34, 451-465.  
8. Weber J, Morris JC. Kinetics of Adsorption o n Carbon from  
Solution. Journal of the Sanitary Engineering Division..1963; 18,  
Acknowledgments  
We gratefully acknowledge the university Amar Thelidji  
Algeria and university of USTHB for assistance and support of  
this work.  
3
1 - 42.  
2
2
0. Freundlich, H. Adsorption in solution Journal of the American  
Chemical Society. 1939; 615, 228.  
1. Aharoni A, Ungarish M. Kinetics of activated chemisorption part  
References  
1
.
Kumar U. Agricultural products and by-products as a low-cost  
adsorbent for heavy metal removal from water and waste-water: a  
review. Scientific research and essays. 2006;1(2):33-37.  
2
.
Theoretical  
models.  
The Journal of  
the Chemical  
Society, Faraday Transactions. 1977; 73,456464.  
2
2
2. Boparai HK, Joseph M, O’Carroll DM. Kinetics and  
thermodynamics of cadmium ion removal by adsorption onto nano  
zerovalent iron particles. Journal of Hazardous Materials.2011; 186,  
2
.
Tutic A , Novakovic S , Lutovac M, Biocanin R , Ketin S ,  
4
58465.  
3. Hustonn D, Yang RT. Theoretical basis for the Dubinin–  
Radushkevitch (DR) adsorption isotherm equation.  
Adsorption.1997; 3, 189195.  
3
.
Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S.  
Chromium toxicity in plants. Environment International.  
2
005;31:39-753.  
316  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 310-317  
2
4. Al-Anbar ZA, Matouq MAD. Batch adsorption of cadmiumions  
from aqueous solutions by means of olive cake. Journal  
of Hazardous Materials. 2008;151, 194201.  
2
2
2
5. Fu QL, Deng YL, Li HS, Liu J, Hua HQ, Chen SW, Sa TM..  
Equilibrium, kinetic and thermodynamic studies on the adsorption  
of the toxins of Bacillus thuringiensis subsp. kurstaki by clay  
minerals. Applied Surface Science. 2009; 255, 4551-4557.  
6. Su J, Hong-fu L, Qing-Ping W, Zheng-Miao X, Zuliang C.  
Equilibrium, kinetic and thermodynamic studies on the adsorption  
of the toxins of Bacillus thuringiensis subsp. kurstaki by clay  
minerals. Desalination.2011; 69, 163169.  
7. Canizares P, Carmona M, Baraza O, Delgado A, Rodrigo MA.  
Adsorption equilibrium of phenol onto chemically modified  
activated carbon F400. Journal of Hazardous Materials. 2006; 131,  
2
43248.  
2
3
8. Kumar R, Bishnoi NR, Garima KB. Biosorption of chromium(VI)  
from aqueous solution and electroplating wastewater using fungal  
soil. Bioresource Technology. 2007; 98(13), 25572561.  
0. Elangovan R, Philip L,Chandraraj K. Biosorption of hexavalent and  
trivalent chromium by palm flower (Borassus aethiopum) .  
The Chemical Engineering Journal. 2008 ; 141(1-3), 99-111.  
317