2020, Volume 9, Issue 1, Pages: 17-23  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)23  
Estimation of Metal Ions in Various Soil Samples in  
Relation to Crop Production (Wheat, Mustard,  
Barley) at Different Region of Dehradun India  
1
2
3
4
M. Amin Mir , Muhammad Waqar Ashraf , MMS Jassal , Maythem Mahmud  
1
Assistant Research Professor, Department of Mathematics & Natural Sciences, Prince Mohammad Bin Fahd University, AlKhobar, Saudi Arabia  
2
Dean Department of Mathematics & Natural Sciences, Prince Mohammad Bin Fahd University, AlKhobar, Saudi Arabia  
3
Assistant Professor DAV (PG) College Dehradun, India  
4Assistant Professor, Department of Mathematics & Natural Sciences, Prince Mohammad Bin Fahd University, AlKhobar, Saudi Arabia  
Received: 06/01/2020  
Accepted: 13/04/2020  
Published: 20/12/2020  
Abstract  
Metals in the form of salts or as such have a profound effect on development and growth of crops. Various soil samples at different  
regions of Dehradun (India) have been analysed analytically for the concentration of various metal ions in relation to the growth and  
development of wheat, mustard and barley. The various metal ions have been found in a good concentration range at which the concerned  
crops could show maximum growth and development. The concentration of various salts like phosphate ion as determined  
-
spectrophotometrically was found to be in between 0.732 to 1.610, for NO  
3
the concentration was found in between 0.210 to 0.998 mg/kg,  
2
-
and the concentration of NO  
2
was found to be 0.138 to 0.475 mg/kg. The metal ions were determined analytically and the concentration  
of various metals like Pb was found in the range of 0.101 - 0.265 mg/kg, Zn in the range of 0.047  0.175 mg/kg, Cu in the range of 0.015  
0.101 mg/kg and the concentration of Fe was found in the range of 0.120  0.462 mg/kg. Na, K, Li and Ba were analysed by flame-  
2+  
photometry and the concentration of Na was found in the range 0.10- 0.47 ppm, K in the range of 0.70  2.4 ppm, Li 0.00  0.01 ppm and  
the Ba in the range of 0.00  0.03 ppm. Also the data reveals the distributions of heavy metals in the agricultural land of the concerned  
region and can be used to estimate the risks associated with the consumption of crops grown on such soils. So the soil samples which have  
been examined can be opted for the production of various crops as the soil samples show a good quality and quantity of various mineral  
ions. The Dehradun in total bears a good range of forests and soil is rich of various types of mineral salts so could be used for the growth of  
multiple crops.  
Keywords: Metal Ions, Wheat, Mustard, Barley, Flame-photometry, Analytical  
1
concentration of various heavy metals is not confirmed in various  
1
Introduction  
soils, but land disposal of wastes in the soil effects the crop  
production due accumulation of heavy metals (5, 6). Livestock  
manure is a good organic fertilizer that contains all types of  
nutrients such as amino acids, nucleic acids, sugars, and  
vitamins, in addition is a good source of organic matter, nitrogen,  
phosphorus, potassium, and some micronutrients (1, 7). The soil  
fertility can be increased by recycling of livestock manure which  
leads to increase in the productivity of crops (2, 8) by improving  
the soil properties (9), enhancing the ability of nutrients and their  
retention (10), and by step to step improvement in the soil  
nutrients (11), which also leads to the availability of manure to  
plants (12).  
Presently the agricultural system the use of manures has  
attracted more attention for its sustainable development (13).  
Researchers have mentioned that together use of organic manure  
and chemical fertilizers could have more results for combating  
nutrient depletion and for crop production (14). Jiang et al. (15)  
mentioned that direct application of manure increases the crop  
Environment is sum total of surroundings within which  
humans exist. The environment is made up of: the land, the water  
and the atmosphere of the earth; microorganisms, plant and  
animal life. The combination of the items on this list and the  
interrelationships among and between them, the physical,  
chemical, aesthetic and cultural properties and conditions of the  
foregoing that influence the human health and well-being does  
come under the study of environment. The environment is also  
characterised by the number of spheres that influence its behavior  
and intrinsic value, among which the most important sphere is  
biosphere because it harbours the living organisms. This is the  
sphere where you find living organisms (plants and animals)  
interacting with each and their nonliving environment (soil, air  
and water).  
Metals in both in aquatic and terrestrial environment are  
important for the growth and development of all types of plants  
1, 2 & 3). However, at some locations the soil gets contaminated  
(
with various non-essential metals by humans (4). The toxic  
Corresponding author: M. Amin Mir, Assistant Research Professor, Department of Mathematics and Natural Sciences PMU University  
Al Khobar Kingdom of Saudi Arabia. E-mail: mohdaminmir@gmail.com, Telephone: +91-9897635334 and +966-506105478  
17  
Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 17-23  
production as well as improves the quality of the soil. Abbasi and  
Tahir (16) demonstrated that farmyard manure/poultry manure  
and also organic substrates either singly or in combined manner  
with other inorganic fertilizers shows more pronounced effects  
on wheat and barley production. Long-term use of organic  
fertilizers using manure or manure plus NPK fertilizer  
considerably increases the soil carbon content, inorganic  
nitrogen and sulphur content (17), and available P levels (11).  
The availability of Zn, Fe, and Mn in the soil has been found to  
increase the absorption of organic matter significantly (18). As  
placed in trays holding five rows of ten boxes each (boxes are  
2.5” x 3” x 3” deep), making a total of 06 samples. The soil  
samples were sieved and weighed each time, put in a beaker,  
3 2 2  
mixed with (6 ml HNO ) (3 ml HCl) (0.25 ml H O ) and then  
heated. The digested sample solution was diluted to 50 ml with  
de-ionized water and filtered through a 0.45 μm microporous  
membrane. Finally, 1.0 ml filtered solution was diluted to 10 mL  
for estimation of various salt ions.  
3
Results and Discussion  
The concentrations of various metals in soil and their impact  
2−  
2−  
anions in  
per reports, the presence of PO  
soil solutions leads to the precipitation of Zn  
4
, H  
2
PO  
4
, or HPO  
(PO with Zn ions,  
4
3
4 2  
)
on environment and society can be influenced by many factors,  
such as parent material, climate and anthropogenic activities  
thereby immobilizing Zn and decreasing the zinc content in the  
soil with increasing manure application (13,16). Ju et al. (19)  
showed that the average Cd concentration in soils where  
vegetables are grown was found 2.8 times higher than in soils  
where wheat-maize are grown in rotations which occurs mainly  
due to the excessive application of fertilizers and manures during  
greenhouse vegetable production in northeast China. Rezig et al.  
(
21). The metals can be added in various ways to soils as in the  
form of agricultural fertilizers and pesticides, soil amendments  
e.g., lime and gypsum), or organic fertilizers (e.g., manures and  
(
composts) (22). Correlation analysis between the soil heavy  
metals and fertility parameters may help to trace the levels of  
heavy metals in soil. The concentration of phosphate ion in  
various soil samples (both agricultural and forest) were found  
within the appreciable limit. Among all the agricultural soil  
samples the highest concentration was found in the soil sample  
collected from (GMS Road) followed by (Azad Colony). The  
least concentration of Phosphate was found present in the soil  
sample (Chanderbani). Among the forest soil samples the highest  
phosphate ion concentration was found in the (Tibetan Colony)  
followed by soil collected from Gujrara. The least concentration  
of phosphate ion among all the forest soil samples so for  
collected was found in the Kulhan. Although the phosphate ion  
concentration in both forest as well as agricultural soil samples  
run side by side, having less ion difference so for as observed.  
Among all the soil samples the agricultural soil samples were  
found to have higher phosphate ion concentration than the forest  
soil samples. The nitrate ion concentration was found highest  
(Mandi) followed by (Chanderbani). The least concentration of  
nitrate was found in the (Azad Colony). The nitrate ion  
concentration in the agricultural soil samples were found in  
between (0.210-0.998 mg/kg). The concentration of nitrite ion in  
various forest samples were found in a range (0.121 0.475 mg).  
The highest concentration of nitrite ion was found in the Danda  
of the region 1 followed by Kulhan. The least concentration of  
nitrite was found in the Gujrara of region 1. The nitrite ion  
concentration was found highest in the (Mandi) among all the  
agricultural soil samples, followed by Chanderbani. The least  
nitrite ion concentration was found in the Lalpull soil sample.  
(
17) showed that the recycling of carbon containing minerals,  
mostly bio-solids (e.g., livestock manures), should be conducted  
carefully in order to avoid the accumulation of toxic elements.  
Dong et al. (20) stated that manure are the main source of Cu,  
Zn, Cd, Ni, Pb, and Cr in a wheat-maize field soils in north China,  
where the composition accounts for about 86.1%, 83.8%, 76.6%,  
7
2.5%, 64.3%, and 46.3% of the total external input for these  
heavy metals, respectively.  
2
Materials and Methods  
2
.1 Study area and Soil Sampling  
The soil samples for the analysis of various metal ions were  
collected from two outer regions of Dehradun (ISBT Region and  
Sahasthdhara Region) in which different sites were taken into  
consideration. Sites from ISBT region include - ISBT Main,  
Chanderbani, GMS Road, Azad Colony, Kandoli, Lalpull, and  
sites from Sahasthdhara Region include - Kulhan, Tehrigaon, T.  
Colony, Gujrara, Danda, Mandi) (Figure 1). The soil samples  
were collected in the morning time in air tight bottles in  
desiccators under normal room temperature conditions.  
2
.2 Soil Sample Preparation  
The Soil samples were dried at 50°C in cardboard boxes. The  
dried soil samples were grounded by mortar and pestle and  
passed through a 12-mesh (approximately 2 mm) screen. The soil  
samples, at the time they were collected, were recorded and  
Figure 1: The map showing the area of sampling  
18  
Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 17-23  
The nitrite ion was found highest in the Tibetan Colony  
followed by Danda. The least nitrite ion was found in the Kandoli  
site of the soil sample. The concentration of nitrate in all the  
above samples shows within the range of its accessibility,  
although it is low, but other forms of nitrogen may account for  
the availability of nitrogen (23).  
Straight line Graph for the Estimation of Nitrate  
Ion  
0
.6  
0.5  
0.51  
0.46  
0
0
0
.4  
.3  
.2  
0.41  
0.36  
0.31  
0.26  
0
0
0
0
0
0
0
.7  
.6  
.5  
.4  
.3  
.2  
.1  
0
Straight Line Graph for the Estimation of  
Phosphate Ion  
0.21  
.17  
0
0.59  
0
.13  
2
0.53  
0.1  
0
0.09  
0.47  
0.41  
0
0.35  
0
1
3
4
5
6
0.29  
Conc. mg/l  
0.23  
Figure 4: Standard Graph for the estimation of Nitrate Ion  
0.17  
0.11  
0.05  
0
Graph Showing the Conc. of NO3-1 ion  
1
.2  
1
0
0.5  
1
1.5  
2
2.5  
0
.991  
0
.925  
0.915  
Conc. mg/l  
Figure 1: Standard Graph for the estimation of PO 2-  
0
.715  
0
0
0
0
.8  
.6  
.4  
.2  
0
0.678  
4
0.475  
Graph Showing the Conc. of PO42-  
1.1  
1
.2  
1
1.01  
0.981  
0.971  
0.91  
0.751  
0
0
0
0
.8  
.6  
.4  
.2  
0
Soil Samples  
ion in Various Soil Samples at Region 1  
Figure 5: NO 1-  
3
Graph Showing the Conc. of NO3-1 ion  
1
0
.2  
0.998  
1
0.801  
0.81  
0
.71  
.8  
Soil Samples  
-
ion in Various Soil Samples at Region 1  
2
Figure 2: PO  
4
0.6  
.4  
0.401  
0
0.21  
Graph Showing Conc of PO42-  
0.2  
0
1
.8  
.6  
.4  
.2  
1
.8  
.6  
.4  
.2  
0
1.61  
Kulhan Tehrigaon T. Colony Gujrara  
Danda Kandoli  
1
1
1
1
.11  
0
.971  
Soil Samples  
0
.91  
0.824  
0
.732  
1-  
Figure 6: NO  
3
ion in Various Soil Samples at Region 2  
0
0
0
0
0.4  
.35  
.3  
Straight line Graph for Nitrite Ion  
Determination  
0
0
0
0
0.341  
0.311  
Kulhan Tehrigaon T. Colony Gujrara  
Danda  
Kandoli  
0
0.283  
Soil Samples  
.25  
0.2  
.15  
0.251  
0
.219  
2-  
4
ion in Various Soil Samples at Region 2  
0.191  
Figure 3: PO  
0.157  
0.127  
0
.1  
0.095  
0.064  
.05  
0
0
0
1
2
3
Conc. mg/l  
Figure 7: Standard Graph for the estimation of Nitrite Ion  
4
5
6
19  
Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 17-23  
Graph Showing the Conc. of Pb2+  
Graph showing the Conc. of NO22-  
0.45  
0.3  
.25  
0
.5  
.45  
.4  
.35  
.3  
.25  
.2  
.15  
0.445  
0.25  
0.245  
0
0
0
0
0
0
0
0
0.221  
0
0.31  
0.198  
0
.2  
.15  
.1  
0
0.21  
0
0.13  
0.14  
0.101  
0.087  
0
0
.05  
0
.1  
.05  
0
Kulhan Tehrigaon T. Colony Gujrara  
Danda Kandoli  
Soil Samples  
Soil Samples  
ion in Various Soil Samples at Region 1  
-
2-  
Figure 8: NO  
2
Figure 12: Pb ion in Various Soil Samples at Region 2  
Graph Showing the Conc. of NO22-  
Straight Graph for the Estimation of Zinc  
0
.3  
0.475  
0
.5  
.45  
.4  
.35  
.3  
.25  
.2  
.15  
.1  
0.285  
0
0.257  
0
.25  
0.2  
0
0.229  
0
0
0
0
0.301  
0
.29  
0.199  
0
0
.169  
0.201  
0.15  
0.1  
0.139  
0
0.138  
0.121  
0.112  
0
.082  
0
0
.05  
0
0.055  
.05  
0
0
.027  
Kulhan Tehrigaon T. Colony Gujrara Danda Kandoli  
0
0
2
4
6
Conc. mg/l  
8
10  
12  
Soil Samples  
-
Figure 9: NO  
2
ion in Various Soil Samples at Region 2  
Figure 13: Standard Graph for the estimation of Zinc  
Straight line graph for the Estimation of Lead  
Graph Showing the Conc. of Zn ion  
0.125  
0
0
0
0
.35  
.3  
.25  
.2  
.15  
.1  
0
.14  
0
0.111  
0.287  
0.12  
0.1  
0.08  
0.101  
0.095  
0.259  
.236  
0.083  
0
.209  
0
0
0.181  
0.051  
0
0
.06  
.04  
0.151  
0.119  
0
0.02  
0
0.089  
0.059  
.05  
0
0
.031  
0
0
0.5  
1
1.5  
2
2.5  
Conc. mg/l  
Soil Sample  
Figure 10: Standard Graph for the estimation of Lead  
Figure 14: Zn2- ion in Various Soil Samples at Region 1  
Graph Showing the Conc. of Pb2+  
0.265  
.25  
Graph Showing the Conc. of Zn ion  
0
.3  
.25  
.2  
.15  
.1  
0.2  
.18  
0.16  
0.175  
0
0
0.151  
0
0
0
0.217  
0.221  
0.141  
0.21  
0
0
.14  
.12  
0.1  
0.115  
0
0.071  
0.091  
0.08  
0
0.047  
0
0
0
.06  
.04  
.02  
0
.05  
0
Kulhan Tehrigaon T. Colony Gujrara  
Danda  
Kandoli  
Soil Samples  
Figure 11: Pb2- ion in Various Soil Samples at Region 1  
Soil Samples  
Figure 15: Zn2- ion in Various Soil Samples at Region 2  
20  
Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 17-23  
Straight line Graph for the Estimation of  
Copper  
Straight line Graph for the Estimation of Iron  
0
0
0
.25  
.2  
.15  
.1  
0.3  
.25  
0
.223  
0
0
0
0.202  
0.242  
0.182  
0.219  
0.198  
0
.2  
.15  
.1  
0.161  
0.141  
0.174  
0.12  
0.149  
0.126  
0
0.099  
.079  
0
0.099  
0.075  
0
0.058  
.05  
0
0.039  
0.05  
0
0.049  
0.025  
0
0
0
1
2
3
Conc. mg/l  
4
5
6
0
1
2
3
4
5
6
Conc. mg/l  
Figure 16: Standard Graph for the estimation of Copper  
Figure 19: Standard Graph for the estimation of Fe  
Graph Showing the Conc. of Cu ion  
Graph Showing Conc. of Iron Ion  
0
.12  
0.46  
0.45  
0
.5  
0.45  
.4  
0.35  
.3  
.25  
.2  
0.101  
0
.095  
0
.1  
0.39  
0.087  
0
0.078  
0
.08  
.06  
.04  
.02  
0
0
0
0
0
0.21  
0
0
0
0.18  
0
0.034  
0.12  
.15  
0.1  
.05  
0
0.015  
Soil Samples  
Soil Samples  
Figure 17: Cu2- ion in Various Soil Samples at Region 1  
Figure 20: Fe ion in Various Soil Samples at Region 1  
Graph Showing The Conc. of Cu ion  
Graph Showing the Conc. of Iron ion  
0
.45  
0.4  
0.4  
0.39  
0
.12  
.1  
0.101  
0.093  
0
0.088  
0.35  
.3  
.25  
.2  
.15  
.1  
0.081  
0
0.069  
0
0
0
0
.08  
.06  
.04  
.02  
0
0
0
0
0.2  
0.19  
0
0
.035  
0.13  
0.13  
0
.05  
0
Kulhan Tehrigaon T. Colony Gujrara  
Danda  
Kandoli  
Soil Samples  
Soil Samples  
Figure 18: Cu2- ion in Various Soil Samples at Region 2  
Figure 21: Fe ion in Various Soil Samples at Region 2  
Bar Graph Showing the Conc. of Various Metal Ions  
Na  
K
Li  
Ba  
2
1
0
.5  
1
.5  
0
ISBT Main  
Chanderbani  
GMS Road  
Soil Samples  
Figure 22: Showing the concentration of (Na, K, Li, Ba) in various soil samples of Region1  
Azad Colony  
Mandi  
Lalpull  
21  
Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 17-23  
Bar Graph Showing the Conc. of Various Metal Ions  
Na  
K
Li  
Ba  
2
1
0
.5  
1
.5  
0
Kulhan  
Tehrigaon  
Tibetian Colony  
Gujrara  
Danda  
Kandoli  
Soil Samples  
Figure 23: Showing the concentration of (Na, K, Li, Ba) in various soil samples of Region 2  
The lead ion was found highest in the GMS road soil sample  
followed by the Chanderbani. The least lead ion concentration  
was found in the Lalpull. The lead ion concentration was found  
in the range (0.087  0.250 mg/kg). The highest lead ion  
concentration was found in the Tibetan Colony. The least ion  
concentration was found in the Kandoli forest soil samples. Cu  
and Zn are among the most abundant metals in wheat and other  
grains, as they are the essential micronutrients for plants (24).  
The concentration of zinc and Cu in the concerned soil samples  
is much abundant for the cultivation of various crops, like wheat  
barley etc. ion in various agricultural soil samples were found in  
the range (1.8  3.7mg). The highest zinc ion was found in the  
Azad Colony and the least ion was found in the Chanderbani. The  
least zinc ion concentration was found in Kulhan soil sample.  
The copper ion concentration in various soil samples were found  
in the range (0.035-0.161mg/kg), the highest being found in the  
Azad Colony followed by Danda. Among the two regions the  
highest concentration of copper ion was found in the region 1 soil  
samples. According to Campbell (25), the concentration of Fe in  
of soil properties provided by long-term soil testing is useful for  
determining the effectiveness of fertilizer management strategies  
in maintaining soil fertility and sustainable agricultural  
productivity. Soil testing is also a useful tool for identifying the  
causes of nutrient related plant growth problems. In conclusion  
it could be concluded that all the salt minerals and the metals are  
under suitable range for the optimal growth of maize barley and  
wheat. So the soil samples which have been examined can be  
opted for the production of various crops as the soil samples  
show a good quality and quantity of various mineral ions. The  
Dehradun in total bears a good range of forests and soil is rich of  
various types of mineral salts so could be used for the growth of  
multiple crops.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission, and  
manipulation of figures, competing interests and compliance  
with policies on research ethics. Authors adhere to publication  
requirements that submitted work is original and has not been  
published elsewhere in any language.  
1
wheat grown soil is 25 mg kg , and the higher concentration  
range for Fe in wheat growing soil in grain-filling stage is 30–  
2
00 mg kg1. The results obtained in our study get aligned with  
the above results. The iron content in the soil samples was found  
in the range (0.120 0.462), the highest iron content being found  
in the Lalpull site, followed by Mandi. The least concentration of  
iron was found in the Chanderbani soil site. The iron content  
among the soil samples of region 2 was found highest in the  
Kulhan, followed by Danda. The least iron content was found in  
the Tehrigaon. The concentration of potassium was found  
marginally high in all the soil samples, followed by sodium ion.  
The lithium and barium content were found present in few soil  
samples.  
Considering that toxic heavy metals carried by food causes  
many related health effects in human, few studies have  
recommended dietary supplements for people at risk of Cd and  
Pb exposure (26). High concentration of heavy metals in  
vegetables gets transferred to food wed and cause serious health  
issues to humans. Metals (e.g., Zn, Cd, Pb and Cu) causes  
mutagenesis and other diseases, as carcinogenesis, immune  
system weakness, also inhibit growth and fertility (27, 28, and  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
References  
1
2
3
.
.
.
Lepp, N.W. 1981; Effects of Heavy Metals on Plants. Vol. I and II,  
Applied Science, London.  
Alloway, B.J. 1995; Heavy Metals in Soils. Blackie Academic and  
Professional, Glasgow.  
Hall, J.L. and L.E. Williams. 2003; Transition metal transporters in  
plants. J. Expt. Bot., 54: 2601- 2613.  
4. Naidu, R., R.S. Kookuna, D.P. Oliver, S. Rogers and M.J.  
McLaughlin. 1996; Contaminants and the soil environment in the  
Australasia-Pacific Region, Dordrecht Kluwer Acad. Publ.  
2
9).  
5
.
Nriagu, JO, and JM, Pacyna. Quantitative assessment of worldwide  
contamination of air, water and soil by trace-metals. Nature, 1988;  
5
Conclusion  
3
33: 134-139.  
Soil analysis provides complete information about the  
6
.
Younas, M. and F. Shahzad. Assessment of Cd, Ni, Cu, and Pb  
pollution in Lahore, Pakistan. Environ. Intern. 1998; 24: 761-766.  
importance of maximizing nutrient use efficiency and  
agricultural productivity. Soil plays a central role in food safety  
as it determines the possible composition of food and feed at the  
root of the food chain. However, the quality of soil resources as  
defined by their potential impact on human health by propagation  
7. Berry PM, Stockdale EA, Sylvester-Bradle. N, P and K budgets for  
crop rotations on nine organic farms in the UK. Soil Use and  
Management. 2003; 19: 112118. doi: 10.1079/sum2003176  
8
.
George S, Wright DL, Marois J J. Impact of grazing on soil  
properties and cotton yield in an integrated crop-livestock system.  
of harmful elements through the food chain. A historical record  
22  
Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 17-23  
Soil  
&
Tillage Research. 2013; 132: 4755. doi:  
28. Alonso ML, Benedito JL, Miranda M, Castillo C, Hernández J,  
Shore RF. Interactions between toxic and essential trace metals in  
cattle from a region with low levels of pollution. Contamination and  
Toxicology. 2002; 42(2):165172.  
29. Mahajan VE, Yadav RR, Dakshinkar NP, Dhoot VM, Bhojane GR,  
Naik MK, Shrivastava P, Naoghare PK, Krishnamurthi K Influence  
of mercury from fly ash on cattle reared nearby thermal power plant.  
Environmental Monitoring and Assessment. 2012; 184(12):7365–  
7372.  
1
0.1016/j.still.2013.05.004  
9
1
1
.
Mac Rae RJ, Mehuys GR. The effect of green manuring on the  
physical properties of temperate-area soils. Advances in Soil  
Science. 1985; 3: 7194. doi: 10.1007/978-1-4612-5090-6_2  
0. Drinkwater LE, Wagoner P, Sarrantonio M. Legume-based cropping  
systems have reduced carbon and nitrogen losses. Nature. 1998; 396:  
2
62265. doi: 10.1038/24376  
1. Rezig FAM, Mubarak AR, Ehadi EA. Impact of organic residues and  
mineral fertilizer application on soil-crop system: II soil attributes.  
Archives of Agronomy and Soil Science. 2013; 59: 12451261.  
doi:10.1080/03650340.2012.709623  
1
2. Rutkowska B, Szulc W, Sosulski T, Stepien W. Soil micronutrient  
availability to crops affected by long term inorganic and organic  
fertilizer applications. Plant Soil and Environment. 2014; 60: 198–  
2
03.  
1
1
3. Zhang FS, Chen XP, Ma WQ. Discussion on fertilizer in an area of  
modern agriculture. Phosphate Compound Fertilizer. 2003; 18: 13.  
4. Paul G C, Mannan M A. Integrated nutrient management in  
sugarcane to enhance sugar productivity. In: Proceedings,  
International Symposium on Technologies to Improve Sugar  
Productivity in Developing Countries. Guilin: People’s Republic of  
China; pp. 108121.  
1
1
1
1
5. Jiang D, Hengsdijk H, Dai TB, de Boer W, Qi J, Cao WX. Long-  
term effects of manure and inorganic fertilizers on yield and soil  
fertility for a winter wheat-maize system in Jiangsu, China.  
Pedosphere. 2006; 16: 2532. doi: 10.1016/s1002-0160(06)60022-2  
6. Abbasi MK, Tahir MM. Economizing nitrogen fertilizer in wheat  
through combinations with organic manures in Kashmir, Pakistan.  
Agronomy  
Journal.  
2012;  
104:  
169177.  
doi:  
1
0.2134/agronj2011.0264.  
7. Li BY, Zhou DM, Cang L, Zhang HL, Fan XH, Qin SW. Soil  
micronutrient availability to crops as affected by long-term inorganic  
and organic fertilizer applications. Soil & Tillage Research. 2007;  
9
6: 166173. doi: 10.1016/j.still.2007.05.005  
8. Ai C, Liang GQ, Sun JW, Wang XB, Zhou W. Responses of  
extracellular enzyme activities and microbial community in both the  
rhizosphere and bulk soil to long-term fertilization practices in a  
fluvo-aquic soil. Geoderma. 2012; 173: 330338. doi:  
1
0.1016/j.geoderma.2011.07.020  
1
2
9. Ju XT, Kou CL, Christie P, Dou ZX, Zhang FS. Changes in the soil  
environment from excessive application of fertilizers and manures to  
two contrasting intensive cropping systems on the North China  
Plain. Environmental Pollution. 2007; 145: 497506. doi:  
1
0.1016/j.envpol.2006.04.017 PMID: 16777292  
0. Dong TX, Yang HX, Li HF, Qiao YH, Su DS. Accumulation  
Characteristics of Heavy Metals in the Soil with Wheat-corn  
Rotation System in North China. Journal of Agricultural Resources  
and Environment. 2014; 4:355365. doi: 10.13254/j.jare.2014.0131  
1. Zarcinas BA, Ishak, CF, McLaughlin, MJ. Cozens, G. Heavy metals  
in soils and crops in southeast Asia. 1. Peninsular Malaysia. Environ.  
Geochem. Health. 2004; 26: 343-357.  
2. Petrikova V, Ustjak, S. Roth, J. Heavy-metals contamination of  
agricultural crops and soils in 5 regions of the czech-republic with  
different immission pollution load. Rostlinna Vyroba. 1995; 41: 17-  
2
2
2
3.  
2
3. Bagshaw J, Moody P, and Pattison T. Soil health for vegetable  
production in AustraliaPart 4: Measuring soil health. The State of  
Queensland, Department of Employment, Economic Development  
and Innovation, 2010.  
2
2
2
2
4. Sridhara Chary, N. Kamala, CT, Samuel Raj. Assessing risk of heavy  
metals from consuming food grown on sewage irrigated soils and  
food chain transfer. Ecotoxicol. Environ. Safety. 2008; 69; 513-524.  
5. Udom BE, Mbagwu JSC, Adesodun, JK Agbim. N. N. Distributions  
of zinc, copper, cadmium and lead in a tropical ultisol after long-  
term disposal of sewage sludge. Environ. Int. 2004; 30:467-470.  
6. Zhai Q, Narbad A, Chen W. Dietary Strategies for the Treatment of  
Cadmium and Lead Toxicity Nutrients. 2015; 7(1):552-571.  
doi:10.3390/nu7010552.  
7. Swarup D, Dwivedi SK. Environmental pollu-tion and effects of lead  
and fluoride on animal health. New Delhi: Indian Council of  
Agricultural Research. 2002; 160p.  
23