Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 24-32  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)32  
Evalouation of Styrene Acrylo Nitrile (SAN),  
Butadiene Rubber (BR), Nano-silica (Nano SiO2)  
Blend and Nanocomposite in the Presence of  
Oxoperoxidant Study  
1
2
1
3
Nooredin Goudarzian , Soheil Samiei , Fatemeh Safari , Seyyed Mojtaba Mousavi , Seyyed  
4
5
Alireza Hashemi , Sargol Mazraedoost  
1
Department of Applied Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran  
Department of Applied Polymer, Shiraz Branch, Islamic Azad University, Darab, Iran  
2
3
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan  
4
Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore,  
5
Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. 71348-14336  
Received: 13/07/2020  
Accepted: 20/09/2020  
Published: 09/10/2020  
Abstract  
Polymer-nanosilica composite was prepared using Silica nanoparticles as reinforcing fillers in Styrene Acrylo Nitrile (SAN).  
Copolymer Styrene Acrylo Nitrile (SAN) is such warm, soft, clear resins that because of having suitable Physical and mechanical  
properties, have good resistance against chemical also low solvent and cost toward another copolymer styrene that caused to be in a  
category of much used of them. The effect of increasing nano-silica loadings on the mechanical properties of BR nanocomposites was  
also studied. Its defect is its fragility that, with its alloying with Butadiene Rubber, prevents its fragility. Basically, with adding inorganic  
Nano bits, changed strength and modulus of elasticity of plastics while increasing Nano bits decrease the strength of the hit. In this study,  
copolymer Styrene Acrylo Nitrile considered as a matrix and for increasing mechanical qualities used Nano bits silica diacid. Results of  
automated tests (XRD), (TGA), (HDT), and (SEM) were a sign of improvement of mechanical and thermal qualities. Nowadays, due to  
using lots of plastics in various industries, this probability exists that destroyed whit being exposed to direct solar radiation. So light  
destroyed plastics are very important. In this project whit using Oxoperoxidant blend prepared with the ability of light destruction, so  
that after one and three months, results show to destroy its lights.  
Keyword: Permeability, Oxoperoxidant, Styrene Acrylo Nitrile, Degradation  
1
have been attracting some scientific interest as well due to the  
1
Introduction  
advantage of the low cost of production and in the high-  
performance features. Studies on nano-silica dispersions in  
polymer matrices like poly(methyl methacrylate) (6-8),  
polyethylene (9), and poly (ethylene oxide- 600) (10), were  
reported. Studies were reported on polymer nanocomposites  
based on silica and polymers like poly (vinyl alcohol) (11), poly  
In the last decade, polymer nano-composites have drawn  
significant interest from both industry & academia because  
they often exhibit remarkable improvements in material  
properties at a very fine level with very low nanofiller loading  
when compared to pristine polymer or conventional  
composites. Polymer nanocomposites are a particular class of  
polymer composites, a type of reinforced polymer having a  
two-phase material with the reinforcing phase having at least  
one dimension in the 10-9 m (nm) scale. It constitutes a new  
class of material having nano-scale dispersion, typically 1-100  
nm, of the filler phase in a given matrix. The outstanding  
reinforcement of nano-composites is primarily attributed to the  
large interfacial area per unit volume or weight of the dispersed  
phase (e.g., 750 m2/g). Silica is an abundant compound over  
the earth largely employed in industries to produce silica gels,  
colloidal silica, fumed silica, and so on (1). The nano-sized  
silica particles are unusual because they are applied in  
emerging areas like medicine and drug delivery etc. Silica  
nanoparticles have been used in the industry to reinforce the  
elastomers as a rheological solute (2-5). Silica nanocomposites  
(
vinyl pyrrolidone), and chitosan. The mechanical and thermal  
properties of polymer nanocomposites were found to be  
enhanced compared to the pristine polymers. Acrylonitrile-  
Butadiene Rubber (NBR), is a synthetic Rubber, the most  
widely used rubber in automobiles components such as fuel  
hoses, gaskets, rollers, and other products in which oil  
resistance is required along with heat resistance properties (12-  
14). Rubbers are reinforced with fillers to improve their  
performance by incorporating materials of conventional fillers  
such as carbon blacks, silica, clay, talc and calcium carbonate,  
etc. In recent trends, Rubber Nanocomposites made out of  
nanofillers were found to exhibit remarkable property  
enhancements compared to conventional micro composites  
(
15-18). Polymer nanocomposites with layered silicates which  
Corresponding author: Seyyed Mojtaba Mousavi, Department of Chemical Engineering, National Taiwan University of Science and  
Technology, Taiwan. Email: kempo.smm@gmail.com.  
24  
Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 24-32  
are made using typical fillers, (19-21) and carbon nanotubes  
had attracted significant interest in the improvement of  
structural properties and the development of new materials  
having different functional properties (22-25). Sadhu and  
Bhowmick reported the effect of acrylo-nitrile content on the  
mechanical, dynamic mechanical and rheological properties of  
the nano composite. The Role of Organic modifier used with  
montmorrilite on the formation of nanocomposite in melt  
compounding process has been studied by Kim and White.  
Rajkumar et al studied the effect of liquid NBR as dispersion  
media for dispersing nanographite in NBR matrix and  
consequently, polymer nano- composites were found to  
improve its thermal stability (26-31). In the current studies,  
Styrene Acrylo Nitrile (SAN), Butadiene Rubber (BR), was  
used as dispersion media to disperse the nanosilica in polymer  
matrix using conventional mixing techniques. SAN -Nanosilica  
based Nanocomposites were prepared using BR as dispersion  
media and conventional mixing processes. The effect of  
Nanosilica on mechanical and thermal and photo degradation  
properties of polymer nanocomposites was studied. The  
dispersion of the silica nano particle in the polymer matrix was  
studied using scanning electron microscopy [SEM] combined  
with FTIR. The effect of an increase in nano-silica loadings on  
the physical properties like tensile strength, modulus and  
Elongation at break, retention properties after air ageing were  
studied and momentous changes were found in the properties  
of SAN/ (BR) polymer nanocomposite (32-37).  
removing. Adding nano sio  
2
and using an Oxoperoxidant blend  
into SAN, BR combination. To evaluate the biodegradation of  
composites, Oxoperoxidant mixture, and nano-particles with  
different amounts were added into the SAN-BR sample, and the  
samples were prepared. Weight percentages combinations of  
the prepared samples are presented, as shown in Table 1.  
The test specimens, i.e., dumbbell specimens, punched out  
from the compression molded sheet using Die Cas per ASTM  
D 412 and utilized for determining physicomechanical  
properties at the cross-head rate of 500 mm per minute using a  
universal testing machine (UTM, Zwick 1445). The aging  
studies were carried out. Evaluate the physical and mechanical  
properties of all samples with the following conditions, for  
tensile and impact testing standard for injection (see fig. 2).  
3
Results and Discussion  
3
3
.1 Mechanical properties test results  
.1.1 Investigating the effect of SAN/BR/nano sio  
2
/Oxo/on  
mechanical properties  
The mechanical properties of the films depend on  
intermolecular forces of their polymeric manufacturer chains,  
the nature of the polymer, fillers, and process conditions. The  
mechanical properties of pure SAN/BR and SAN/BR/nano  
2
sio /Oxo suspension are shown in. Moreover, in Figures3 and  
. these results were compared with each other. As can be seen  
5
in Figure.5, with the presence of SAN with coupler agent BR,  
the tensile strength of sample B has increased in comparison  
with sample A. Generally; SAN/BR are non-polar polymer and  
polar copolymer respectively. Their mixture in any weight  
percentage can cause the formation of two-phase morphology.  
This phenomenon indicates that the SAN/BR are immiscible.  
However, with an increase in tensile strength, it seems that BR  
caused an increase incompatibility between two phases and  
strengthened the joint surface interactions. with an increase in  
the interface, the stress transfer to the minor stage  
2
Materials and Methods  
Butadiene Rubber (BR JSR -230), Styrene Acrylo Nitrile  
(
SAN), Nano-silica powder obtained from Nanoshell USA,  
Styrene acrylonitrile (SAN), (SAN w1540) was supplied by  
Iran Petro Chemical Co., Ltd. (Iran), [MFR =50 g/10 min (200  
3
°C  
/21.6 Kg),  
Density  
=
1.04 g/cm ]  
and  
Styrene/Butadiene/Styrene (SBS) was supplied by A mole  
Plastic, Co, Ltd. Iran. Casein is a commercial material; it was  
brought from local suppliers and used as received, nano-silica  
used in this study is commercially available as fine amorphous,  
nonporous and typically spherical particles, white color,  
specific gravity 1.12, p the size of nano-silica particles was  
determined by solving them in an ethylene glycol solvent. The  
size of the nanoparticles is determined to be 61.5 nm. Figure 1  
depicts the diagram of the nanoparticle size (PSA) of the  
nanoparticles.  
2
SAN/BR/nano SiO /Oxo occurred more convenient during the  
process and caused its uniform distribution in the context of a  
matrix. On the other hand, very high BR adhesion can act as a  
crosslinking agent. Therefore, by applying external tension,  
concentrated stress on the BR can cause stress ,loss, and avoid  
the creation of stress concentration areas on holes and cracks.  
Also, as can be seen in Figure 5, elongation in sample B has  
decreased poorly, which is due to the high adhesion force of BR  
and its strong interaction with SAN. It seems that this strong  
interaction and surface adhesion did not let the polymer chains  
move and caused a decrease in elongation. Moreover, as can be  
seen in Figure5, the amount of Tensile strength and elongation  
of samples has decreased in comparison with sample 3% nano  
2
sio that is due to the nature of BR that has a less modulus than  
SAN.  
350  
300  
250  
Figure 1: It depicts the diagram of nanoparticle size (PSA) of the  
nanoparticles  
200  
1
50  
00  
In the first step, the combination of Styrene Acrylonitrile  
SAN) and Butadiene Rubber /nano sio and using the  
2
1
(
50  
Oxoperoxidant blend was manually mixed to prepare samples.  
The materials mentioned above percentages combination  
mixed in a bag by hand to compare the effect of SAN and BR  
over the impact and flexibility of the SAN, and because the  
materials were new and fully packed was delivered from the  
manufacturing factory, there was no need to dewatering and gas  
0
0
1
2
3
4
Nano SiO )%(  
2
Figure 3: Diagram of the impact index of samples containing different  
weight percentage nano sio %  
2
25  
Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 24-32  
Table 1: Formulation for preparation of SAN/BR  Nano-composites  
Sample  
SAN (%)  
BR (%)  
N (%)  
OXO (%)  
SAN/BR  
95  
90  
80  
5
-
-
-
-
-
-
SAN/BR(A)  
SAN/BR(B)  
SAN/BR(C)  
SAN/BR(D)  
SAN/BR 0% N (E)  
10  
20  
70  
30  
-
-
60  
40  
-
-
79  
20  
1
3
-
-
(
F) /N 20% SAN/BR  
77  
79.6  
79.2  
20  
19.9  
19.8  
-
0.5  
1
SAN/BR/OXO0.5(G)  
SAN/BR/OXO1(H)  
SAN/BR/OXO2(L)  
-
78.4  
19.6  
-
2
Figure 2: Steps of the manufacturing method, also in step 1, numbers 1-10 shows 1-engine, 2-feeder, 3-cooling jacket, 4-thermocouple, 5-screw  
Table 2: Terms of molding, injection, molding blends injection  
Rate Injection  
Process Temperature  
°C)  
Mold Temperature  
(°C)  
Pressure injection  
(Mpa)  
Samples  
풎풎  
(
( 풔  
)
SAN/BR  
180-220  
40  
25-35  
15  
/
N0 SAN/BR  
180-230  
180-220  
50  
40  
30-40  
25-35  
15  
15  
OXO//N0 SAN/BR  
26  
Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 24-32  
measured .The above figure shows the results of samples'  
thermal stability containing various percentage combinations  
of elastomer polyolefin.  
4
3
3
2
2
1
1
00  
50  
00  
50  
00  
50  
00  
4
3
2
1
.5  
3
.5  
2
5
0
.5  
1
0
0
20  
BR )%(  
40  
60  
0.5  
0
Figure 4: Diagram of the impact index of samples containing  
different weight percentage BR%  
0
1
2
3
4
(
%) Nano SiO2  
Figure 7: Diagram of the melt flow index of samples containing  
different weight percentage nano sio  
Tensile strength (Mpa)
ا  
Elongation (%)  
2
1
00  
By observing the obtained results form (see fig 6 and7)  
diagram it can be concluded that by rising SAN/BR/nano  
sio /Oxo percentage the amount of Hank elastomeric materials  
2
in the sample increases and consequently, the fluency decreases  
and the viscosity also increases thus resulting, melt flow index  
reduces.  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
120  
SAN/BR20/N1  
SAN/BR20  
100  
0
1
2
3
4
80  
Nano SiO )%(  
2
Figure 5: Diagram of the Tensile strength and elongation index of  
samples containing different weight percentage nano SiO  
2
60  
8
7
6
5
4
3
2
1
0
4
0
20  
0
0
200  
400  
600  
800  
Temperature (°C)  
Figure 8: Diagram of Thermal Stability of Blend by TGA  
Thermal resistance with 1,3% nanoparticles of weight  
increase of SAN/BR/nano sio /Oxo matrix has increased that  
was due to the formation of the network in the SAN/BR matrix.  
With the further increase in the percentage of nano sio /Oxo in  
combination the degradation is shifted to lower temperatures  
that are due to reduction of percentage combination of SAN/BR  
in other words, the decreasing in percentage composition of the  
C-N functional group and In fact, by increasing Acrylonitrile  
group, alloy’s thermal resistance rises. Also, according to the  
2
0
10  
20  
%) BR  
30  
40  
50  
2
(
Figure 6: Diagram of the melt flow index of samples containing  
different weight percentage Nano BR  
3
.1.2 Thermogravimetric analysis (TGA)  
Shimadzu TGA-50 performed TGA test under flowing  
nitrogen (20 푚푙⁄푚푖푛) Atmosphere by 10 ℃⁄푚푖푛  
Temperature growth rate. 6mg of each sample was placed in a  
platinum pan, and the change in weight vs. temperature was  
diagram can be seen that thermal degradation of sio  
nanoparticles and cheese powder starts at about 220°C and  
thermal resistance of sio nanoparticles, cheese powder, and  
2
2
27  
Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 24-32  
OXO are lower that SAN/BR matrix alloy, thus bu increasing  
their percentages, thermal destruction occurs faster. (See fig 8)  
XRD DIAGRAM  
6
00  
00  
3
.1.3 Heat temperature results test (HDT)  
The presence of silica nanoparticles in the polymer matrix  
5
increases the thermal stability of the polymer nanocomposite..  
400  
3
2
1
00  
00  
00  
0
1
1
20  
00  
8
6
4
2
0
0
0
0
0
Figure 10: X-Ray Diffraction (XRD) test  
3
.2 Oxygen permeability tests results  
Results of samples oxygen permeability can be seen in  
Table 3. In Fig. 11 the results of oxygen permeability for  
samples were compared. As can be seen, with the presence in  
sample D, the amount of oxygen permeability in comparison  
with sample E was increased. As mentioned in the steam  
0
1
2
3
4
(
%) Nano SiO2  
Figure 9: heat temperature results for samples  
2
permeability section, it seems that aggregation nano Sio in the  
polymer context can lead to the creation of gaps in the polymer  
context, and thus, gas molecules have the opportunity to pass.  
The results of the mechanical properties section justified this  
possibility.  
3
.1.4 X-ray Diffraction (XRD) test results  
Figure 10 shows the XRD results of pure sio  
2
and sample.  
As can be seen, the related peak to the closite 30B in 2θ is 81.3,  
which shows that the distance between the layers of sio  
2
3
2
Oxygen permeability (Cm /m d bar)  
nanoparticle is about 34.18. But this peak in the sample with  
polymeric context has vanished that is due to foliating of NC  
layers. As mentioned in the mechanical test sections, presence  
of OXO as a compatible agent and on the other hand presence  
1
1
8
6
of SAN/BR/nano sio  
sio , because OXO polar chains have better compatibility with  
nano-size particles [61.5nm] and due to applied shear force  
during the process, it has penetrated the nano sio layers and has  
turned this layers apart. With an increase in distance of silicate  
layers in nanoparticles, the dispersion quality of nanofillers will  
increase, and their interaction with the polymeric substrate will  
be improved. Also, XRD results justified the mechanical  
properties.  
2
/oxo can led to better dispersion of nano  
14  
2
1
2
0
8
6
4
2
0
1
2
H
G
F
E
D
Figure 11: Amount of oxygen permeability for the samples  
Table 3: Effects of oxygen permeability  
3
2
Oxygen permeability (Cm /m d  
bar)  
Sample code  
Relative humidity (%)  
Temperature (℃)  
D
E
F
24  
24  
24  
24  
24  
23  
23  
23  
23  
23  
8.63  
15.4  
14.32  
15.86  
7.46  
G
H
28  
Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 24-32  
(
a)  
(b)  
(c)  
(
d)  
(e)  
(f)  
(
g)  
(h)  
(i)  
(
k)  
Figure 12: Microscopic images of samples containing different weight percentage of (a,b), (c,d), (e,f), (g,h), (k,l)  
Also, the presence of nano SiO  
can lead to an increase in oxygen permeability of this sample in  
comparison with sample E. On the other hand, the presence of  
nano sio and oxo in sample G, increasing the oxygen  
2
permeability of this sample in comparison with samples. In  
fact, according to what has been observed, each one of nano  
2
in the sample F formulation  
a significant increase in the amount of oxygen permeability.  
Also, the same situation has been observed for steam  
permeability. Also, as mentioned in the steam permeability  
section and by citing to the XRD and SEM results, these results  
justified the distribution of fillers between the layers and  
foliation of nanoparticles. It seems that the placement of the  
silicate sheets with high surface to volume ratio between the  
polymer chains has increased the oxygen passage route  
sio  
2
and Oxo can lead to an increase in oxygen permeability.  
Also, the simultaneous effect of these two factors can be led to  
29  
Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 24-32  
distance in the film, and thus these silicate sheets acted as  
oxygen blockers in the context of a matrix. Also, the highest  
oxygen blocking is related to the nanocomposite film.  
Therefore, the order of the oxygen permeability for different  
samples is as follows.  
time and energy of UV light increase, yellowness at the surface  
of SAN/BR/nano sio  
SEM Analysis. The surface identification and distribution of  
SAN/BR/nano sio /oxo 0.5% and 2 % nanocomposites, and 30  
2
/oxo copolymer samples becomes more.  
2
and 90 days (day) after the photodegradation was carried out by  
SEM analysis (see fig 13 to 16).  
3
.3 Scanning Electron Microscopy (SEM)  
Electron microscope was used to capture from the surface  
of the samples (a,b),(c,d),(e,f),(g,h),(k,l) SAN/BR composite  
that extracted from soil to investigate surface and  
microstructure of alloys containing various weight percentages  
of the samples weight percent of Oxo before degradation, one  
and three months afterward. The below figures present the  
waste, and polymer phases rupture due to chain separation  
increasing in Oxo and Sio  
general, with the separation of Oxo and Sio  
2
nano-particles percentages. In  
nano-particles  
2
from the polymer matrix, the polymer chains are disjointed.  
This phenomenon is due to the termination of a link between  
the materials and the polymer. On one side the interactions of  
2
the polar functional groups of whey protein and Sio nano-  
particles on the other side Non-polar and aliphatic groups is  
destructed by separation of molecules, and the ruin of these  
interactions leads to polymer chains rupture, chain length  
reduction and also, molecular weight that with increasing the  
Figure 13: SEM test of sample 0.5% oxo the 30 days’ time (day) after  
2
percentage of Sio nano-particles and oxo, this reduction has  
the photodegradation  
more significant results. The SEM images approved bio  
degradation of these alloys after one and three months. The  
rupturing of polymeric phases due to ruptured chains with holes  
formed in the polymer observed. Finally, composites showed  
appropriate degradation about mechanical and thermal  
properties, and flow-ability can be used in full applications such  
as home appliances and packaging industries (see fig 12).  
3
.4 scanning electron microscopy (SEM)  
The common synthetic polymer that can be attacked includes  
SAN and BR whit oxo, where tertiary carbon bonds in their  
chain structures are the centers of attack. Ultraviolet rays  
further with oxygen in the atmosphere, creating carbonyl  
groups in the main chain. The showing surfaces of products  
may then discolor and crack, and in extreme cases, complete  
product disintegration can occur. Oxidation tends to start at  
tertiary carbon atoms because the free radicals formed here are  
more stable and longer-lasting, making them more susceptible  
to attack by oxygen. The carbonyl group can be further  
oxidized to break the chain, this weakens the material by  
lowering its molecular weight, and cracks start to grow in the  
regions affected. Biodegradable SAN/BR can be biologically  
degraded by photo UV to give low molecular weight molecules.  
This research aims to understand and find a relationship  
between photooxidative degradation and yellowing of  
Figure 14: SEM test of sample 2% oxo the 30 days time (day) after  
the photodegradation  
2
SAN/BR/nano SiO /oxo copolymer. Furthermore, find a  
simple method for following the degradation. By changing the  
microstructure of SAN/BR/nano, sio2 /oxo copolymer UV  
oxidation can induce photooxidative degradation of the  
copolymer. The butadiene phase is the main responsible phase  
that causes the photo-oxidative degradation in SAN/BR/nano  
SiO  
of SAN/BR/nano sio  
at the surface, which is directly subjected to UV light. The  
surface of the SAN/BR/nano sio /oxo copolymer, however,  
shows more damage when compared to the interior part and  
2
/oxo copolymer degradation. Photo-oxidative degradation  
2
/oxo copolymer begins, like all polymers,  
2
other polymers.  
SAN/BR/nano SiO  
Photo-oxidative degradation of  
/oxo copolymer leads to color development  
Figure 15: SEM test of sample 0.5% oxo the 90 days’ time (day)  
after the photodegradation  
2
(
degradation) on the surface of the UV aged samples. Surface  
degradation is one of the measures of the extent of photo-  
oxidative degradation. This means that as the UV irradiation  
30  
Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 24-32  
2
3
.
.
Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ, Bikiaris  
DN. Thermal and dynamic mechanical behavior of  
bionanocomposites: fumed silica nanoparticles dispersed in poly  
(vinyl pyrrolidone), chitosan, and poly (vinyl alcohol). Journal of  
applied polymer science. 2008;110(3):1739-49.  
Mousavi SM, Hashemi SA, Ghasemi Y, Amani AM, Babapoor A,  
Arjmand O. Applications of graphene oxide in case of  
nanomedicines and nanocarriers for biomolecules: review study.  
Drug metabolism reviews. 2019;51(1):12-41.  
4
5
.
.
Mousavi S, Zarei M, Hashemi S. Polydopamine for Biomedical  
Application and Drug Delivery System. Med Chem(Los Angeles).  
2
018;8:218-29.  
Amani AM, Hashemi SA, Mousavi SM, Abrishamifar SM, Vojood  
A. Electric field induced alignment of carbon nanotubes:  
methodology and outcomes. Carbon nanotubes-recent progress:  
IntechOpen; 2017.  
6
7
.
.
Sargsyan A, Tonoyan A, Davtyan S, Schick C. The amount of  
immobilized polymer in PMMA SiO2 nanocomposites determined  
from calorimetric data. European Polymer  
007;43(8):3113-27.  
Journal.  
2
Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM. Model  
polymer nanocomposites provide an understanding of confinement  
effects in real nanocomposites. Nature materials. 2007;6(4):278-  
82.  
Figure 16: SEM test of sample 2% oxo the 90 days’ time (day) after  
the photodegradation  
8. Mousavi SM, Farsi M, Azizi M. Enhancement of rheological and  
mechanical properties of bitumen using styrene acrylonitrile  
copolymer. Journal of Applied Polymer Science. 2015;132(17).  
4
Conclusion  
9
.
Chrissafis K, Paraskevopoulos K, Pavlidou E, Bikiaris D. Thermal  
degradation mechanism of HDPE nanocomposites containing  
fumed silica nanoparticles. Thermochimica Acta. 2009;485(1-  
2):65-71.  
In this paper, Preparation of the Oxoperoxidant and  
physical,  
photodegradation of nanocomposite using the SAN/BR/nano  
SiO /oxo was studied. The results cleared that water adsorption  
increased in the presence of sio nanoparticles. Besides, to  
mechanical,  
and  
oxygen  
permeability,  
10. Jia X, Li Y, Cheng Q, Zhang S, Zhang B. Preparation and  
properties of poly (vinyl alcohol)/silica nanocomposites derived  
from copolymerization of vinyl silica nanoparticles and vinyl  
acetate. European Polymer Journal. 2007;43(4):1123-31.  
2
2
study the photodegradation of nanocomposite samples under  
the soil, XRD and SEM were used. Their results revealed that  
the existence of the hydroxyl group increased the degradation  
of the sample. Additionally, adding the Oxoperoxidant to  
samples had a positive effect on its degradation. The effect of  
the addition of Nano-silica fillers in SAN/BR Nanocomposites  
1
1. Lee J, Lee KJ, Jang J. Effect of silica nanofillers on isothermal  
crystallization of poly (vinyl alcohol): In-situ ATR-FTIR study.  
Polymer testing. 2008;27(3):360-7.  
12. Mousavi SM, Hashemi SA, Amani AM, Esmaeili H, Ghasemi Y,  
Babapoor A, et al. Pb (II) removal from synthetic wastewater using  
Kombucha Scoby and graphene oxide/Fe3O4. Physical Chemistry  
Research. 2018;6(4):759-71.  
2
using liquid nano sio and oxo dispersion media using  
conventional mixing techniques was investigated. The addition  
of Nano-silica increases the thermal resistance of polymer  
nanocomposites. Improvement in and physical, mechanical  
properties were found at higher loading of Nanofillers. Also,  
the simultaneous effect of these two factors can be led to a  
significant increase in the amount of oxygen permeability.  
Besides, the same situation has been observed for steam  
permeability.  
1
3. Mousavi S, Aghili A, Hashemi S, Goudarzian N, Bakhoda Z,  
Baseri S. Improved morphology and properties of nanocomposites,  
linear low density polyethylene, ethylene-co-vinyl acetate and  
nano clay particles by electron beam. Polymers from Renewable  
Resources. 2016;7(4):135-53.  
14. Mousavi M, Hashemi A, Arjmand O, Amani AM, Babapoor A,  
Fateh MA, et al. Erythrosine adsorption from aqueous solution via  
decorated graphene oxide with magnetic iron oxide nano particles:  
kinetic and equilibrium studies. Acta Chimica Slovenica.  
2
018;65(4):882-94.  
Ethical issue  
1
5. Vollath D, Szabó DV. Synthesis and properties of nanocomposites.  
Advanced Engineering Materials. 2004;6(3):117-27.  
16. Mousavi S, Esmaeili H, Arjmand O, Karimi S, Hashemi S.  
Biodegradation study of nanocomposites of phenol novolac  
epoxy/unsaturated polyester resin/egg shell nanoparticles using  
natural polymers. Journal of Materials. 2015;2015.  
7. Bahrani S, Hashemi SA, Mousavi SM, Azhdari R. Zinc-based  
metalorganic frameworks as nontoxic and biodegradable  
platforms for biomedical applications: review study. Drug  
metabolism reviews. 2019;51(3):356-77.  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
1
Competing interests  
18. Hashemi SA, Mousavi SM, Arjmand M, Yan N, Sundararaj U.  
Electrified single‐walled carbon nanotube/epoxy nanocomposite  
via vacuum shock technique: Effect of alignment on electrical  
conductivity and electromagnetic interference shielding. Polymer  
Composites. 2018;39(S2):E1139-E48.  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
1
9. Wu Y-P, Wang Y-Q, Zhang H-F, Wang Y-Z, Yu D-S, Zhang L-Q,  
et al. Rubberpristine clay nanocomposites prepared by co-  
coagulating rubber latex and clay aqueous suspension. Composites  
Science and Technology. 2005;65(7-8):1195-202.  
2
0. Hashemi SA, Mousavi SM, Faghihi R, Arjmand M, Sina S, Amani  
AM. Lead oxide-decorated graphene oxide/epoxy composite  
towards X-Ray radiation shielding. Radiation Physics and  
Chemistry. 2018;146:77-85.  
References  
1
.
Barik T, Sahu B, Swain V. Nanosilicafrom medicine to pest  
control. Parasitology research. 2008;103(2):253.  
31  
Journal of Environmental Treatment Techniques  
2020, Volume 9, Issue 1, Pages: 24-32  
2
1. Hashemi SA, Mousavi SM. Effect of bubble based degradation on  
the physical properties of Single Wall Carbon Nanotube/Epoxy  
Resin composite and new approach in bubbles reduction.  
Composites Part A: Applied Science and Manufacturing.  
2
016;90:457-69.  
2
2
2. Ajayan PM, Zhou OZ. Applications of carbon nanotubes. Carbon  
nanotubes: Springer; 2001. p. 391-425.  
3. Coleman JN, Khan U, Gun'ko YK. Mechanical reinforcement of  
polymers using carbon nanotubes. Advanced materials.  
2
006;18(6):689-706.  
2
2
2
4. Mousavi SM, Hashemi SA, Arjmand M, Amani AM, Sharif F,  
Jahandideh S. Octadecyl amine functionalized Graphene oxide  
towards hydrophobic chemical resistant epoxy Nanocomposites.  
ChemistrySelect. 2018;3(25):7200-7.  
5. Mousavi SM, Goudarzian N, Hashemi S. Unsaturated polyester  
resins modified with cresol novolac epoxy and silica nanoparticles:  
processing and mechanical properties. International Journal of  
Chemical and Petroleum Sciences. 2016;5(1):13-26.  
6. Sadhu S, Bhowmick AK. Preparation and properties of  
nanocomposites based on acrylonitrilebutadiene rubber, styrene–  
butadiene rubber, and polybutadiene rubber. Journal of Polymer  
Science Part B: Polymer Physics. 2004;42(9):1573-85.  
2
2
7. Sadhu S, Bhowmick AK. Unique rheological behavior of rubber  
based nanocomposites. Journal of Polymer Science Part B:  
Polymer Physics. 2005;43(14):1854-64.  
8. Mousavi SM, Hashemi SA, Amani AM, Saed H, Jahandideh S,  
Mojoudi F. Polyethylene terephthalate/acryl butadiene styrene  
copolymer incorporated with oak shell, potassium sorbate and egg  
shell nanoparticles for food packaging applications: control of  
bacteria growth, physical and mechanical properties. Polymers  
from Renewable Resources. 2017;8(4):177-96.  
2
3
3
3
3
3
9. Hashemi SA, Mousavi SM, Ramakrishna S. Effective removal of  
mercury, arsenic and lead from aqueous media using Polyaniline-  
Fe3O4-silver diethyldithiocarbamate nanostructures. Journal of  
Cleaner Production. 2019;239:118023.  
0. Mousavi SM, Hashemi SA, Babapoor A, Medi B. Enhancement of  
Rheological and Mechanical Properties of Bitumen by  
Polythiophene Doped with Nano Fe 3 O 4. JOM. 2019;71(2):531-  
4
0.  
1. Mousavi S, Arjmand O, Talaghat M, Azizi M, Shooli H.  
Modifying the properties of polypropylene-wood composite by  
natural polymers and eggshell Nano-particles. Polymers from  
Renewable Resources. 2015;6(4):157-73.  
2. Mousavi S, Arjmand O, Hashemi S, Banaei N. Modification of the  
epoxy resin mechanical and thermal properties with silicon  
acrylate and montmorillonite nanoparticles. Polymers from  
Renewable Resources. 2016;7(3):101-13.  
3. Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM,  
Savar Dashtaki A, et al. Green synthesis of silver nanoparticles  
toward bio and medical applications: review study. Artificial cells,  
nanomedicine, and biotechnology. 2018;46(sup3):S855-S72.  
4. Mousavi S, Hashemi S, Zarei M, Amani A, Babapoor A.  
Nanosensors for Chemical and Biological and Medical  
Applications. Med Chem (Los Angeles). 2018;8(8):2161-  
0
444.1000515.  
3
3
5. BARIKBIN B, MAAREFAT A, RAHGOSHAI R, MORAVVEJ  
H, MOHTASHAM N, YOUSEFI M. Malva sylvestris in the  
treatment of hand eczema. 2010.  
6. Mousavi SM, Hashemi SA, Zarei M, Bahrani S, Savardashtaki A,  
Esmaeili H, et al. Data on cytotoxic and antibacterial activity of  
synthesized Fe3O4 nanoparticles using Malva sylvestris. Data in  
brief. 2020;28:104929.  
3
7. Tech JET. Investigating the Activity of Antioxidants Activities  
Content in Apiaceae and to Study Antimicrobial and Insecticidal  
Activity of Antioxidant by using SPME Fiber Assembly  
Carboxen/Polydimethylsiloxane (CAR/PDMS). Journal of  
Environmental Treatment Techniques. 2020;8(1):214-24.  
32