2021, Volume 9, Issue 1, Pages: 224-232  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)232  
Graphene-Carbon Nanotube Hybrids: Synthesis  
and Application  
Khadije Yousefi*  
Department of Materials Science and Engineering, School of Engineering, Shiraz University, 71348-51154 Shiraz, Iran  
Received: 06/08/2020  
Accepted: 08/11/2020  
Published: 20/03/2021  
Abstract  
Graphene and CNTs have gained considerable concern and research attention. In addition to preventing the aggregation of these  
carbon compounds, graphene CNT hybridization would also make full use of the synergistic relationship between graphene and CNT.  
This chapter discusses the different carbon nanomaterials and their special properties, and a thorough analysis of the graphene-CNT  
derivatives is observed. It would also discuss in detail the methods and their properties used to create graphene-CNT hybrids. Their  
applications are also described particularly in device sensing, energy/supercapacitors, and material science.  
Keywords: Carbon nanotubes, graphene, CNT-graphene hybrid  
1
are highly satisfactory(10). Theoretical and experimental  
1
Introduction  
studies on individual SWCNT show significantly strong tensile  
strength (150180 GPa) and tensile modulus (640 GPa1  
TPA), more powerful than popular carbon fibers (11). Also,  
they display off enormous thermal and electric properties a  
number of the great mechanical properties associated with  
CNTs: thermally stable in vacuum up to 2800°C, thermal  
conductivity two times as proper as concrete, electronic present  
day output 1000 extra times than copper wires (12). CNTs may  
be single-walled or multi-walled structures, figure 1 shows an  
image of MWCNT nanostructure transmission electron  
microscope (TEM), in which several graphical carbon layers  
and a hollow core appear.  
Completely carbon-based products from activated carbon,  
carbon nanotubes (CNTs) to graphene have gained widespread  
prominence due to their intricate nanostructures, physical and  
chemical characteristics of high quality. Such features involve  
a range of materials (powders, fabrics, aerogels, composites,  
boards, monoliths, columns, etc.), extremely inert  
electrochemistry, fast storage, and porosity regulation (1-3).  
Graphene and CNTs generated tremendous attention and  
involvement in science due to their remarkable physical  
residences, such as extreme electrical conductivity, equal  
thermal stability, and excellent mechanical efficiency (4).  
Conversely, due to the powerful vanderWaals forces among  
them, the agglomeration of carbon materials, especially  
graphene and CNTs, is unavoidable. Graphene CNT  
hybridization often does not help to inhibit the association of  
such carbon compounds, but may also show synergistic results  
between graphene and CNT(5, 6). Research has shown that  
hybrid graphene-CNT nanomaterials have more electrical  
conductivity, superior surface structure, and improved catalytic  
properties relative to standard CNT or graphene (6, 7). The  
hybrid system is efficient and can be assembled using a range  
of techniques like simple solution assembly, chemical vapor  
deposition, and CNT discharge (8, 9). This chapter  
demonstrates and discusses methods for hybridizing CNTs  
with graphene, characterization, and hybrid alertness.  
3 Graphene Nanosheets  
Graphene is a 2D single-atom-thick film of carbon atoms  
2
assembled hexagonally(13, 14). The carbon bonds are sp  
hybridized where the in-plane σCC bond is one of the most  
strong links to the substance and the out-of-plane relation is  
responsible for the conduction of graphene electron  
contributing to a delocalized electron network. Graphene has  
shown remarkable physical properties due to the specific  
structural qualities which have provided substantial attention to  
research in both science and technology communities (15-18).  
Graphene has been used as a building block for many of such  
carbon allotropes in extraordinary lengths, as visible in  
Figure.2 (19). For example, with a spacing of 0.330.34 nm,  
3
D graphite is composed of graph nanosheets layered at each  
2
Carbon Nanotubes  
other's pinnacle. One-dimensional (1D) carbon allotropes,  
CNTs which include SWCNTs and MWCNTs can be produced  
in miles by rolling the graphene into single or multi-walled  
tubular nanostructures. Wrapping a piece of graphene like a  
ball often has effects in zero-dimensional (0D) fullerenes.  
Carbon nanotubes are visible cylinders with one or two  
additional graphene layers open or near ends (de-called  
SWCNT, or MWCNT). The diameters of SWCNT and  
MWCNT are usually 0.82 nm and 520 nm respectively,  
whereas the diameters of MWCNT maybe 100 nm,  
respectively. CNTs have low mass density, immoderate  
durability, and high issue ratio (usually about 3001000),  
leading in mechanical, thermal, and electrical properties that  
*
Corresponding author: Khadije Yousefi, Department of Materials Science and Engineering, School of Engineering, Shiraz  
University, 71348-51154 Shiraz, Iran. E-mail: khadije.yousefi@gmail.com  
224  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 224-232  
sheet and CNTs, where CNTs connect graphene sheets during  
chemical vapor deposition via the catalyst particles (CVD). The  
method of hybrid wrapping focuses on the contact between  
graphene sheets and CNTs, as well as the number of CNTs  
wrapped in graphene nanosheets. Graphene oxide (GO) or  
functional graphene hybridization with CNTs is usually  
achieved using different methods. The assembly process  
practically blends graphene and CNT, while the approach in  
situ consists of scraping CNTs from graphene sheets into CNT  
/
GNR or CNT types. 4.1 Assembly Method  
Because of their aromatic sp nanostructure, graphene and  
2
Fig. 1: TEM micrograph demonstrating the layered structure of a  
carbon nanotube with multiwalls (12)  
CNTs are co-assembled for the assembly of hierarchical  
structures by van der Waals, or similarities with π–π.  
Considerably oxygenated mechanical moving surface groups  
or mechanical CNT Groups(20). Graphene is used for  
electrostatic or covalent assemblies; GNS graphene  
nanosheets; graphene oxide reduced by rGO; Acid-dealing  
with A-MWCNT MWCNT; PPD p-Phenylenediamine; SDBS  
Sodium dodecylbenzene sulfonate. As illustrated in the  
figure.4e, GO sheets with several conjugated clusters were  
likely to interact with MWCNTs when the weight ratio of  
MWCNT to GO sheets was 2:1, creating exfoliated GO sheets  
with MWCNT coatings (Fig. 4f). Widespread MWCNT  
agglomeration GO complexes have been identified as  
immoderate MWCNTs and twisted constant tubular CNTs on  
moving sheets reducing the solubility of MWCNT  transfer  
complexes. Because the load ratio of MWCNTs to sheets is 1:2  
(
Fig. 4 g), the single GO sheet will always communicate with  
loads of MWCNTs at first. Clear suspensions of MWCNT –  
motion complexes were developed after the dynamic  
equilibrium phase due to the long-term sonication (the inset  
image in Fig 4 g). A small number of hair-like MWCNTs are  
naturally fixed at the surface of GO sheets (Fig. 4h), raising the  
hydrophilic MWCNT GO complexes (21).  
Fig. 2: Graphene, the building block of all graphic types, can be  
covered in 0D buckyballs, formed in 1D nanotubes, and packed in 3D  
graphite (19)  
Liu et al.(22, 23) stated that the hybrid graphene oxide  
nanoribbon/carbon nanotube (GONR / CNT) (Fig. 2.17a) has  
become an easy method for unzipping. The left MWCNTs will  
link to equipped-made GNRs to form interconnected 3-D  
carbon networks with partially unwrapped MWCNTs. After  
being chemically modified using hydrazine hydrate (65 S  
cm−1), GNR / CNT hybrids can be produced with an advanced  
conductivity of 120 S cm−1 compared to that of CNTs(22). As  
seen in Fig. 5c similar weight ratios of GONRs in GONR / CNT  
mixtures may be conveniently prepared and measured using  
XRD styles where the GONR peak (2 = 11.28 °) is reduced  
because the CNT peak (2 = 26.18 °) reduced.  
4
Strategies for the Hybridization of CNTs with  
Graphene  
1D  
CNT and 2D graphene hybridization create  
nanostructured hybrids with different topological architectures  
10). Therefore, the CNT and graphene derivatives are  
(
classified into three groups compatible with their different  
nanostructures: As seen in Fig.3, CNTs are horizontally  
adsorbed to the base of the graphene, CNTs adsorbed by the  
graphene floor and CNT covered in particular graphene.  
Graphene acted as a non-stop layer matrix for CNTs  
horizontally adsorbed to graphene surfaces to retain the  
graphene-CNT hybrids, the most common type. For CNTs  
perpendicularly adsorbed to the graphene surface, this process  
can be due to a single point of contact between the graphene  
Fig. 3: Three types of the hybrids of graphene and CNTs (9)  
225  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 224-232  
The significance of their function peaks and can deliver as-  
organized GONR / CNT derivatives to the GONR weight ratios  
as 16, 55 and 85 percent respectively can be derived from a  
relationship curve. They were described for simplicity as  
GONR16 in step with cent / CNT, GONR55 in keeping with  
cent / CNT, and GONR85 in keeping with cent / CNT. The  
GNR / CNT combination TEM and SEM stats (Fig. 6) with  
different GNR weight ratios indicate that within the hybrids  
GNRs are aligned with CNTs and independent GNRs are  
simply proved as the unzipping diploma decreases.  
we'll describe the applications of this amazing CNT-graphene  
hybrid tool.  
5.1 Sensors  
The developing variety of diabetic sufferers round the  
sector has sparked interest in medical biosensing, and in that  
regard, the supremacy of glucose biosensors. The biosensor  
detects enzymes usually through amperometry, although the  
latest instances of non-enzymatic detection of glucose have  
been recorded. For instance, GO electrode (27, 28) and Pt  
nanoflowers covered on the in situ CNT-graphene hybrid (29)  
have been utilized in non-enzymatic blood glucose sensing. For  
non-enzymatic blood glucose sensing hybrid CNT-graphene  
(
29) was observed. As described, the enzymatic glucose  
biosensors use glucose oxidase (GOx) due to its balance and  
specificity to glucose. The chemistry for this technique may be  
contained under literature(30). The enzyme Flavin adenine  
nucleotide (FAD) is at the energetic center of the redox  
reaction(30). Due to enzymatic action, the electrode-generated  
H
2
O
2
has been transformed into electrochemically detected,  
starting with designed glucose biosensors, although the  
production of H is based on oxygen, requiring excessive  
2 2  
O
detection potential which interferes with other redox  
composites. In second-generation biosensors, but, oxygen  
dependency is eliminated way to redox mediators. Such  
mediators are in continuous movement and can be connected to  
an enzyme that movements electrons to the electrode or diffuse  
without FAD impediments or spherical the other manner,  
ensuing in amperometric signal manufacturing. Glucose  
biosensing in third-generation biosensors can be achieved at a  
lower capability without the want for redox mediators via direct  
electron transfer (DET) from the redox core to the electro.  
Table 1 summarizes the efficiency of various recorded  
graphene hybrids in totally glucose-based biosensing DET.  
Direct electron transfer with bare electrodes of GOx  
enzyme is difficult to accomplish because FAD is deeply  
embedded inside the structure. For robust electron transfer  
kinetics and enzyme immobilization to mediator-loose DET for  
GOx, CNT-graphene hybridized shape provides a distinctly  
conducive and methodical matrix with superb effects on  
glucose sensing. While the exact role of DET remains unclear,  
the advanced electrochemical properties of the extremely  
conductive graphene and CNT-graphene hybrid contiguous  
graphene provide treasured guidelines. The lifestyles of FAD  
redox tops in cyclic voltammetry with average potential  
approximating the usual electrode capacity of GOx are a huge  
indicator of the GOx DET scheme (31). Glucose is then  
measured by calculating the increase in the top contemporary  
of certainly charged FAD in glucose oxidation reaction or the  
decrease in the peak current of the negatively charged FAD due  
to the use/decline of oxygen. Glucose evaluation the usage  
of oxygen may be carried out at low capability as an  
example of mediator-loose sensing and hence extraordinary of  
sensors of the third generation. CNT-graphene hybrid offers  
enzyme immobilization with an extended floor position and  
produces 3-d conductive matrix for efficient electron transfers  
to neighboring moleculesGOx is immobilized from the redox  
enzyme motion center at the CNT-graphene electrode and DET  
in the course of the oxidation mechanism as shown in figure 7.  
It has been shown to a great extent that CNT-graphene hybrid,  
built using physical means using CNTs, achieves DET for GOx  
through cathode-based oxygen-biosensing glucose (32, 33).  
Fig. 4 ad: A schematic for the formation of the GOMWCNT hybrids.  
TEM images of GO MWCNT hybrids by adjusting the initial weight  
ratio of MWCNTs to GO sheets with 2:1 e, f and 1:2 g, h at low and  
high magnifications (21)  
4
.2 In Situ Method  
The results of assembly methods are usually less specific  
and this slowly influences the conductivity and surface region,  
since this approach is less complex than in situ development.  
Hybrid growth in situ graphene-CNT is more complex in  
evaluation, but it maintains an extra impact on product content  
and sensitivity to form the density, and hybrid shape. The  
development of the graphene structures CNT-pillared go and  
CNT-pillared was established (Fig. 5) (24). The cross-sectional  
images are taken from the sample display nanostructures of  
layers of CNTs as nanopillars among the move and graphene  
surfaces. extended CNTs may be produced using growing the  
quantity of the Ni catalyst while shorter CNTs may be obtained  
by way of elevating the growth duration for CVDs. CNT-  
pillared rGO composite substances display exceptionally  
strong visible light photocatalytic efficiency in decaying dye  
Rhodamine B, owing to the exceptional porous nature and  
impressive electron transfer properties of graphene.  
5
Application of Graphene-Carbon Nanotube  
Hybrids  
Carbon nanotube-graphene hybrid possesses the  
outstanding capacity for a number uses (25, 26). In this chapter,  
226  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 224-232  
Fig 5: Experimental methods pillar the go and graphene platelets using MWCNTs. B-GOCNT-30-17, c GOCNT-15-17, d GOCNT-30-9 and e GOCNT-  
5-9, f RGOCNT-15-4 and g, respectively, RGOCNT-15-0.6. The final samples are named, respectively, for the CNT-pillared go and RGO composites  
as GOCNT-X-Y or RGOCNT-X-Y. X illustrates here the CVD period (15 or 30 min) if Y refers to the catalyst of Ni / C mass loading (24)  
1
Also, the electrochemically lively space for CNT-graphene  
hybrid altered with ZnO nanoparticles has been multiplied,  
increasing the possibility of stepped-up enzyme immobilization  
and rapid electron switching (34). This technique employs  
differential pulse voltammetry to come across glucose  
taking benefit of oxygen depletion inside the system.  
transfers photogenerated electrons from the semiconductor to  
the outer circuit. Graphene converted into transferred in SSC to  
both photoanode and counter electrode, serving excellent  
positions. This can also be used as a clear conductive film in  
the photoanode. As a conductive film, it can improve widely  
used metal oxides, such as FTO and ITO, as it overcomes the  
disadvantages of steel oxides, such because size, robustness,  
chemical, and mechanical power and improved near-infrared  
transmission (28, 36). It can also act as an additive to the  
semiconductor surface for electrical bridging. Secondly,  
graphene quantum dots can be used as the sensitizer has semi-  
conductor residences such that photons excite electrons from  
the HOMO to his LUMO. Ultimately, graphene will be part of  
the counter-electrode, improve electron transport, and enhance  
the redox attraction. Table 2 summarizes the average  
performance, recorded in literature, of different types of SSCs  
based on graphene derivatives.  
5
.2 Sensitized Solar Cells  
After Grätzel 's institution published nanostructured TiO  
2
films on anode electrodes in 1991 (35), sensitized solar cells  
SSCs) attracted considerable interest in the photoelectric  
(
conversion of solar energy due to their fantastically low value  
and incredible efficiency. SSCs are photoelectrochemical  
structures with an electrolyte, a counter electrode, and a  
photoanode; The photoanode is typically a semiconductor,  
2
often ZnO and TiO , sensitized to photoactive materials such  
as colorants (DSSC), biomolecules (BSSC), and quantum dots  
QSSC), mounted on a transparent conductive surface which  
(
227  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 224-232  
Fig. 6: A GNR / CNT mixed production flow model. B XRD clean CNT architectures, GONR / CNT mixture with separate weight ratios and GONR  
simple architecture. C GONR weight ratio estimates in combinations GONR / CNT are based on GONR weight percentage and power ratio of  
characteristic peaks in their XRD shape (22)  
Table 1: Summary of performances of graphene hybrids in DET based glucose biosensors  
Detection  
range(mM)  
Sensitivity(µAmM−1cm−2  
)
LOD  
(µM)  
Type of Hybrid Electrode  
GOx/electrochemically  
Ks (s1)  
Refer  
reduced G-  
MWCNT/GCE with  
FMCA  
3.02  
0.016.5  
7.95  
4.7  
(37)  
Graphene-CNT  
GOx/chemically  
Not  
Not  
reported  
28  
Up to 8  
1.27  
0.266  
79.71  
(38)  
(32)  
(39)  
reduced G-CNT/GCE  
GOx/MWCNT/GO  
GOx-AuNP-chitosan-  
graphene nanosheets  
GOx/PAMAM  
dendrimer/AgNP/RGO  
GOx/AuNP/bilayer  
graphene  
reported  
11.22  
Not  
0.119.82  
0
.00210.0057  
0.0321.89  
.110  
0.7  
4.5  
35  
reported  
Graphenemetal  
nanoparticle  
8.59  
75.72  
(40)  
(41)  
7.74 ±  
0.16  
For Human serum:64 µA  
mM−  
0
Not  
reported  
GOx/CdS anoparticles  
0.0511  
216  
7
50  
(39)  
(42)  
GrapheneSNMs GOx/CdS nanocrystals 5.9  
1.76  
700  
5
0
.03 ±  
.14  
GOx/PLL/RGO/ZrO2  
0.2914  
11.65 ± 0.17  
130 ± 21 (23)  
228  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 224-232  
Fig. 7: Schematic description of electron transfer from the redox core of the GOx molecule on CNT-graphene and glucose biosensing  
Table 2: Graphene hybrids are used in photochemical/optical sensors  
Electrode with  
graphene/SNM hybrid  
2
V (V)  
oc  
FF (%)  
n (%)  
References  
Jsc(mA/cm )  
CE: rGO-CNT/FTO  
15.25  
14.24  
11.27  
14.0  
0.68  
0.68  
51.05  
62.4  
5.29  
6.05  
(43)  
(44)  
(45)  
(46)  
(47)  
(48)  
(49)  
(50)  
CE: VACNT-graphene paper  
PA: MWCNT-rGO-TiO2/FTO  
CE: TiN-rGO-CNT/FTO  
CE: CuInS2-rGO/FTO  
PA: Graphene QD/TiO2/FTO  
PA: N3/TiO2-rGO/  
0.78  
0.642  
0.74  
0.48  
0.69  
0.78  
70  
46  
51  
58  
NA  
61.3  
6.11  
4.13  
6.18  
NA  
6.97  
6.17  
16.63  
0.2  
16.29  
12.86  
CE: CNT-rGO/graphite paper  
5
.2.1 Graphene-CNT hybrids in SSCs  
Graphene-CNT hybrid compounds have been evaluated for  
quick charging and discharge rates, long cycle life, and  
inadequate energy densities for batteries and fuel cells.  
use in SSC mainly as a counter-electrode, but also as part of the  
electrolyte and photoanode (51). RGO-CNT was integrated  
into the counter electrode and noticed that CNT flake gaps and  
increased electrical conductivity were bridged. The hybrid's  
strong catalytic and electrical properties enabled the acquisition  
of portable output, which was barely reduced but comparable  
to the usage of a Pt counter electrode, taking into account the  
cost benefits and mechanical versatility of carbon  
nanomaterials. By partially unzipping MWCNT, Zhibin et.al  
(
52) recorded better graphene nanoribbons- CNT hybrid  
performance compared to Pt, which resulted in CNT being  
bridged with very wide floor location. Another hybrid built  
with VACNT was developed on Li et .al(44) converted  
graphene paper. In advanced SSC counter-electrode allowing  
cellular production to hit 83% of that with a Pt film electrode  
and better-tangled CNT efficiency due to shorter transport  
routes. Ming-Yu et al. (45) documented the benefits of  
MWCNT and graphene mixing in photoanode, where MWCNT  
adsorption confirmed a decrease in the recombination and  
deposition of graphene sheets and improved the degree of  
adsorption of dye. Although the combination of graphene and  
CNT with ionic beverages in a quasi-solid electrolyte.  
Kingdom has shown that Ahmad et al. (53) has significantly  
increased the energy conversion performance of cell phones  
from 0.16 to 2.5 percent because carbon nanomaterials serve as  
charging transporters in ionic liquids and as catalysts for  
Fig. 8: Assessment of different carbon products as electrodes for the  
supercapacitor. (a) an Activated carbon. Activated carbon has a very  
large surface area. Nevertheless, Electrolyte ions can not reach many  
of the micropores. (b) CNT bundles. Usually, CNTs form bundles  
which limit their surface area. Electrolyte ions may only reach the  
outermost surface. (c) Pristine graphene. During the drying cycle,  
graphene nanosheets are likely to agglomerate through van der Waals  
interactions. Electrolyte ions would have trouble accessing ultrasmall  
pores, especially for larger ions such as an organic electrolyte or at a  
high charge rate. (d) Graphene-CNT composite. CNTs can serve as a  
spacer between the nanosheets of graphene to provide the electrolyte  
ions with rapid diffusion pathways. Electrical conduction may be  
improved for the electrons. The CNTs often act as a binder to tie the  
nanosheets intact to avoid the disintegration of the graphene structure  
of graphene in electrolyte (4, 54).  
3−  
electrochemical I reduction.  
5
.3 Supercapacitors  
The supercapacitors have considerably higher power  
densities than traditional dielectric condensers and demonstrate  
229  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 224-232  
Fig. 9: Supercapacitor architecture basing mainly on the 3-d G / CNT combination. BG / CNT supercapacitor output hybrid, with weight ratios of one-  
of-a-kind. C strong special graphene capacitance of various G to CNT ratios in hybrid materials. D Schematic diagram of 3-Component hybrid device  
configuration with CNT load spacer (55)  
Owing to their extraordinary physical and chemical  
properties, carbon-based materials such as activated carbon,  
CNTs, and graphene were commonly used in supercapacitors  
with double-layer electrochemical. Different carbon products  
as electrodes for the supercapacitor have shown in figure 8. By  
bridging the graphene sheets and decorating a typical  
capacitive performance, the CNTs will significantly reduce the  
electrode's electrical resistance to the interlayer. Also, the  
CNTs can serve as a graphene interlayer spacer to hold away  
from restacking relative to each individual, allowing available  
electrolyte ions. The electrolyte ions can readily penetrate the  
inner portion of the electrodes with the spacer device, and thus  
greater electrochemically active products can be used (Fig. 8d).  
However, CNTs may also be used as binders to connect the  
graphene sheets and to facilitate the adhesion of electrodes to  
the modern collector (54). The graphene-CNT hybrid-based  
materials are also particularly suitable for processing electrode  
items in EDLCs. Chen et al developed and synthesized a  
hierarchical graphene(G) 3D structure using CNTs due to a  
transparent and green hydrothermal route between the graphene  
sheets. The materials of the 3D hierarchical structure were then  
used for the production of supercapacitor devices as active  
electrode materials (Fig. 9a), and high potential strength of 318  
F g−1 was converted into graphene-weight materials with an  
energy density of 11.1 W h kg−1. The influence of graphene on  
supercapacitor performance to weight ratio CNT has been  
studied closely (Fig. 9b, c). First, the maximum overall  
graphene output is derived from the 1:1 ratio of the G / CNT  
mixture, providing an unacceptable 318 F g−1 power, which is  
64 percent of the theoretical value of the graphene. Indeed, the  
green mechanical power of graphene declines and then rises  
with the strain ratio of G to CNTs. The schematic image in Fig.  
9d shows that the restacking of graphene will deteriorate as the  
ratio of G to CNTs decreases. It may have a horrible influence  
on the graphene fabric's effective surface area, thus reducing  
graphene's effective contribution to the overall capacitance of  
the entire electrode traveling fabric (G / CNT hybrid).  
5.4 material science  
Recently, Ahmad et al.(56) report exciting applications of  
CNT-graphene reinforced ceramics in biomedical, aerospace,  
automotive, and photonic technologies as a result of more  
suitable longevity and multiple beneficial residences for hybrid  
2 3  
starting fabrics. In addition to the Al O improved output, the  
considerably better resistance strength of the hybrids may be  
desirable for a variety of automotive sliding and wearing  
applications, such as piston rings, cylinder liners, and valve  
seats(18, 57, 58). Additionally, the SiC, BaTiO3, and Si3N4  
impregnated CNT systems were found to depend on properties  
appropriate for structural use. The chemical and thermally  
230  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 224-232  
stable ceramic hybrids will modify their extreme thermal  
conductivity, making them appealing for high-temperature  
applications(59). CNTs / graphene mixture is capable of  
turning ceramics into usable substances for automotive and  
aerospace applications. However, CNT-graphene hybrid out-  
AMINE/SASOBIT/EPOXY VIA  
VACUUM SHOCK TECHNIQUE: MORPHOLOGY AND  
NANOCOMPOSITE  
BEAMS SHIELDING. Journal of Chemical Technology  
Metallurgy. 2019;54(6).  
&
1
5. Rao CeNeR, Sood AeK, Subrahmanyam KeS, Govindaraj A.  
Graphene: the new two‐dimensional nanomaterial. Angewandte  
Chemie International Edition. 2009;48(42):7752-77.  
2 3  
of-aircraft electrical properties render Al O .  
1
1
1
6. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of  
graphene. Chemical reviews. 2010;110(1):132-45.  
7. Sun Y, Wu Q, Shi G. Graphene based new energy materials.  
Energy & Environmental Science. 2011;4(4):1113-32.  
8. Mousavi SM, Hashemi SA, Ghasemi Y, Amani AM, Babapoor A,  
Arjmand O. Applications of graphene oxide in case of  
nanomedicines and nanocarriers for biomolecules: review study.  
Drug metabolism reviews. 2019;51(1):12-41.  
6
Conclusion  
The hybrid system is complex and can be designed by many  
methods including simple solution assembly and process of  
chemical vapor deposition. The chapter outlines and explores  
methods for the hybridization of CNTs with graphene and  
hybrid characterization. This also introduces potential  
implementations of CNT-graphene hybrid architectures. CNT-  
graphene has demonstrated superior efficiency in most cases  
than individual pristine CNTs or graphene, indicating their  
ability for numerous functional and research applications.  
Whether as an electrode in mediator-free glucose biosensors,  
capacitor collector device, electron transfer help, or photoactive  
material, the usage and work understanding of CNT-graphene  
hybrid has gradually grown and impacted modern-day carbon-  
based electronics.  
19. Geim AK, Novoselov KS. The rise of graphene. Nanoscience and  
technology: a collection of reviews from nature journals: World  
Scientific; 2010. p. 11-9.  
2
2
2
0. Khan U, O’Connor I, Gun’ko YK, Coleman JN. The preparation  
of hybrid films of carbon nanotubes and nano-graphite/graphene  
with excellent mechanical and electrical properties. Carbon.  
2
010;48(10):2825-30.  
1. Zhang C, Ren L, Wang X, Liu T. Graphene oxide-assisted  
dispersion of pristine multiwalled carbon nanotubes in aqueous  
media. The Journal of Physical Chemistry C. 2010;114(26):11435-  
4
0.  
2. Yang Z, Liu M, Zhang C, Tjiu WW, Liu T, Peng H. Carbon  
nanotubes bridged with graphene nanoribbons and their use in  
high‐efficiency dye‐sensitized solar cells. Angewandte Chemie.  
Reference  
1
.
Chowdhury ZZ, Sagadevan S, Johan RB, Shah ST, Adebesi A, Md  
SI, et al. A review on electrochemically modified carbon nanotubes  
2
013;125(14):4088-91.  
(CNTs) membrane for desalination and purification of water.  
23. Liu M, Miao Y-E, Zhang C, Tjiu WW, Yang Z, Peng H, et al.  
Hierarchical composites of polyanilinegraphene nanoribbons–  
carbon nanotubes as electrode materials in all-solid-state  
supercapacitors. Nanoscale. 2013;5(16):7312-20.  
24. Zhang LL, Xiong Z, Zhao X. Pillaring chemically exfoliated  
graphene oxide with carbon nanotubes for photocatalytic  
degradation of dyes under visible light irradiation. Acs Nano.  
2010;4(11):7030-6.  
Materials Research Express. 2018;5(10):102001.  
2
.
Hashemi SA, Mousavi SM, Arjmand M, Yan N, Sundararaj U.  
Electrified single‐walled carbon nanotube/epoxy nanocomposite  
via vacuum shock technique: Effect of alignment on electrical  
conductivity and electromagnetic interference shielding. Polymer  
Composites. 2018;39(S2):E1139-E48.  
Abdollahifar A, Hashemi SA, Mousavi SM, Rahsepar M.  
Electromagnetic interference shielding effectiveness of reinforced  
composite with graphene oxide-lead oxide hybrid nanosheets.  
Radiation Effects and Defects in Solids. 2019;174(9-10):885-98.  
Mousavi SM, Hashemi SA, Arjmand M, Amani AM, Sharif F,  
Jahandideh S. Octadecyl amine functionalized Graphene oxide  
towards hydrophobic chemical resistant epoxy Nanocomposites.  
ChemistrySelect. 2018;3(25):7200-7.  
3
4
.
.
2
5. Koay H, Ruslinda AR, Hashwan SSB, Fatin M, Thivina V, Tony  
VS, et al., editors. Surface morphology of reduced graphene oxide-  
carbon nanotubes hybrid film for bio-sensing applications. 2016  
IEEE International Conference on Semiconductor Electronics  
(ICSE); 2016: IEEE.  
26. Ding M. Hybrid Materials Based on Carbon Nanotubes and  
Graphene: Synthesis, Interfacial Processes, and Applications in  
Chemical Sensing: University of Pittsburgh; 2013.  
27. Wu G-h, Song X-h, Wu Y-F, Chen X-m, Luo F, Chen X. Non-  
enzymatic electrochemical glucose sensor based on platinum  
nanoflowers supported on graphene oxide. Talanta. 2013;105:379-  
85.  
5
6
.
.
Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM. Composites  
with carbon nanotubes and graphene: An outlook. Science.  
2
018;362(6414):547-53.  
Qiu L, Yang X, Gou X, Yang W, Ma ZF, Wallace GG, et al.  
Dispersing carbon nanotubes with graphene oxide in water and  
synergistic effects between graphene derivatives. ChemistryA  
European Journal. 2010;16(35):10653-8.  
Yousefi k, Daneshmanesh H, A. khalife. Optimization of physical  
and mechanical properties of calcium silicate nanocomposite by  
Taguchi method. Scientific Journal Management System.  
2
8. Abdollahifar A, Hashemi SA, Mousavi SM, Rahsepar M, Amani  
AM. Fabrication of graphene oxide‐lead oxide epoxy based  
composite with enhanced chemical resistance, hydrophobicity and  
thermo‐mechanical properties. Advances in Polymer Technology.  
7
8
.
.
.
2
018;37(8):3792-803.  
2
020;10(39):77-90.  
29. Badhulika S, Paul RK, Terse T, Mulchandani A. Nonenzymatic  
glucose sensor based on platinum nanoflowers decorated  
multiwalled carbon nanotubes‐graphene hybrid electrode.  
Electroanalysis. 2014;26(1):103-8.  
30. Ijeomah G, Obite F, Rahman O. Development of carbon nanotube-  
based biosensors. International Journal of Nano and Biomaterials.  
2016;6(2):83-109.  
31. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y. Glucose oxidase–  
graphenechitosan modified electrode for direct electrochemistry  
and glucose sensing. Biosensors and Bioelectronics.  
2009;25(4):901-5.  
Nguyen DD, Cao TT, Le PH, Phan NM. Recent trends in  
preparation and application of carbon nanotubegraphene hybrid  
thin films. Advances in Natural Sciences: Nanoscience and  
Nanotechnology. 2016;7(3):033002.  
Fan W, Zhang L, Liu T. Graphene-carbon nanotube hybrids for  
energy and environmental applications: Springer; 2017.  
9
1
0. Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai  
H. Self-oriented regular arrays of carbon nanotubes and their field  
emission properties. Science. 1999;283(5401):512-4.  
1
1
1. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon  
nanotubes. Chemical reviews. 2006;106(3):1105-36.  
2. Thostenson ET, Ren Z, Chou T-W. Advances in the science and  
technology of carbon nanotubes and their composites: a review.  
Composites science and technology. 2001;61(13):1899-912.  
3. Geim AK. Graphene: status and prospects. science.  
009;324(5934):1530-4.  
4. Mousavi SM, Hashemi SA, Ghasemi Y. DECORATED  
GRAPHENE OXIDE WITH OCTADECYL  
3
2. Palanisamy S, Cheemalapati S, Chen S-M. Amperometric glucose  
biosensor based on glucose oxidase dispersed in multiwalled  
carbon nanotubes/graphene oxide hybrid biocomposite. Materials  
Science and Engineering: C. 2014;34:207-13.  
1
1
33. Hashemi SA, Mousavi SM, Bahrani S, Ramakrishna S. Integrated  
polyaniline with graphene oxide-iron tungsten nitride nanoflakes  
as ultrasensitive electrochemical sensor for precise detection of 4-  
2
231  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 224-232  
nitrophenol within aquatic media. Journal of Electroanalytical  
Chemistry. 2020:114406.  
4. Hwa K-Y, Subramani B. Synthesis of zinc oxide nanoparticles on  
graphenecarbon nanotube hybrid for glucose biosensor  
applications. Biosensors and Bioelectronics. 2014;62:127-33.  
5. O'regan B, Grätzel M. A low-cost, high-efficiency solar cell based  
53. Ahmad I, Khan U, Gun'ko YK. Graphene, carbon nanotube and  
ionic liquid mixtures: towards new quasi-solid state electrolytes for  
dye sensitised solar cells. Journal of Materials Chemistry.  
2011;21(42):16990-6.  
54. Hu Y, Li X, Wang J, Li R, Sun X. Free-standing graphenecarbon  
nanotube hybrid papers used as current collector and binder free  
anodes for lithium ion batteries. Journal of power sources.  
2013;237:41-6.  
3
3
on  
dye-sensitized  
colloidal  
TiO  
2
films.  
nature.  
1
991;353(6346):737-40.  
3
3
6. FACCIO N. Relatório de Campo das Áreas dos Sítios  
Arqueológicos Turvos. FCT/UNESP. 2011.  
55. Yang Z-Y, Zhao Y-F, Xiao Q-Q, Zhang Y-X, Jing L, Yan Y-M, et  
al. Controllable growth of CNTs on graphene as high-performance  
electrode material for supercapacitors. ACS applied materials &  
interfaces. 2014;6(11):8497-504.  
7. Mani V, Devadas B, Chen S-M. Direct electrochemistry of glucose  
oxidase at electrochemically reduced graphene oxide-multiwalled  
carbon nanotubes hybrid material modified electrode for glucose  
biosensor. Biosensors and Bioelectronics. 2013;41:309-15.  
8. Dong X, Chen J, Ma Y, Wang J, Chan-Park MB, Liu X, et al.  
Superhydrophobic and superoleophilic hybrid foam of graphene  
and carbon nanotube for selective removal of oils or organic  
solvents from the surface of water. Chemical communications.  
56. Ahmad I, Yazdani B, Zhu Y. Recent advances on carbon nanotubes  
and  
graphene  
reinforced  
ceramics  
nanocomposites.  
3
Nanomaterials. 2015;5(1):90-114.  
57. Evans AG. Perspective on the development of high‐toughness  
ceramics. Journal of the American Ceramic society.  
1990;73(2):187-206.  
2
012;48(86):10660-2.  
58. Mousavi S, Zarei M, Hashemi S. Polydopamine for biomedical  
application and drug delivery system. Med Chem (Los Angeles).  
2018;8:218-29.  
59. Mousavi SM, Low FW, Hashemi SA, Samsudin NA, Shakeri M,  
Yusoff Y, et al. Development of hydrophobic reduced graphene  
oxide as a new efficient approach for photochemotherapy. RSC  
Advances. 2020;10(22):12851-63.  
3
4
9. Huang J, Dai Y, Gu C, Sun Y, Liu J. Preparation of porous flower-  
like CuO/ZnO nanostructures and analysis of their gas-sensing  
property. Journal of alloys and compounds. 2013;575:115-22.  
0. Wang J, Zhao Y, Ma F-X, Wang K, Wang F-B, Xia X-H. Synthesis  
of a hydrophilic poly-L-lysine/graphene hybrid through multiple  
non-covalent interactions for biosensors. Journal of materials  
Chemistry B. 2013;1(10):1406-13.  
4
4
4
4
4
4
4
1. Vilian AE, Chen S-M, Ali MA, Al-Hemaid FM. Direct  
electrochemistry of glucose oxidase immobilized on ZrO 2  
nanoparticles-decorated reduced graphene oxide sheets for a  
glucose biosensor. RSC Advances. 2014;4(57):30358-67.  
2. Wang R, Sun J, Gao L, Xu C, Zhang J. Fibrous nanocomposites of  
carbon nanotubes and graphene-oxide with synergetic mechanical  
and actuative performance. Chemical Communications.  
2
011;47(30):8650-2.  
3. Ma J, Zhou L, Li C, Yang J, Meng T, Zhou H, et al. Surfactant-  
free synthesis of graphene-functionalized carbon nanotube film as  
a catalytic counter electrode in dye-sensitized solar cells. Journal  
of Power Sources. 2014;247:999-1004.  
4. Li S, Luo Y, Lv W, Yu W, Wu S, Hou P, et al. Vertically Aligned  
Carbon Nanotubes Grown on Graphene Paper as Electrodes in  
Lithium‐Ion Batteries and Dye‐Sensitized Solar Cells. Advanced  
Energy Materials. 2011;1(4):486-90.  
5. Yen M-Y, Hsiao M-C, Liao S-H, Liu P-I, Tsai H-M, Ma C-CM, et  
al. Preparation of graphene/multi-walled carbon nanotube hybrid  
and its use as photoanodes of dye-sensitized solar cells. Carbon.  
2
011;49(11):3597-606.  
6. Yuan D, Chen S, Yuan R, Zhang J, Liu X. An ECL sensor for  
dopamine using reduced graphene oxide/multiwall carbon  
nanotubes/gold nanoparticles. Sensors and Actuators B: Chemical.  
2
014;191:415-20.  
7. Liu M, Li G, Chen X. One-pot controlled synthesis of spongelike  
CuInS2 microspheres for efficient counter electrode with graphene  
assistance in dye-sensitized solar cells. ACS applied materials &  
interfaces. 2014;6(4):2604-10.  
4
4
5
8. Yang N, Zhai J, Wang D, Chen Y, Jiang L. Two-dimensional  
graphene bridges enhanced photoinduced charge transport in dye-  
sensitized solar cells. ACS nano. 2010;4(2):887-94.  
9. Yang N, Zhang Y, Halpert JE, Zhai J, Wang D, Jiang L. Granum‐  
Like Stacking Structures with TiO2Graphene Nanosheets for  
Improving Photo‐electric Conversion. Small. 2012;8(11):1762-70.  
0. Gao H, Xiao F, Ching CB, Duan H. One-step electrochemical  
synthesis of PtNi nanoparticle-graphene nanocomposites for  
nonenzymatic amperometric glucose detection. ACS applied  
materials & interfaces. 2011;3(8):3049-57.  
5
5
1. Zhu G, Pan L, Lu T, Xu T, Sun Z. Electrophoretic deposition of  
reduced graphene-carbon nanotubes composite films as counter  
electrodes of dye-sensitized solar cells. Journal of Materials  
Chemistry. 2011;21(38):14869-75.  
2. Zheng H, Neo CY, Ouyang J. Highly efficient iodide/triiodide dye-  
sensitized solar cells with gel-coated reduce graphene  
oxide/single-walled carbon nanotube composites as the counter  
electrode exhibiting an open-circuit voltage of 0.90 V. ACS  
applied materials & interfaces. 2013;5(14):6657-64.  
232